mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
# Summary This PR introduces a new Tensor subclass that is designed to be used with torch.nn.functional.scaled_dot_product_attention. Currently we have a boolean `is_causal` flag that allows users to do do causal masking without the need to actually create the "realized" attention bias and pass into sdpa. We originally added this flag since there is native support in both fused kernels we support. This provides a big performance gain ( the kernels only need to iterate over ~0.5x the sequence, and for very large sequence lengths this can provide vary large memory improvements. The flag was introduced when the early on in the kernel development and at the time it was implicitly meant to "upper_left" causal attention. This distinction only matters when the attention_bias is not square. For a more detailed break down see: https://github.com/pytorch/pytorch/issues/108108. The kernels default behavior has since changed, largely due to the rise of autogressive text generation. And unfortunately this would lead to a BC break. In the long term it may actually be beneficial to change the default meaning of `is_causal` to represent lower_right causal masking. The larger theme though is laid here: https://github.com/pytorch/pytorch/issues/110681. The thesis being that there is alot of innovation in SDPA revolving around the attention_bias being used. This is the first in hopefully a few more attention_biases that we would like to add. The next interesting one would be `sliding_window` which is used by the popular mistral model family. Results from benchmarking, I improved the meff_attention perf hence the slightly decreased max perf. ```Shell +---------+--------------------+------------+-----------+-----------+-----------+-----------+----------------+----------+ | Type | Speedup | batch_size | num_heads | q_seq_len | k_seq_len | embed_dim | dtype | head_dim | +---------+--------------------+------------+-----------+-----------+-----------+-----------+----------------+----------+ | Average | 1.2388050062214226 | | | | | | | | | Max | 1.831672915579016 | 128 | 32 | 1024 | 2048 | 2048 | torch.bfloat16 | 64 | | Min | 0.9430534166730135 | 1 | 16 | 256 | 416 | 2048 | torch.bfloat16 | 128 | +---------+--------------------+------------+-----------+-----------+-----------+-----------+----------------+----------+ ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/114823 Approved by: https://github.com/cpuhrsch
3145 lines
156 KiB
Python
3145 lines
156 KiB
Python
# Owner(s): ["module: nn"]
|
|
|
|
import contextlib
|
|
from functools import partial
|
|
from collections import namedtuple
|
|
import sys
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.nn.functional import scaled_dot_product_attention
|
|
from torch.nn.attention.bias import CausalVariant, causal_lower_right, causal_upper_left
|
|
from torch.nn.parameter import Parameter
|
|
import unittest
|
|
from unittest import expectedFailure as xfail
|
|
from unittest.mock import patch, MagicMock, ANY
|
|
import math
|
|
from torch.backends.cuda import sdp_kernel, SDPBackend
|
|
import torch.optim as optim
|
|
from torch.testing._internal.common_device_type import instantiate_device_type_tests, onlyCUDA, onlyCPU
|
|
from typing import List, Tuple, Optional
|
|
from torch.testing._internal.common_nn import NNTestCase
|
|
from torch.testing._internal.common_utils import (
|
|
TEST_FAIRSEQ,
|
|
run_tests,
|
|
parametrize,
|
|
freeze_rng_state,
|
|
TEST_WITH_CROSSREF,
|
|
slowTest,
|
|
set_default_dtype,
|
|
gradcheck,
|
|
make_tensor,
|
|
NOTEST_CPU
|
|
)
|
|
|
|
|
|
from torch.testing._internal.common_methods_invocations import wrapper_set_seed
|
|
from torch.testing._internal.common_cuda import (
|
|
SM80OrLater, PLATFORM_SUPPORTS_FLASH_ATTENTION,
|
|
PLATFORM_SUPPORTS_MEM_EFF_ATTENTION,
|
|
PLATFORM_SUPPORTS_FUSED_ATTENTION
|
|
)
|
|
|
|
if TEST_FAIRSEQ:
|
|
import fairseq.models.transformer as fairseq_transformer
|
|
|
|
SdpaShape = namedtuple('Sdpa_Shape', ['batch', 'num_heads', 'seq_len', 'head_dim'])
|
|
Tolerances = namedtuple('Tolerances', ['atol', 'rtol'])
|
|
|
|
@contextlib.contextmanager
|
|
def use_deterministic_algorithims(mode: bool, warn_only: bool):
|
|
r"""
|
|
This context manager can be used to temporarily enable or disable deterministic algorithms.
|
|
Upon exiting the context manager, the previous state of the flag will be restored.
|
|
"""
|
|
previous_mode: bool = torch.are_deterministic_algorithms_enabled()
|
|
previous_warn_only: bool = torch.is_deterministic_algorithms_warn_only_enabled()
|
|
try:
|
|
torch.use_deterministic_algorithms(mode, warn_only=warn_only)
|
|
yield {}
|
|
finally:
|
|
torch.use_deterministic_algorithms(previous_mode, warn_only=previous_warn_only)
|
|
|
|
|
|
# Found in torch/testing/_comparison.py
|
|
default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5}
|
|
default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6}
|
|
|
|
isSM86or89Device = torch.cuda.is_available() and torch.cuda.get_device_capability() in [(8, 6), (8, 9)]
|
|
isSM90Device = torch.cuda.is_available() and torch.cuda.get_device_capability() == (9, 0)
|
|
isSM5xDevice = torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 5
|
|
|
|
def get_rtol(true_value: torch.Tensor, computed_value: torch.Tensor) -> float:
|
|
deviation = true_value - computed_value
|
|
deviation = torch.abs(deviation / true_value)
|
|
# Fill in the nans with the default rtol
|
|
torch.nan_to_num_(deviation, nan=default_rtol[computed_value.dtype])
|
|
return deviation.max().item()
|
|
|
|
|
|
def get_atol(true_value: torch.Tensor, computed_value: torch.Tensor) -> float:
|
|
deviation = true_value - computed_value
|
|
atol = torch.abs(deviation).max().item()
|
|
return atol
|
|
|
|
|
|
def get_tolerances(
|
|
true_value: torch.Tensor,
|
|
computed_value: torch.Tensor,
|
|
fudge_factor: Optional[float] = None,
|
|
) -> Tuple[float, float]:
|
|
"""Returns the absolute and relative tolerances for comparing two tensors."""
|
|
fudge_factor = fudge_factor if fudge_factor is not None else 1.0
|
|
atol = get_atol(true_value, computed_value)
|
|
rtol = get_rtol(true_value, computed_value)
|
|
|
|
atol = fudge_factor * max(atol, default_atol[computed_value.dtype])
|
|
rtol = fudge_factor * max(rtol, default_rtol[computed_value.dtype])
|
|
# torch.isclose() has weird behavior around see:
|
|
# https://github.com/pytorch/pytorch/issues/102400
|
|
if rtol > 1e30:
|
|
rtol = default_rtol[computed_value.dtype]
|
|
return atol, rtol
|
|
|
|
backend_map = {
|
|
SDPBackend.MATH: {"enable_math": True, "enable_flash": False, "enable_mem_efficient": False},
|
|
SDPBackend.FLASH_ATTENTION: {"enable_math": False, "enable_flash": True, "enable_mem_efficient": False},
|
|
SDPBackend.EFFICIENT_ATTENTION: {
|
|
"enable_math": False, "enable_flash": False, "enable_mem_efficient": True}
|
|
}
|
|
|
|
def query_key_value_clones(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, dtype: torch.dtype = None):
|
|
""" Clones the query, key, and value tensors and moves them to the specified dtype. """
|
|
if dtype is None:
|
|
dtype = query.dtype
|
|
query_ref = query.clone().detach().to(dtype).requires_grad_(query.requires_grad)
|
|
key_ref = key.clone().detach().to(dtype).requires_grad_(key.requires_grad)
|
|
value_ref = value.clone().detach().to(dtype).requires_grad_(value.requires_grad)
|
|
return query_ref, key_ref, value_ref
|
|
|
|
|
|
def rand_sdpa_tensor(shape: SdpaShape, device: str, dtype: torch.dtype, type: str,
|
|
requires_grad: bool = False, packed: bool = False) -> torch.Tensor:
|
|
"""Creates rand dense or nested tensor with given shape and type.
|
|
|
|
Args:
|
|
shape (Tuple[int]): Shape of Tensor to construct
|
|
device (str): which device to create tensor on
|
|
dtype (torch.dtype): Tensors' dtype
|
|
type (str): Nested or Dense
|
|
requires_grad (bool, optional): Tensors grad status. Defaults to False.
|
|
packed (bool, optional): Whether to create a single QKV packed or not. Defaults to False.
|
|
|
|
Returns:
|
|
torch.Tensor: A new tensor
|
|
"""
|
|
batch, num_heads, seq_len, head_dim = shape.batch, shape.num_heads, shape.seq_len, shape.head_dim
|
|
if type == "nested":
|
|
if isinstance(seq_len, list):
|
|
def _size(i):
|
|
return (seq_len[i], num_heads, head_dim) if not packed else (seq_len[i], 3 * num_heads * head_dim)
|
|
|
|
return torch.nested.nested_tensor([
|
|
torch.randn(_size(i), device=device, dtype=dtype, requires_grad=requires_grad)
|
|
for i in range(batch)])
|
|
else:
|
|
size = (seq_len, num_heads, head_dim) if not packed else (seq_len, 3 * num_heads * head_dim)
|
|
return torch.nested.nested_tensor([
|
|
torch.randn(size, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
for _ in range(batch)])
|
|
else:
|
|
assert (isinstance(seq_len, int))
|
|
size = (batch, seq_len, num_heads, head_dim) if not packed else (batch, seq_len, 3 * num_heads * head_dim)
|
|
return torch.randn(size, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
def calculate_nt_tolerances(nt_ref_hp, nt_ref_lp, default_dtype, fudge_factor=1):
|
|
# TODO use NT ops when we have implemented Max for NestedTensor instead of unrolling
|
|
ref_atol = default_atol[default_dtype]
|
|
ref_rtol = default_rtol[default_dtype]
|
|
for tensor_component_ref, tensor_component_ref_lp in zip(nt_ref_hp.unbind(), nt_ref_lp.unbind()):
|
|
ref_atol = max((fudge_factor * torch.abs(tensor_component_ref - tensor_component_ref_lp)).max().item(), ref_atol)
|
|
ref_rtol = max(get_rtol(tensor_component_ref, tensor_component_ref_lp), ref_rtol)
|
|
return ref_atol, ref_rtol
|
|
|
|
class TestTransformers(NNTestCase):
|
|
_do_cuda_memory_leak_check = True
|
|
_do_cuda_non_default_stream = True
|
|
|
|
@onlyCUDA
|
|
@unittest.skip("4D mask not supported yet - activate when 4D mask supported")
|
|
def test_self_attn_TxT_attn_mask(self, device):
|
|
embed_dim = 16
|
|
num_heads = 4
|
|
batch_size = 10
|
|
tgt_len = 16
|
|
|
|
query = torch.rand(batch_size, tgt_len, embed_dim, device=device) # [N, T, D]
|
|
attn_mask = torch.randint(0, 2, (tgt_len, tgt_len)).cuda().float() # [T, T]
|
|
attn_mask = attn_mask.masked_fill(attn_mask == 0, float('-inf')).masked_fill(attn_mask == 1, 0.0)
|
|
|
|
attn_mask_4d = attn_mask.expand(batch_size, num_heads, tgt_len, tgt_len)
|
|
|
|
mta_model = torch.nn.MultiheadAttention(embed_dim, num_heads, batch_first=True).cuda()
|
|
mta_model.eval()
|
|
|
|
# Generate 3D results
|
|
with torch.inference_mode():
|
|
output_mask_4d = mta_model(query, query, query, attn_mask=attn_mask_4d)[0]
|
|
output_mask_4d = output_mask_4d.transpose(0, 1) # [N, T, D]
|
|
|
|
output_mask_TxT = mta_model(query, query, query, attn_mask=attn_mask)[0]
|
|
output_mask_TxT = output_mask_TxT.transpose(0, 1) # [N, T, D]
|
|
|
|
self.assertEqual(output_mask_4d, output_mask_TxT)
|
|
|
|
@slowTest
|
|
def test_train_with_pad_and_catch_error(self, device):
|
|
iters = 100
|
|
pad_mask = torch.tensor([[1, 1, 0, 0]], dtype=torch.bool).to(device)
|
|
layer = nn.TransformerEncoderLayer(
|
|
d_model=2,
|
|
dim_feedforward=4,
|
|
nhead=2,
|
|
batch_first=True,
|
|
activation="gelu",
|
|
dropout=0,
|
|
)
|
|
criterion = nn.MSELoss()
|
|
encoder = nn.TransformerEncoder(layer, 2).to(device)
|
|
optimizer = optim.SGD(encoder.parameters(), lr=0.1, momentum=0.9)
|
|
encoder.train()
|
|
for i in range(iters):
|
|
encoder.train()
|
|
optimizer.zero_grad()
|
|
inputs = torch.cat([torch.randn(1, 2, 2), torch.zeros(1, 2, 2)], dim=1).to(device)
|
|
|
|
outputs = encoder(inputs, src_key_padding_mask=pad_mask)
|
|
|
|
loss = criterion(outputs[:, 0:2, :], inputs[:, 0:2, :])
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
with torch.no_grad():
|
|
test = torch.cat([torch.randn(1, 2, 2), torch.zeros(1, 2, 2)], dim=1).to(device)
|
|
|
|
# Expect uint8 type not supported
|
|
ex = None
|
|
try:
|
|
test_train_uint8 = encoder(test, src_key_padding_mask=pad_mask.to(torch.uint8))
|
|
except AssertionError as e:
|
|
continue
|
|
self.assertFalse(e, "Failed to catch unsupported uint8 type exception")
|
|
|
|
test_train_bool = encoder(test, src_key_padding_mask=pad_mask)
|
|
encoder.eval()
|
|
|
|
# Expect long type not supported
|
|
ex = None
|
|
try:
|
|
test_eval_uint8 = encoder(test, src_key_padding_mask=pad_mask.to(torch.int64))
|
|
except AssertionError as e:
|
|
continue
|
|
self.assertFalse(e, "Failed to catch unsupported Long type exception")
|
|
|
|
test_eval_bool = encoder(test, src_key_padding_mask=pad_mask)
|
|
l1_bool = nn.L1Loss()(test_train_bool[:, 0:2, :], test_eval_bool[:, 0:2, :]).item()
|
|
self.assertTrue(l1_bool < 1e-4, "Eval/Train difference in pad_mask BOOL")
|
|
|
|
@parametrize("attn_mask_dim", [2, 3, None])
|
|
@parametrize("key_padding_mask_dim", [2, None])
|
|
@parametrize("mask_dtype", [torch.bool, torch.float32])
|
|
def test_multiheadattention_fastpath_attn_mask(self, device, attn_mask_dim, key_padding_mask_dim, mask_dtype):
|
|
with torch.no_grad():
|
|
B = 2
|
|
L = 4
|
|
D = 8
|
|
H = 4
|
|
|
|
if attn_mask_dim == 2:
|
|
attn_mask = make_tensor((L, L), dtype=mask_dtype, device=device)
|
|
elif attn_mask_dim == 3:
|
|
attn_mask = make_tensor((B * H, L, L), dtype=mask_dtype, device=device)
|
|
elif attn_mask_dim is None:
|
|
attn_mask = None
|
|
|
|
if key_padding_mask_dim == 2:
|
|
key_padding_mask = make_tensor((B, L), dtype=mask_dtype, device=device)
|
|
elif key_padding_mask_dim is None:
|
|
key_padding_mask = None
|
|
|
|
mha = nn.MultiheadAttention(D, H, batch_first=True, device=device)
|
|
X = torch.randn(B, L, D, device=device)
|
|
|
|
mha.train() # disable fast path
|
|
out, _ = mha(X, X, X, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=False)
|
|
mha.eval() # enable fast path
|
|
out_fp, _ = mha(X, X, X, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=False)
|
|
self.assertEqual(out, out_fp)
|
|
|
|
@parametrize("nhead", [1, 4, 8])
|
|
def test_transformerencoderlayer_src_mask(self, device, nhead):
|
|
batch_size = 2
|
|
seqlen = 4
|
|
d_model = 8
|
|
dim_feedforward = 32
|
|
|
|
model = torch.nn.TransformerEncoderLayer(
|
|
d_model=d_model,
|
|
nhead=nhead,
|
|
dim_feedforward=dim_feedforward,
|
|
batch_first=True).to(device)
|
|
src = torch.rand(batch_size, seqlen, d_model).to(device) # bs, seqlen, d_model
|
|
src_mask = torch.zeros(seqlen, seqlen).to(torch.bool).to(device)
|
|
|
|
model(src, src_mask=src_mask)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
model(src, src_mask=src_mask)
|
|
|
|
@parametrize("use_torchscript", [False])
|
|
@parametrize("enable_nested_tensor", [True, False])
|
|
@parametrize("use_autocast", [True, False])
|
|
@parametrize("d_model", [12, 256])
|
|
def test_transformerencoder_fastpath(self, device, use_torchscript, enable_nested_tensor, use_autocast, d_model):
|
|
"""
|
|
Test TransformerEncoder fastpath output matches slowpath output
|
|
"""
|
|
torch.manual_seed(1234)
|
|
nhead = 4
|
|
dim_feedforward = d_model
|
|
batch_first = True
|
|
|
|
model = torch.nn.TransformerEncoder(
|
|
torch.nn.TransformerEncoderLayer(
|
|
d_model=d_model,
|
|
nhead=nhead,
|
|
dim_feedforward=dim_feedforward,
|
|
batch_first=batch_first),
|
|
num_layers=2,
|
|
enable_nested_tensor=enable_nested_tensor
|
|
).to(device).eval()
|
|
|
|
if use_torchscript:
|
|
model = torch.jit.script(model)
|
|
|
|
# each input is (input, mask)
|
|
input_mask_pairs = [
|
|
(
|
|
torch.rand(3, 2, d_model),
|
|
[
|
|
[0, 1],
|
|
[0, 1],
|
|
[1, 1]
|
|
]
|
|
),
|
|
(
|
|
torch.rand(2, 100, d_model),
|
|
[
|
|
[0] * 98 + [1] * 2,
|
|
[0] * 90 + [1] * 10
|
|
]
|
|
),
|
|
# softmax.cu switches from fast->slowpath at masked seqlen 1024. test 1024.
|
|
(
|
|
torch.rand(2, 1024, d_model),
|
|
[
|
|
[0] * 1020 + [1] * 4,
|
|
[0] * 1024,
|
|
]
|
|
),
|
|
(
|
|
torch.rand(1, 1026, d_model),
|
|
[[0] * 1024 + [1] * 2]
|
|
),
|
|
# softmax.cu switches from fast->slowpath at masked seqlen 1024. test range of masks above 1024.
|
|
(
|
|
torch.rand(4, 1040, d_model),
|
|
[
|
|
[0] * 1024 + [1] * 16,
|
|
[0] * 1025 + [1] * 15,
|
|
[0] * 1031 + [1] * 9,
|
|
[0] * 1040,
|
|
]
|
|
)
|
|
]
|
|
input_mask_pairs = [
|
|
(
|
|
torch.tensor(pair[0], device=device, dtype=torch.get_default_dtype()), # float input
|
|
torch.tensor(pair[1], device=device, dtype=torch.bool) # bool mask
|
|
) for pair in input_mask_pairs
|
|
]
|
|
|
|
maybe_autocast = torch.autocast("cuda", dtype=torch.float16) if use_autocast else contextlib.nullcontext()
|
|
with maybe_autocast:
|
|
for input, src_key_padding_mask in input_mask_pairs:
|
|
with torch.no_grad():
|
|
fastpath_output = model(input, src_key_padding_mask=src_key_padding_mask)
|
|
slowpath_output = model(input, src_key_padding_mask=src_key_padding_mask) # reference
|
|
# Make sure fastpath_output is same shape as slowpath_output and mask.
|
|
# When enable_nested_tensor=true, fastpath_output may be smaller than input tensor.
|
|
# Eg if input bs=1, seqlen=6, and we mask out 2 tokens, fastpath_output will have bs=1, seqlen=4.
|
|
# Expand back to old size to match.
|
|
bs, true_seqlen, embed_dim = fastpath_output.shape
|
|
expanded_seqlen = src_key_padding_mask.shape[1]
|
|
fastpath_output_expanded = torch.zeros(bs, expanded_seqlen, embed_dim, device=device)
|
|
fastpath_output_expanded[:, :true_seqlen, :] = fastpath_output
|
|
# no garauntees on output corresponding to masked tokens, so they may vary between slow/fast path. set all to 0.
|
|
fastpath_output_expanded = fastpath_output_expanded.masked_fill(src_key_padding_mask.unsqueeze(-1), 0)
|
|
slowpath_output = slowpath_output.masked_fill(src_key_padding_mask.unsqueeze(-1), 0)
|
|
torch.testing.assert_close(fastpath_output_expanded, slowpath_output, rtol=1e-7, atol=1e-5)
|
|
|
|
@parametrize("with_no_grad", [True, False])
|
|
@parametrize("training", [True, False])
|
|
@parametrize("enable_nested_tensor", [False])
|
|
def test_transformerencoder_square_input(self, with_no_grad, training, enable_nested_tensor, device):
|
|
"""
|
|
Test for edge cases when input of shape (batch size, sequence length, embedding dimension) has
|
|
batch size == sequence length
|
|
"""
|
|
model = torch.nn.TransformerEncoder(
|
|
torch.nn.TransformerEncoderLayer(d_model=4, nhead=2, dim_feedforward=16, dropout=0.0, batch_first=True),
|
|
num_layers=2,
|
|
enable_nested_tensor=enable_nested_tensor
|
|
).to(device)
|
|
|
|
with torch.no_grad():
|
|
# set constant weights of the model
|
|
for idx, p in enumerate(model.parameters()):
|
|
x = p.data
|
|
sz = x.view(-1).size(0)
|
|
shape = x.shape
|
|
x = torch.cos(torch.arange(0, sz).float().view(shape))
|
|
p.data.copy_(x)
|
|
|
|
if training:
|
|
model = model.train()
|
|
else:
|
|
model = model.eval()
|
|
x = torch.arange(0, 16).reshape(2, 2, 4).to(torch.get_default_dtype()).to(device)
|
|
src_mask = torch.Tensor([[0, 1], [0, 0]]).to(torch.bool).to(device)
|
|
|
|
if with_no_grad:
|
|
cm = torch.no_grad()
|
|
else:
|
|
cm = contextlib.nullcontext()
|
|
with cm:
|
|
result = model(x, mask=src_mask)
|
|
|
|
ref_output = torch.Tensor([[[2.420306205749512, 0.017629241570830, -0.607857942581177, -0.085519507527351],
|
|
[2.420306205749512, 0.017629241570830, -0.607857942581177, -0.085519507527351]],
|
|
[[2.419836044311523, 0.017548924311996, -0.608187675476074, -0.085347734391689],
|
|
[2.419836044311523, 0.017548924311996, -0.608187675476074, -0.085347734391689]]]
|
|
).to(device)
|
|
self.assertEqual(tuple(result.shape), tuple(ref_output.shape))
|
|
torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5)
|
|
|
|
@parametrize("batch_first", [True, False])
|
|
@parametrize("training", [True, False])
|
|
@parametrize("enable_nested_tensor", [True, False])
|
|
def test_transformerencoder(self, batch_first, training, enable_nested_tensor, device):
|
|
def get_a_test_layer(activation, batch_first=False):
|
|
d_model = 4
|
|
nhead = 2
|
|
dim_feedforward = 16
|
|
dropout = 0.0
|
|
|
|
layer = nn.TransformerEncoderLayer(
|
|
d_model,
|
|
nhead,
|
|
dim_feedforward=dim_feedforward,
|
|
dropout=dropout,
|
|
activation=activation,
|
|
batch_first=batch_first,
|
|
).to(device)
|
|
|
|
with torch.no_grad():
|
|
# set constant weights of the model
|
|
for idx, p in enumerate(layer.parameters()):
|
|
x = p.data
|
|
sz = x.view(-1).size(0)
|
|
shape = x.shape
|
|
x = torch.cos(torch.arange(0, sz).float().view(shape))
|
|
p.data.copy_(x)
|
|
|
|
return layer
|
|
|
|
# this is a deterministic test for TransformerEncoder
|
|
activation = F.relu
|
|
|
|
def _test(batch_first, training, enable_nested_tensor):
|
|
def perm_fn(x):
|
|
return x.transpose(1, 0) if batch_first else x
|
|
|
|
encoder_layer = get_a_test_layer(activation=activation,
|
|
batch_first=batch_first)
|
|
|
|
model = nn.TransformerEncoder(
|
|
encoder_layer, 1, enable_nested_tensor=enable_nested_tensor
|
|
).to(device)
|
|
|
|
if not training:
|
|
model = model.eval()
|
|
|
|
# deterministic input
|
|
encoder_input = perm_fn(torch.tensor([[[0.7462, 0.6653, 0.5679, 0.4891],
|
|
[0.5387, 0.1655, 0.3565, 0.0471]],
|
|
[[0.8335, 0.2799, 0.5031, 0.2947],
|
|
[0.1402, 0.0318, 0.7636, 0.1346]],
|
|
[[0.6333, 0.9344, 0.1376, 0.9938],
|
|
[0.8924, 0.2872, 0.6692, 0.2944]],
|
|
[[0.9897, 0.6915, 0.3154, 0.1733],
|
|
[0.8645, 0.3513, 0.3064, 0.0767]],
|
|
[[0.8117, 0.2366, 0.4838, 0.7881],
|
|
[0.3718, 0.4945, 0.9511, 0.0864]]]
|
|
)).to(device)
|
|
result = model(encoder_input)
|
|
ref_output = perm_fn(torch.tensor([[[2.428589, 0.020835, -0.602055, -0.085249],
|
|
[2.427987, 0.021213, -0.602496, -0.084103]],
|
|
[[2.424689, 0.019155, -0.604793, -0.085672],
|
|
[2.413863, 0.022211, -0.612486, -0.072490]],
|
|
[[2.433774, 0.021598, -0.598343, -0.087548],
|
|
[2.425104, 0.019748, -0.604515, -0.084839]],
|
|
[[2.436185, 0.022682, -0.596625, -0.087261],
|
|
[2.433556, 0.021891, -0.598509, -0.086832]],
|
|
[[2.416246, 0.017512, -0.610712, -0.082961],
|
|
[2.422901, 0.024187, -0.606178, -0.074929]]]
|
|
)).to(device)
|
|
self.assertEqual(tuple(result.shape), tuple(ref_output.shape))
|
|
torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5)
|
|
|
|
# all 0 src_mask
|
|
src_mask = torch.zeros([5, 5]).to(device) == 1
|
|
result = model(encoder_input, mask=src_mask)
|
|
self.assertEqual(tuple(result.shape), tuple(ref_output.shape))
|
|
torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5)
|
|
|
|
# all 0
|
|
mask = torch.zeros([2, 5]).to(device) == 1
|
|
result = model(encoder_input, src_key_padding_mask=mask)
|
|
self.assertEqual(tuple(result.shape), tuple(ref_output.shape))
|
|
torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5)
|
|
|
|
mask[0, 1] = 1
|
|
mask[1, 3] = 1
|
|
mask[1, 4] = 1
|
|
result = model(encoder_input, src_key_padding_mask=mask)
|
|
ref_output = perm_fn(torch.tensor([[[2.429026, 0.020793, -0.601741, -0.085642],
|
|
[2.428811, 0.021445, -0.601912, -0.084252]],
|
|
[[2.425009, 0.019155, -0.604566, -0.085899],
|
|
[2.415408, 0.02249, -0.611415, -0.073]],
|
|
[[2.434199, 0.021682, -0.598039, -0.087699],
|
|
[2.42598, 0.019941, -0.603896, -0.085091]],
|
|
[[2.436457, 0.022736, -0.59643, -0.08736],
|
|
[2.434021, 0.022093, -0.598179, -0.08679]],
|
|
[[2.416531, 0.017498, -0.610513, -0.083181],
|
|
[2.4242, 0.024653, -0.605266, -0.074959]]]
|
|
)).to(device)
|
|
self.assertEqual(tuple(result.shape), tuple(ref_output.shape))
|
|
torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5)
|
|
|
|
# test case 2, multiple layers no norm
|
|
model = nn.TransformerEncoder(encoder_layer, 2, enable_nested_tensor=enable_nested_tensor).to(device)
|
|
if not training:
|
|
model = model.eval()
|
|
result = model(encoder_input, src_key_padding_mask=mask)
|
|
ref_output = perm_fn(torch.tensor([[[2.419051, 0.017446, -0.608738, -0.085003],
|
|
[2.419102, 0.017452, -0.608703, -0.085026]],
|
|
[[2.419043, 0.017445, -0.608744, -0.084999],
|
|
[2.419052, 0.017446, -0.608738, -0.085004]],
|
|
[[2.419067, 0.017448, -0.608727, -0.085010],
|
|
[2.419098, 0.017452, -0.608706, -0.085024]],
|
|
[[2.419072, 0.017449, -0.608724, -0.085012],
|
|
[2.419119, 0.017455, -0.608691, -0.085034]],
|
|
[[2.419019, 0.017442, -0.608761, -0.084989],
|
|
[2.419075, 0.017449, -0.608722, -0.085014]]]
|
|
)).to(device)
|
|
self.assertEqual(tuple(result.shape), tuple(ref_output.shape))
|
|
torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5)
|
|
|
|
model = nn.TransformerEncoder(encoder_layer, 6, enable_nested_tensor=enable_nested_tensor).to(device)
|
|
if not training:
|
|
model = model.eval()
|
|
result = model(encoder_input, src_key_padding_mask=mask)
|
|
ref_output = perm_fn(torch.tensor([[[2.419101, 0.017453, -0.608703, -0.085025],
|
|
[2.419101, 0.017453, -0.608704, -0.085025]],
|
|
[[2.419101, 0.017453, -0.608703, -0.085025],
|
|
[2.419101, 0.017453, -0.608704, -0.085025]],
|
|
[[2.419101, 0.017453, -0.608703, -0.085025],
|
|
[2.419101, 0.017453, -0.608704, -0.085025]],
|
|
[[2.419101, 0.017453, -0.608703, -0.085025],
|
|
[2.419101, 0.017453, -0.608704, -0.085025]],
|
|
[[2.419101, 0.017453, -0.608703, -0.085025],
|
|
[2.419101, 0.017453, -0.608704, -0.085025]]]
|
|
)).to(device)
|
|
self.assertEqual(tuple(result.shape), tuple(ref_output.shape))
|
|
torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5)
|
|
|
|
# test case 3, multiple layers with norm
|
|
# d_model = 4
|
|
norm = nn.LayerNorm(4)
|
|
model = nn.TransformerEncoder(encoder_layer, 2, norm=norm,
|
|
enable_nested_tensor=enable_nested_tensor).to(device)
|
|
if not training:
|
|
model = model.eval()
|
|
result = model(encoder_input, src_key_padding_mask=mask)
|
|
ref_output = perm_fn(torch.tensor([[[1.695949, -0.357635, -0.893077, -0.445238],
|
|
[1.695955, -0.357639, -0.893050, -0.445266]],
|
|
[[1.695948, -0.357634, -0.893082, -0.445233],
|
|
[1.695950, -0.357635, -0.893077, -0.445238]],
|
|
[[1.695951, -0.357636, -0.893069, -0.445246],
|
|
[1.695955, -0.357639, -0.893052, -0.445264]],
|
|
[[1.695952, -0.357636, -0.893066, -0.445249],
|
|
[1.695957, -0.357641, -0.893041, -0.445276]],
|
|
[[1.695946, -0.357632, -0.893095, -0.445220],
|
|
[1.695952, -0.357637, -0.893065, -0.445251]]]
|
|
)).to(device)
|
|
self.assertEqual(tuple(result.shape), tuple(ref_output.shape))
|
|
torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5)
|
|
|
|
model = nn.TransformerEncoder(encoder_layer, 6, norm=norm,
|
|
enable_nested_tensor=enable_nested_tensor).to(device)
|
|
if not training:
|
|
model = model.eval()
|
|
result = model(encoder_input, src_key_padding_mask=mask)
|
|
ref_output = perm_fn(torch.tensor([[[1.695955, -0.357639, -0.893051, -0.445265],
|
|
[1.695955, -0.357639, -0.893051, -0.445265]],
|
|
[[1.695955, -0.357639, -0.893051, -0.445265],
|
|
[1.695955, -0.357639, -0.893051, -0.445265]],
|
|
[[1.695955, -0.357639, -0.893051, -0.445265],
|
|
[1.695955, -0.357639, -0.893051, -0.445265]],
|
|
[[1.695955, -0.357639, -0.893051, -0.445265],
|
|
[1.695955, -0.357639, -0.893051, -0.445265]],
|
|
[[1.695955, -0.357639, -0.893051, -0.445265],
|
|
[1.695955, -0.357639, -0.893051, -0.445265]]]
|
|
)).to(device)
|
|
self.assertEqual(tuple(result.shape), tuple(ref_output.shape))
|
|
torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5)
|
|
|
|
# TODO: remove set default dtype to double by making ref_output more precise.
|
|
# Added because this test was copied from test_nn.py, which has default
|
|
# dtype double. If default dtype is float, tests will say tensors not close because
|
|
# ref output precision too low
|
|
with set_default_dtype(torch.double):
|
|
if training:
|
|
cm = contextlib.nullcontext()
|
|
else:
|
|
cm = torch.no_grad() # transformer fast path requires no grad
|
|
with cm:
|
|
_test(batch_first, training, enable_nested_tensor)
|
|
|
|
@unittest.skipIf(sys.version_info < (3, 11), "not supported on pre-3.11 Python")
|
|
def test_encoder_padding_and_src_mask_bool(self):
|
|
encoder_layer = nn.TransformerEncoderLayer(
|
|
d_model=16,
|
|
nhead=2,
|
|
dim_feedforward=32,
|
|
dropout=0.1,
|
|
activation='relu',
|
|
batch_first=True,
|
|
)
|
|
encoder_norm = nn.LayerNorm(16)
|
|
encoder = nn.TransformerEncoder(
|
|
encoder_layer, 2, encoder_norm
|
|
)
|
|
|
|
inputs = torch.randn(2, 3, 16)
|
|
|
|
src_mask = torch.ones(3, 3, dtype=torch.bool).triu_(diagonal=1)
|
|
input_seq_len = torch.tensor([3, 2])
|
|
padding_mask = (
|
|
torch.arange(3)[None, :].cpu() >= input_seq_len[:, None]
|
|
)
|
|
|
|
with self.assertNoLogs(None):
|
|
encoder(
|
|
inputs,
|
|
mask=src_mask,
|
|
src_key_padding_mask=padding_mask,
|
|
)
|
|
|
|
@unittest.skipIf(sys.version_info < (3, 11), "not supported on pre-3.11 Python")
|
|
def test_decoder_padding_and_src_mask_bool(self):
|
|
|
|
def transformer_decoder(inputs, input_seq_len, memory):
|
|
decoder_layer = nn.TransformerDecoderLayer(
|
|
d_model=16,
|
|
nhead=2,
|
|
dim_feedforward=32,
|
|
dropout=0.1,
|
|
activation='relu',
|
|
batch_first=True,
|
|
)
|
|
decoder_norm = nn.LayerNorm(16)
|
|
decoder = nn.TransformerDecoder(
|
|
decoder_layer, 2, decoder_norm
|
|
)
|
|
|
|
src_mask = torch.ones(
|
|
inputs.shape[1], inputs.shape[1], dtype=torch.bool
|
|
).triu_(diagonal=1)
|
|
padding_mask = (
|
|
torch.arange(inputs.shape[1])[None, :].cpu()
|
|
>= input_seq_len[:, None]
|
|
)
|
|
|
|
return decoder(
|
|
inputs,
|
|
memory,
|
|
tgt_mask=src_mask,
|
|
tgt_key_padding_mask=padding_mask,
|
|
memory_key_padding_mask=padding_mask,
|
|
)
|
|
|
|
inputs = torch.randn(2, 3, 16)
|
|
memory = torch.randn(2, 3, 16)
|
|
input_seq_len = torch.tensor([3, 2])
|
|
|
|
with self.assertNoLogs(None):
|
|
transformer_decoder(inputs, input_seq_len, memory)
|
|
|
|
def test_encoder_is_causal(self):
|
|
|
|
d_model = 3
|
|
layer = torch.nn.TransformerEncoderLayer(d_model, 1, 6, batch_first=True)
|
|
layer.eval()
|
|
x = torch.randn(1, 5, d_model)
|
|
unmasked_output = layer(x)
|
|
mask = torch.nn.Transformer.generate_square_subsequent_mask(x.size(1))
|
|
is_causal_output = layer(x, src_mask=mask, is_causal=True)
|
|
masked_output = layer(x, src_mask=mask)
|
|
|
|
self.assertEqual(masked_output, is_causal_output)
|
|
|
|
@onlyCUDA
|
|
@parametrize("nb_heads", [1, 8])
|
|
@parametrize("bias", [True, False])
|
|
def test_mha_native_args(self, nb_heads, bias):
|
|
|
|
B, L, F = 8, 100, 128
|
|
batch_first = True
|
|
fast_path = True
|
|
use_pad_mask = (bias % 2) == 1
|
|
|
|
mha = nn.MultiheadAttention(
|
|
embed_dim=F,
|
|
num_heads=nb_heads,
|
|
batch_first=batch_first,
|
|
bias=bias
|
|
).cuda()
|
|
mha.eval()
|
|
|
|
ctx = torch.no_grad if fast_path else contextlib.nullcontext
|
|
with ctx():
|
|
x = torch.randn(B, L, F).cuda()
|
|
if not batch_first:
|
|
x = x.transpose(0, 1)
|
|
|
|
pad_mask = None
|
|
if use_pad_mask:
|
|
pad_mask = torch.zeros((B, L), dtype=torch.bool).cuda()
|
|
|
|
mha(query=x, key=x, value=x, key_padding_mask=pad_mask)
|
|
|
|
def test_kpm_mask_trailing_column_with_nested_tensor(self, device):
|
|
encoder_layer = nn.TransformerEncoderLayer(
|
|
d_model=256,
|
|
nhead=4,
|
|
dim_feedforward=512,
|
|
activation='gelu',
|
|
norm_first=False,
|
|
batch_first=False,
|
|
)
|
|
transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=3, enable_nested_tensor=True).to(device)
|
|
|
|
x = torch.randn(10, 6, 256).to(device)
|
|
mask = torch.ones(6, 10)
|
|
mask[0, :] = 0 # here I masked 5 columns instead of just one
|
|
mask = mask.bool().to(device)
|
|
out = transformer_encoder(src=x, src_key_padding_mask=mask)
|
|
self.assertEqual(out.shape[1], 6)
|
|
|
|
# CPU unit test has_torch_functions in test environment,
|
|
# preventing successful completion
|
|
@onlyCUDA
|
|
def test_with_nested_tensor_input(self, device):
|
|
encoder_layer = nn.TransformerEncoderLayer(
|
|
d_model=256,
|
|
nhead=4,
|
|
dim_feedforward=512,
|
|
activation='gelu',
|
|
norm_first=False,
|
|
batch_first=True,
|
|
)
|
|
transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=3, enable_nested_tensor=True).to(device)
|
|
|
|
transformer_encoder.eval()
|
|
with torch.no_grad():
|
|
x = torch.randn(6, 10, 256).to(device)
|
|
mask = torch.ones(6, 10)
|
|
mask[0, 0:] = 0 # here I masked 5 columns instead of just one
|
|
mask[2, 2:] = 0 # here I masked 5 columns instead of just one
|
|
mask[4, 4:] = 0 # here I masked 5 columns instead of just one
|
|
mask[5, 8:] = 0 # here I masked 5 columns instead of just one
|
|
mask = mask.bool().to(device)
|
|
x = torch._nested_tensor_from_mask(x, mask.logical_not(), mask_check=False)
|
|
out = transformer_encoder(src=x, src_key_padding_mask=None)
|
|
|
|
self.assertEqual(out.is_nested, True)
|
|
|
|
|
|
|
|
def test_script_encoder_subclass(self, device):
|
|
class MyCustomLayer(nn.TransformerEncoderLayer):
|
|
pass
|
|
|
|
encoder = nn.TransformerEncoder(
|
|
MyCustomLayer(d_model=256, nhead=8), num_layers=6
|
|
).to(device=device)
|
|
torch.jit.script(encoder)
|
|
|
|
# brazenly adapted from test_transformerencoderlayer_src_mask to test execution of
|
|
# torchscripted transformerencoderlayer subclass
|
|
def test_transformerencoderlayer_subclass(self, device):
|
|
class MyCustomLayer(nn.TransformerEncoderLayer):
|
|
pass
|
|
|
|
nhead = 4
|
|
batch_size = 2
|
|
seqlen = 4
|
|
d_model = 8
|
|
dim_feedforward = 32
|
|
|
|
model = MyCustomLayer(
|
|
d_model=d_model,
|
|
nhead=nhead,
|
|
dim_feedforward=dim_feedforward,
|
|
batch_first=True).to(device)
|
|
script_model = torch.jit.script(model)
|
|
|
|
src = torch.rand(batch_size, seqlen, d_model).to(device) # bs, seqlen, d_model
|
|
src_mask = torch.zeros(seqlen, seqlen).to(torch.bool).to(device)
|
|
|
|
torch.manual_seed(42)
|
|
result = model(src, src_mask=src_mask)
|
|
torch.manual_seed(42)
|
|
scripted_result = script_model(src, src_mask=src_mask)
|
|
self.assertEqual(result, scripted_result)
|
|
|
|
model.eval()
|
|
script_model = torch.jit.script(model)
|
|
|
|
with torch.no_grad():
|
|
result = model(src, src_mask=src_mask)
|
|
scripted_result = script_model(src, src_mask=src_mask)
|
|
self.assertEqual(result, scripted_result)
|
|
|
|
|
|
def test_transformerencoderlayer_subclass_model(self, device):
|
|
class MyCustomLayer(nn.TransformerEncoderLayer):
|
|
pass
|
|
|
|
nhead = 4
|
|
batch_size = 2
|
|
seqlen = 4
|
|
d_model = 8
|
|
dim_feedforward = 32
|
|
|
|
layer = MyCustomLayer(
|
|
d_model=d_model,
|
|
nhead=nhead,
|
|
dim_feedforward=dim_feedforward,
|
|
batch_first=True)
|
|
model = nn.TransformerEncoder(
|
|
layer, num_layers=6
|
|
).to(device=device)
|
|
script_model = torch.jit.script(model)
|
|
|
|
src = torch.rand(batch_size, seqlen, d_model).to(device) # bs, seqlen, d_model
|
|
src_mask = torch.zeros(seqlen, seqlen).to(torch.bool).to(device)
|
|
|
|
torch.manual_seed(42)
|
|
result = model(src, mask=src_mask)
|
|
torch.manual_seed(42)
|
|
scripted_result = script_model(src, mask=src_mask)
|
|
self.assertEqual(result, scripted_result)
|
|
|
|
model.eval()
|
|
script_model = torch.jit.script(model)
|
|
|
|
with torch.no_grad():
|
|
result = model(src, mask=src_mask)
|
|
scripted_result = script_model(src, mask=src_mask)
|
|
self.assertEqual(result, scripted_result)
|
|
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not TEST_FAIRSEQ, "Fairseq not found")
|
|
def test_decoder_only_layer(self):
|
|
DEFAULT_PADDING_IDX = 0
|
|
|
|
class FairseqDecoder(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
embed_dim,
|
|
attention_heads,
|
|
ffn_embed_dim,
|
|
num_layers,
|
|
embedding_layer, # torch.nn.Embedding. Must have a padding_idx field
|
|
dropout=0,
|
|
normalize_before=False,
|
|
torch_encoder=None, # torch encoder that you can map weights from
|
|
activation="relu",
|
|
):
|
|
super().__init__()
|
|
|
|
cfg = fairseq_transformer.TransformerConfig()
|
|
cfg.decoder.embed_dim = embed_dim
|
|
cfg.decoder.output_dim = embed_dim
|
|
cfg.decoder.attention_heads = attention_heads
|
|
cfg.decoder.ffn_embed_dim = ffn_embed_dim
|
|
cfg.dropout = dropout
|
|
cfg.decoder.normalize_before = normalize_before
|
|
cfg.decoder.layers = num_layers
|
|
# make embedding behavior same as other encoders
|
|
cfg.no_token_positional_embeddings = True
|
|
cfg.no_scale_embedding = True
|
|
cfg.activation_fn = activation
|
|
|
|
dictionary = {} # TODO: verify what this is
|
|
|
|
self.decoder = fairseq_transformer.TransformerDecoder(
|
|
cfg,
|
|
dictionary,
|
|
embedding_layer,
|
|
no_encoder_attn=True,
|
|
output_projection=None,
|
|
)
|
|
|
|
if torch_encoder is not None:
|
|
self.decoder = torch_to_fairseq(torch_encoder, self.decoder)
|
|
self.decoder = self.decoder.eval().cuda().half()
|
|
|
|
def forward(
|
|
self,
|
|
tokens,
|
|
src_lengths=None,
|
|
with_triangle_mask=False,
|
|
incremental_state=None,
|
|
):
|
|
return self.decoder(
|
|
prev_output_tokens=tokens,
|
|
encoder_out=None,
|
|
incremental_state=incremental_state,
|
|
features_only=True,
|
|
full_context_alignment=not with_triangle_mask,
|
|
alignment_layer=None,
|
|
alignment_heads=None,
|
|
src_lengths=src_lengths,
|
|
return_all_hiddens=False,
|
|
)[0]
|
|
|
|
@parametrize("input_dim,attn_mask_dim,is_causal",
|
|
[(3, None, False), (3, 2, False), (3, 2, True), (3, 3, False), (3, 3, True),
|
|
(4, None, False), (4, 2, False), (4, 2, True), (4, 4, False), (4, 4, True)],
|
|
name_fn=lambda input_dim, attn_dim, is_causal: (
|
|
f"{input_dim}D_input_dim_" + (
|
|
f"{attn_dim}D_{'causal_' if is_causal else ''}attn_mask"
|
|
if attn_dim is not None else "no_attn_mask")))
|
|
@parametrize("dropout_p", [0.0, 0.2, 0.5])
|
|
@sdp_kernel(enable_flash=False, enable_mem_efficient=False)
|
|
def test_scaled_dot_product_attention(self, device, input_dim, attn_mask_dim, is_causal, dropout_p):
|
|
def sdp_ref(
|
|
q,
|
|
k,
|
|
v,
|
|
attn_mask=None,
|
|
dropout_p=0.0):
|
|
E = q.size(-1)
|
|
q = q / math.sqrt(E)
|
|
# (B, Nt, E) x (B, E, Ns) -> (B, Nt, Ns)
|
|
if attn_mask is not None:
|
|
attn = torch.baddbmm(attn_mask, q, k.transpose(-2, -1))
|
|
else:
|
|
attn = torch.bmm(q, k.transpose(-2, -1))
|
|
|
|
attn = torch.nn.functional.softmax(attn, dim=-1)
|
|
if dropout_p > 0.0:
|
|
attn = torch.nn.functional.dropout(attn, p=dropout_p)
|
|
# (B, Nt, Ns) x (B, Ns, E) -> (B, Nt, E)
|
|
output = torch.bmm(attn, v)
|
|
return output
|
|
# TODO: Support cross-device / dtype testing properly when instantiate_device_type_tests() is used.
|
|
dtypes = [torch.double, torch.float]
|
|
for dtype in dtypes:
|
|
|
|
def rand_tensor(*shape):
|
|
return torch.randn(shape, device=device, dtype=dtype)
|
|
|
|
# This test compares python and C++ implementations of SDP.
|
|
N, N_prime, L, S, E = 5, 2, 4, 3, 6
|
|
if input_dim == 3:
|
|
query = rand_tensor(N, L, E)
|
|
key = rand_tensor(N, S, E)
|
|
value = rand_tensor(N, S, E)
|
|
elif input_dim == 4:
|
|
query = rand_tensor(N, N_prime, L, E)
|
|
key = rand_tensor(N, N_prime, S, E)
|
|
value = rand_tensor(N, N_prime, S, E)
|
|
else:
|
|
self.fail(f'Invalid input_dim {input_dim} encountered in SDP test')
|
|
|
|
attn_mask = None
|
|
if attn_mask_dim is not None:
|
|
assert attn_mask_dim in [2, input_dim]
|
|
mask_size = (L, S) if attn_mask_dim == 2 else ((N, L, S) if input_dim == 3 else (N, N_prime, L, S))
|
|
attn_mask = (torch.ones(mask_size, device=device, dtype=torch.bool).tril() if is_causal
|
|
else torch.randint(0, 2, size=mask_size, device=device, dtype=torch.bool))
|
|
|
|
with freeze_rng_state():
|
|
# Python impl only supports float mask and 3D inputs.
|
|
attn_mask_float = attn_mask
|
|
if attn_mask_float is not None:
|
|
attn_mask_float = torch.zeros_like(attn_mask, dtype=query.dtype)
|
|
attn_mask_float.masked_fill_(attn_mask.logical_not(), float("-inf"))
|
|
q, k, v = query.view(-1, L, E), key.view(-1, S, E), value.view(-1, S, E)
|
|
a = attn_mask_float
|
|
if a is not None and attn_mask_dim > 3:
|
|
a = a.view(-1, L, S)
|
|
expected = sdp_ref(q, k, v, attn_mask=a, dropout_p=dropout_p)
|
|
if input_dim > 3:
|
|
expected = expected.view(-1, N_prime, L, E)
|
|
|
|
with freeze_rng_state():
|
|
if is_causal:
|
|
# NB: Don't pass attn_mask here
|
|
actual = torch.nn.functional.scaled_dot_product_attention(
|
|
query, key, value, None, dropout_p, is_causal)
|
|
|
|
# Error case: both explicit attn_mask and is_causal are set
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
"Explicit attn_mask should not be set when is_causal=True"):
|
|
torch.nn.functional.scaled_dot_product_attention(
|
|
query, key, value, attn_mask, dropout_p, is_causal)
|
|
else:
|
|
actual = torch.nn.functional.scaled_dot_product_attention(
|
|
query, key, value, attn_mask, dropout_p, is_causal)
|
|
|
|
self.assertEqual(actual, expected)
|
|
|
|
if attn_mask_dim is None:
|
|
q = q.double().clone()
|
|
k = k.double().clone()
|
|
v = v.double().clone()
|
|
q.requires_grad_()
|
|
k.requires_grad_()
|
|
v.requires_grad_()
|
|
|
|
assert gradcheck(lambda *args, **kwargs: wrapper_set_seed(sdp_ref, *args, **kwargs),
|
|
(q, k, v, attn_mask, dropout_p))
|
|
assert gradcheck(lambda *args, **kwargs:
|
|
wrapper_set_seed(torch.nn.functional.scaled_dot_product_attention, *args, **kwargs),
|
|
(q, k, v, attn_mask, dropout_p))
|
|
|
|
def test_incompatible_mask(self, device):
|
|
def ones_tensor(*shape):
|
|
return torch.ones(shape, dtype=torch.float32)
|
|
S, L, E, H = 1, 2, 4, 1
|
|
qkv = ones_tensor(S, L, E)
|
|
|
|
mha = nn.MultiheadAttention(E, H)
|
|
mha.in_proj_weight = Parameter(torch.ones((E * 3, E)))
|
|
mha.out_proj.weight = Parameter(torch.ones((E, E)))
|
|
qkv = qkv.to(float)
|
|
kpm = ones_tensor(S, L) * float("-inf")
|
|
am = ones_tensor(L, L).to(bool)
|
|
|
|
def func():
|
|
return mha(qkv, qkv, qkv, need_weights=False, key_padding_mask=kpm, attn_mask=am)
|
|
|
|
self.assertRaises(RuntimeError, func)
|
|
|
|
@unittest.skipIf(TEST_WITH_CROSSREF, 'Fastpath not available with crossref')
|
|
@torch.no_grad()
|
|
def test_mask_check_fastpath(self):
|
|
"""
|
|
Test that fastpath is executed independently of the masks that are passed.
|
|
If the passed key padding mask is left aligned or mask_check=False, test that nested tensors are used
|
|
(sparsity fastpath), otherwise use fastpath with traditional tensors.
|
|
Also test that fast path is executed with both key padding mask and attention mask passed at the same time.
|
|
"""
|
|
|
|
x = torch.Tensor([[[1, 2], [3, 4], [5, 6]]]).to(torch.float)
|
|
|
|
def _test_fastpath(model, key_padding_mask, mock_return_value, attn_mask=None, nested_tensors=True):
|
|
with patch('torch._transformer_encoder_layer_fwd') as fastpath_mock:
|
|
fastpath_mock.return_value = mock_return_value
|
|
model(x, src_key_padding_mask=key_padding_mask, mask=attn_mask)
|
|
|
|
# If mock was called, fastpath was taken
|
|
self.assertTrue(fastpath_mock.called)
|
|
|
|
# If mock was called with nested tensors, sparsity fastpath was taken
|
|
for call_args, _ in fastpath_mock.call_args_list:
|
|
self.assertEqual(call_args[0].is_nested, nested_tensors)
|
|
|
|
encoder_layer = torch.nn.TransformerEncoderLayer(d_model=2, nhead=2, dim_feedforward=8, batch_first=True)
|
|
|
|
model = torch.nn.TransformerEncoder(encoder_layer, num_layers=2, enable_nested_tensor=True, mask_check=True)
|
|
model.eval()
|
|
|
|
aligned_key_padding_mask = torch.Tensor([[0, 0, 1]]).to(torch.bool)
|
|
not_aligned_key_padding_mask = torch.Tensor([[1, 0, 1]]).to(torch.bool)
|
|
attn_mask = torch.Tensor([[1, 0, 1], [0, 1, 0], [1, 0, 1]]).to(torch.bool)
|
|
nested_tensor_return_value = torch.nested.nested_tensor([torch.ones((2, 2), dtype=torch.float)])
|
|
tensor_return_value = torch.ones((1, 3, 2), dtype=torch.float)
|
|
|
|
# Left aligned mask results in sparsity fastpath
|
|
_test_fastpath(model, aligned_key_padding_mask, nested_tensor_return_value, nested_tensors=True)
|
|
|
|
# Not aligned mask results in fastpath
|
|
_test_fastpath(model, not_aligned_key_padding_mask, tensor_return_value, nested_tensors=False)
|
|
|
|
model = torch.nn.TransformerEncoder(encoder_layer, num_layers=2, enable_nested_tensor=False, mask_check=True)
|
|
model.eval()
|
|
|
|
# If nested tensor disabled, fastpath is always taken
|
|
_test_fastpath(model, aligned_key_padding_mask, tensor_return_value, nested_tensors=False)
|
|
_test_fastpath(model, not_aligned_key_padding_mask, tensor_return_value, nested_tensors=False)
|
|
# Fast path is taken if both attention mask and key padding mask are present
|
|
_test_fastpath(model, aligned_key_padding_mask, tensor_return_value, attn_mask=attn_mask, nested_tensors=False)
|
|
|
|
model = torch.nn.TransformerEncoder(encoder_layer, num_layers=2, enable_nested_tensor=True, mask_check=False)
|
|
model.eval()
|
|
|
|
# Mask check disabled results in sparisty fastpath, independently of the mask
|
|
_test_fastpath(model, aligned_key_padding_mask, nested_tensor_return_value, nested_tensors=True)
|
|
_test_fastpath(model, not_aligned_key_padding_mask, nested_tensor_return_value, nested_tensors=True)
|
|
|
|
# Test failing MHA when bias was NoneType
|
|
def test_bias_is_none(self):
|
|
x = torch.rand((1, 5, 10))
|
|
model = torch.nn.modules.activation.MultiheadAttention(10, 1, bias=False, batch_first=True)
|
|
model.eval()
|
|
model(x, x, x)
|
|
# completes without error
|
|
|
|
def test_train_with_is_causal(self, device):
|
|
# training with is_causal
|
|
S, L, E, H = 1, 2, 2, 1
|
|
layer = nn.TransformerEncoderLayer(
|
|
d_model=2,
|
|
dim_feedforward=4,
|
|
nhead=H,
|
|
batch_first=True,
|
|
activation="gelu",
|
|
dropout=0,
|
|
)
|
|
criterion = nn.MSELoss()
|
|
encoder = nn.TransformerEncoder(layer, 2).to(device)
|
|
optimizer = optim.SGD(encoder.parameters(), lr=0.1, momentum=0.9)
|
|
encoder.train()
|
|
|
|
encoder.train()
|
|
optimizer.zero_grad()
|
|
inputs = torch.randn(S, L, E).to(device)
|
|
mask = torch.nn.Transformer.generate_square_subsequent_mask(
|
|
inputs.size(1), device=device
|
|
)
|
|
|
|
outputs = encoder(inputs, mask=mask, is_causal=True)
|
|
|
|
loss = criterion(outputs[:, 0:2, :], inputs[:, 0:2, :])
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
# inference with is_causal
|
|
t_qvk = torch.randn((S, L, E), device=device, dtype=torch.float32)
|
|
mha = nn.MultiheadAttention(E, H).to(device)
|
|
mask = torch.nn.Transformer.generate_square_subsequent_mask(
|
|
S, device=device
|
|
)
|
|
|
|
attn_out, _ = mha(t_qvk, t_qvk, t_qvk, attn_mask=mask, is_causal=True)
|
|
|
|
# Can't give only is_causal
|
|
attn_mask = torch.randint(0, 2, size=(L, L), device=device, dtype=torch.bool)
|
|
with self.assertRaises(RuntimeError):
|
|
_ = mha(t_qvk, t_qvk, t_qvk, is_causal=True)
|
|
|
|
# # Passing a causal mask sets is_causal to 1
|
|
causal_mask = torch.triu(
|
|
torch.ones(L, L, device=inputs.device) * float('-inf'), diagonal=1
|
|
).to(torch.bool)
|
|
|
|
mock_layer = MagicMock(torch.nn.MultiheadAttention(E, H), return_value=inputs)
|
|
encoder.layers[1] = mock_layer
|
|
outputs = encoder(inputs, mask=causal_mask)
|
|
mock_layer.assert_called_with(ANY, src_mask=ANY, is_causal=True, src_key_padding_mask=ANY)
|
|
|
|
# check expected numerical values with all kernels
|
|
self.is_causal_kernels(["math"], device)
|
|
|
|
def is_causal_kernels(self, kernels, device):
|
|
def ones_tensor(*shape):
|
|
return torch.ones(shape, device=device, dtype=torch.float32).to(device)
|
|
S, L, E, H = 1, 2, 4, 1
|
|
qkv = ones_tensor(S, L, E)
|
|
|
|
mha = nn.MultiheadAttention(E, H).to(device)
|
|
mha.in_proj_weight = Parameter(torch.ones((E * 3, E), device=device))
|
|
mha.out_proj.weight = Parameter(torch.ones((E, E), device=device))
|
|
expected = torch.ones(size=(S, L, E)).to(device) * 16
|
|
mask = torch.nn.Transformer.generate_square_subsequent_mask(
|
|
qkv.size(1), device=device
|
|
)
|
|
|
|
for kernel in kernels:
|
|
with torch.backends.cuda.sdp_kernel(
|
|
enable_math=(kernel == 'math'),
|
|
enable_flash=(kernel == 'flash'),
|
|
enable_mem_efficient=(kernel == 'meff')
|
|
):
|
|
actual, _ = mha(qkv, qkv, qkv, attn_mask=mask, need_weights=False, is_causal=True)
|
|
self.assertTrue(torch.equal(actual, expected))
|
|
|
|
if kernel != 'math':
|
|
# fails with embedding size not multiple of 4
|
|
with self.assertRaisesRegex(RuntimeError, "No available kernel"):
|
|
qkv_f, mha_f = ones_tensor(S, L, 2), nn.MultiheadAttention(2, H).to(device)
|
|
mask = torch.nn.Transformer.generate_square_subsequent_mask(
|
|
qkv_f.size(1), device=device
|
|
)
|
|
_ = mha_f(qkv_f, qkv_f, qkv_f, attn_mask=mask, need_weights=False, is_causal=True)
|
|
torch.cuda.synchronize()
|
|
|
|
@unittest.skipIf(
|
|
not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Platform does not supposrt fused SDPA or pre-SM80 hardware"
|
|
)
|
|
def test_is_causal_gpu(self):
|
|
device = 'cuda'
|
|
self.is_causal_kernels(["math", "meff"], device)
|
|
|
|
def test_script_mha_in_proj_weight_none(self):
|
|
mha = torch.nn.MultiheadAttention(
|
|
embed_dim=128, num_heads=8, kdim=256, vdim=256
|
|
).eval()
|
|
|
|
torch.jit.script(mha)
|
|
|
|
|
|
class TestSDPAFailureModes(NNTestCase):
|
|
""" Used to test the failure modes of scaled_dot_product_attention
|
|
"""
|
|
_do_cuda_memory_leak_check = True
|
|
_do_cuda_non_default_stream = True
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION or not isSM86or89Device,
|
|
"Does not support fused SDPA or not SM86+ hardware")
|
|
@parametrize("head_dim", [193, 204, 256])
|
|
def test_flash_backward_failure_sm86plus(self, device, head_dim: int):
|
|
dtype = torch.float16
|
|
make_tensor = partial(torch.rand, device=device, dtype=dtype)
|
|
# See check_requires_grad_and_head_dim_gt64_and_sm_ge86 in pytorch/aten/src/ATen/native/transformers/cuda/sdp_utils.h
|
|
size = (2, 2, 4, head_dim)
|
|
q, k, v = make_tensor(size), make_tensor(size), make_tensor(size)
|
|
|
|
with sdp_kernel(enable_mem_efficient=False, enable_flash=False, enable_math=True):
|
|
math_ref = torch.nn.functional.scaled_dot_product_attention(q, k, v, None, 0.0, False)
|
|
|
|
with sdp_kernel(enable_mem_efficient=False, enable_flash=True, enable_math=False):
|
|
# Should not fail because inputs don't require grad
|
|
flash_ref = torch.nn.functional.scaled_dot_product_attention(q, k, v, None, 0.0, False)
|
|
|
|
self.assertEqual(math_ref, flash_ref, atol=1e-3, rtol=1e-3)
|
|
|
|
# Should fail because inputs require grad
|
|
q = make_tensor(size, requires_grad=True)
|
|
k = make_tensor(size, requires_grad=True)
|
|
v = make_tensor(size, requires_grad=True)
|
|
self.assertRaises(RuntimeError, lambda: torch.nn.functional.scaled_dot_product_attention(
|
|
q, k, v, None, 0.0, False))
|
|
|
|
@onlyCUDA
|
|
def test_dispatch_fails_no_backend(self, device):
|
|
dtype = torch.float16
|
|
with sdp_kernel(enable_flash=False, enable_math=False, enable_mem_efficient=False):
|
|
size = (2, 3, 4)
|
|
q = torch.randn(size, device=device, dtype=dtype)
|
|
k = torch.randn(size, device=device, dtype=dtype)
|
|
v = torch.randn(size, device=device, dtype=dtype)
|
|
self.assertRaisesRegex(RuntimeError, "No viable backend for scaled_dot_product_attention was found.",
|
|
lambda: torch._fused_sdp_choice(q, k, v))
|
|
self.assertRaisesRegex(RuntimeError, "No viable backend for scaled_dot_product_attention was found.",
|
|
lambda: torch.nn.functional.scaled_dot_product_attention(q, k, v))
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FUSED_ATTENTION, "Does not support fused scaled dot product attention")
|
|
@parametrize(
|
|
"kernel",
|
|
[SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION]
|
|
if PLATFORM_SUPPORTS_FLASH_ATTENTION
|
|
else [SDPBackend.EFFICIENT_ATTENTION],
|
|
)
|
|
def test_invalid_fused_inputs_dim_3(self, device, kernel: SDPBackend):
|
|
with sdp_kernel(**backend_map[kernel]):
|
|
# Dim is not 4
|
|
size = (2, 3, 8)
|
|
dtype = torch.float16
|
|
q = torch.randn(size, device=device, dtype=dtype)
|
|
k = torch.randn(size, device=device, dtype=dtype)
|
|
v = torch.randn(size, device=device, dtype=dtype)
|
|
with self.assertWarnsRegex(UserWarning, "Both fused kernels requires query, key and value to be 4 dimensional"):
|
|
self.assertRaises(RuntimeError, lambda: torch.nn.functional.scaled_dot_product_attention(
|
|
q, k, v, None, 0.0, False))
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FUSED_ATTENTION, "Does not support fused scaled dot product attention")
|
|
@parametrize(
|
|
"kernel",
|
|
[SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION]
|
|
if PLATFORM_SUPPORTS_FLASH_ATTENTION
|
|
else [SDPBackend.EFFICIENT_ATTENTION],
|
|
)
|
|
def test_invalid_fused_inputs_broadcast(self, device, kernel: SDPBackend):
|
|
with sdp_kernel(**backend_map[kernel]):
|
|
# Fused Kernels don't support broadcasting for dense inputs
|
|
dtype = torch.float16
|
|
size = (2, 4, 3, 8)
|
|
size_broadcast = (1, 4, 3, 8)
|
|
q = torch.randn(size_broadcast, device=device, dtype=dtype)
|
|
k = torch.randn(size, device=device, dtype=dtype)
|
|
v = torch.randn(size, device=device, dtype=dtype)
|
|
self.assertRaises(RuntimeError, lambda: torch.nn.functional.scaled_dot_product_attention(
|
|
q, k, v, None, 0.0, False))
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FUSED_ATTENTION, "Does not support fused scaled dot product attention")
|
|
@parametrize("kernel", [SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION] if
|
|
PLATFORM_SUPPORTS_FLASH_ATTENTION else [SDPBackend.EFFICIENT_ATTENTION])
|
|
def test_invalid_sequence_lengths(self, device, kernel: SDPBackend):
|
|
with sdp_kernel(**backend_map[kernel]):
|
|
# Passing in a q,k,v with 0 length sequences will error
|
|
dtype = torch.float16
|
|
make_tensor = partial(torch.rand, device=device, dtype=dtype)
|
|
size = SdpaShape(2, 2, 0, 8)
|
|
q, k, v = make_tensor(size), make_tensor(size), make_tensor(size)
|
|
with self.assertWarnsRegex(UserWarning, "Both fused kernels do not support zero seq_len_q or seq_len_kv."):
|
|
self.assertRaises(RuntimeError, lambda: torch.nn.functional.scaled_dot_product_attention(
|
|
q, k, v, None, 0.0, False))
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FUSED_ATTENTION, "Does not support fused scaled dot product attention")
|
|
@parametrize("kernel", [SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION] if
|
|
PLATFORM_SUPPORTS_FLASH_ATTENTION else [SDPBackend.EFFICIENT_ATTENTION])
|
|
def test_invalid_last_dim_stride(self, device, kernel: SDPBackend):
|
|
with sdp_kernel(**backend_map[kernel]):
|
|
# Passing in a q,k,v with 0 length sequences will error
|
|
dtype = torch.float16
|
|
make_tensor = partial(torch.rand, device=device, dtype=dtype)
|
|
size = SdpaShape(2, 2, 8, 8)
|
|
q, k, v = make_tensor(size), make_tensor(size), make_tensor(size)
|
|
q.as_strided_(size, [2, 2, 2, 2])
|
|
with self.assertWarnsRegex(UserWarning, "Both fused kernels require the last dimension of the input to have stride 1."):
|
|
self.assertRaises(RuntimeError, lambda: torch.nn.functional.scaled_dot_product_attention(
|
|
q, k, v, None, 0.0, False))
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Does not flash_attention fused scaled dot product attention")
|
|
@parametrize("kernel", [SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION])
|
|
def test_invalid_fused_inputs_head_dim(self, device, kernel: SDPBackend):
|
|
with sdp_kernel(**backend_map[kernel]):
|
|
# The embed dim per head is not divisible by 8 for flash attention
|
|
dtype = torch.float16
|
|
make_tensor = partial(torch.rand, device=device, dtype=dtype)
|
|
size = SdpaShape(2, 2, 3, 9) if kernel == SDPBackend.EFFICIENT_ATTENTION else SdpaShape(2, 2, 3, 257)
|
|
q, k, v = make_tensor(size), make_tensor(size), make_tensor(size)
|
|
self.assertRaises(RuntimeError, lambda: torch.nn.functional.scaled_dot_product_attention(
|
|
q, k, v, None, 0.0, False))
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FUSED_ATTENTION, "Does not support fused scaled dot product attention")
|
|
@parametrize(
|
|
"kernel",
|
|
[SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION]
|
|
if PLATFORM_SUPPORTS_FLASH_ATTENTION
|
|
else [SDPBackend.EFFICIENT_ATTENTION],
|
|
)
|
|
def test_invalid_fused_inputs_invalid_dtype(self, device, kernel: SDPBackend):
|
|
with sdp_kernel(**backend_map[kernel]):
|
|
# Invalid dtype for both Flash Attention and Mem Efficient Attention
|
|
size = SdpaShape(2, 2, 3, 16)
|
|
make_tensor = partial(torch.rand, device=device, dtype=torch.float64)
|
|
q, k, v = make_tensor(size), make_tensor(size), make_tensor(size)
|
|
self.assertRaises(RuntimeError, lambda: torch.nn.functional.scaled_dot_product_attention(
|
|
q, k, v, None, 0.0, False))
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Does not support flash attention")
|
|
@parametrize("kernel", [SDPBackend.FLASH_ATTENTION])
|
|
def test_invalid_fused_inputs_attn_mask_present(self, device, kernel: SDPBackend):
|
|
with sdp_kernel(**backend_map[kernel]):
|
|
# Failures for unsupported SDP args
|
|
size = SdpaShape(2, 2, 3, 16)
|
|
make_tensor = partial(torch.rand, size, device=device, dtype=torch.float16)
|
|
q, k, v = make_tensor(), make_tensor(), make_tensor()
|
|
# Non-None attention mask
|
|
mask = torch.ones((2, 2, 3, 3), device=device, dtype=q.dtype)
|
|
self.assertRaises(RuntimeError, lambda: torch.nn.functional.scaled_dot_product_attention(
|
|
q, k, v, mask, 0.0, False))
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Does not support fused SDPA or pre-SM80 hardware")
|
|
def test_unaligned_tensors(self, device):
|
|
# The alignment is depdent on arch so we specifiy SM80OrLater
|
|
dtype = torch.float16
|
|
size = SdpaShape(2, 2, 8, 5)
|
|
make_tensor = partial(torch.rand, size, device=device, dtype=dtype)
|
|
q, k, v = make_tensor(), make_tensor(), make_tensor()
|
|
with sdp_kernel(enable_flash=False, enable_mem_efficient=True, enable_math=False):
|
|
self.assertRaises(RuntimeError, lambda: torch.nn.functional.scaled_dot_product_attention(
|
|
q, k, v, None, 0.0, False))
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Does not support fused SDPA or pre-SM80 hardware")
|
|
def test_flash_fail_fp32(self, device):
|
|
dtype = torch.float
|
|
size = SdpaShape(16, 16, 32, 32)
|
|
make_tensor = partial(torch.rand, size, device=device, dtype=dtype)
|
|
q, k, v = make_tensor(), make_tensor(), make_tensor()
|
|
with sdp_kernel(enable_flash=True, enable_mem_efficient=False, enable_math=False):
|
|
with self.assertWarnsRegex(UserWarning, "Expected query, key and value to all be of dtype: {Half, BFloat16}"):
|
|
self.assertRaises(RuntimeError, lambda: torch.nn.functional.scaled_dot_product_attention(
|
|
q, k, v, None, 0.0, False))
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Does not support SDPA or pre-SM80 hardware")
|
|
def test_flash_autocast_fp32_float16(self, device):
|
|
dtype = torch.float
|
|
size = SdpaShape(16, 16, 32, 32)
|
|
make_tensor = partial(torch.rand, size, device=device, dtype=dtype)
|
|
q, k, v = make_tensor(), make_tensor(), make_tensor()
|
|
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
|
with sdp_kernel(enable_flash=True, enable_mem_efficient=False, enable_math=False):
|
|
_ = torch.nn.functional.scaled_dot_product_attention(
|
|
q, k, v, None, 0.0, False)
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Does not support SDPA or pre-SM80 hardware")
|
|
def test_flash_autocast_fp32_bfloat16(self, device):
|
|
dtype = torch.float
|
|
size = SdpaShape(16, 16, 32, 32)
|
|
make_tensor = partial(torch.rand, size, device=device, dtype=dtype)
|
|
q, k, v = make_tensor(), make_tensor(), make_tensor()
|
|
with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
|
|
with sdp_kernel(enable_flash=True, enable_mem_efficient=False, enable_math=False):
|
|
_ = torch.nn.functional.scaled_dot_product_attention(
|
|
q, k, v, None, 0.0, False)
|
|
|
|
@parametrize("kernel", [SDPBackend.MATH, SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION])
|
|
def test_invalid_inputs_different_datatypes(self, device, kernel: SDPBackend):
|
|
with sdp_kernel(**backend_map[kernel]):
|
|
# Different datatypes
|
|
shape = (1, 4, 8, 16)
|
|
query = torch.randn(shape, dtype=torch.float32, device=device)
|
|
key = torch.randn(shape, dtype=torch.float16, device=device)
|
|
value = torch.randn(shape, dtype=torch.float16, device=device)
|
|
self.assertRaises(RuntimeError, lambda: F.scaled_dot_product_attention(query, key, value))
|
|
|
|
@onlyCUDA
|
|
@parametrize("kernel", [SDPBackend.MATH, SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION])
|
|
def test_invalid_inputs_different_devices(self, device, kernel: SDPBackend):
|
|
# Different devices
|
|
shape = (1, 4, 8, 16)
|
|
query = torch.randn(shape, dtype=torch.float32, device=device)
|
|
key = torch.randn(shape, dtype=torch.float16, device='cpu')
|
|
value = torch.randn(shape, dtype=torch.float16, device='cpu')
|
|
self.assertRaises(RuntimeError, lambda: F.scaled_dot_product_attention(query, key, value))
|
|
|
|
@parametrize("kernel", [SDPBackend.MATH, SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION])
|
|
def test_invalid_inputs_1_dimensional_inputs(self, device, kernel: SDPBackend):
|
|
with sdp_kernel(**backend_map[kernel]):
|
|
# 1 dimensional input
|
|
shape = (1, 4)
|
|
query = torch.randn(4, dtype=torch.float16, device=device)
|
|
key = torch.randn(shape, dtype=torch.float16, device=device)
|
|
value = torch.randn(shape, dtype=torch.float16, device=device)
|
|
self.assertRaises(RuntimeError, lambda: F.scaled_dot_product_attention(query, key, value))
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FUSED_ATTENTION, "Fused SDPA was not built for this system")
|
|
def test_fused_kernels_nested_broadcasting_error_cases(self, device):
|
|
# one of k,v needs to be broadcasted and other has non consistent seq_len dim
|
|
rand_nested_tensor = partial(rand_sdpa_tensor, type="nested", device=device, dtype=torch.float32)
|
|
batch, num_heads, head_dim = 32, 8, 64
|
|
seq_lens_q = torch.randint(low=1, high=32, size=(batch,)).tolist()
|
|
seq_lens_v = torch.randint(low=1, high=32, size=(batch,)).tolist()
|
|
|
|
q_shape = SdpaShape(batch, num_heads, seq_lens_q, head_dim)
|
|
k_shape = SdpaShape(1, num_heads, 1, head_dim)
|
|
v_shape = SdpaShape(batch, num_heads, seq_lens_v, head_dim)
|
|
|
|
query = rand_nested_tensor(q_shape).transpose(1, 2)
|
|
key = rand_nested_tensor(k_shape).transpose(1, 2)
|
|
value = rand_nested_tensor(v_shape).transpose(1, 2)
|
|
|
|
with sdp_kernel(enable_flash=False, enable_math=False, enable_mem_efficient=True):
|
|
with self.assertRaisesRegex(RuntimeError, "No available kernel"):
|
|
torch.nn.functional.scaled_dot_product_attention(
|
|
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False)
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Fused SDPA was not built for this system")
|
|
def test_nested_fails_on_padding_head_dim(self, device):
|
|
dtype = torch.bfloat16
|
|
seq_len_list = [2, 4, 5, 6, 7]
|
|
shape = SdpaShape(5, 8, seq_len_list, 57)
|
|
make_tensor = partial(rand_sdpa_tensor, shape=shape, type="nested", device=device, dtype=dtype)
|
|
q, k, v = make_tensor(), make_tensor(), make_tensor()
|
|
with torch.backends.cuda.sdp_kernel(enable_math=False, enable_flash=True, enable_mem_efficient=False):
|
|
with self.assertWarnsRegex(UserWarning, "For NestedTensor inputs, Flash attention requires"):
|
|
self.assertRaises(RuntimeError, lambda: torch.nn.functional.scaled_dot_product_attention(
|
|
q, k, v, None, 0.0, False))
|
|
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FUSED_ATTENTION or not isSM5xDevice, "Does not support fused SDPA or not SM50 hardware")
|
|
def test_mem_efficient_fail_bfloat16_sm50(self, device):
|
|
dtype = torch.bfloat16
|
|
size = SdpaShape(16, 16, 32, 32)
|
|
make_tensor = partial(torch.rand, size, device=device, dtype=dtype)
|
|
q, k, v = make_tensor(), make_tensor(), make_tensor()
|
|
with sdp_kernel(**backend_map[SDPBackend.EFFICIENT_ATTENTION]):
|
|
with self.assertWarnsRegex(UserWarning, "Expected query, key and value to all be of dtype: {Half, Float}"):
|
|
self.assertRaises(RuntimeError, lambda: torch.nn.functional.scaled_dot_product_attention(
|
|
q, k, v, None, 0.0, False))
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FUSED_ATTENTION, "Fused SDPA was not built for this system")
|
|
@parametrize("fused_kernel", [SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION] if
|
|
PLATFORM_SUPPORTS_FLASH_ATTENTION else [SDPBackend.EFFICIENT_ATTENTION])
|
|
def test_fused_kernels_seq_len_0_inputs(self, device, fused_kernel):
|
|
rand_nested_tensor = partial(rand_sdpa_tensor, type="nested", device=device, dtype=torch.float16)
|
|
batch, num_heads, head_dim = 32, 16, 64
|
|
seq_lens = torch.randint(low=1, high=32, size=(batch,))
|
|
# make sure some seq_lens are 0
|
|
num_zeros = 10
|
|
indices = torch.randint(low=0, high=batch, size=(num_zeros,))
|
|
seq_lens.scatter_(0, indices, 0)
|
|
|
|
shape = SdpaShape(batch, num_heads, seq_lens.tolist(), head_dim)
|
|
query = rand_nested_tensor(shape)
|
|
key = rand_nested_tensor(shape)
|
|
value = rand_nested_tensor(shape)
|
|
|
|
query = query.transpose(1, 2)
|
|
key = key.transpose(1, 2)
|
|
value = value.transpose(1, 2)
|
|
|
|
with sdp_kernel(**backend_map[fused_kernel]):
|
|
with self.assertRaisesRegex(RuntimeError, "No available kernel"):
|
|
torch.nn.functional.scaled_dot_product_attention(
|
|
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False)
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Fused SDPA was not built for this system")
|
|
def test_fused_kernels_nested_broadcasting_requires_grad_failure(self, device):
|
|
rand_nested_tensor = partial(rand_sdpa_tensor, type="nested", device=device, dtype=torch.float16, requires_grad=True)
|
|
batch, num_heads, head_dim, head_dim_v = 32, 16, 64, 64
|
|
seq_lens = torch.randint(low=1, high=32, size=(batch,)).tolist()
|
|
q_shape = SdpaShape(1, num_heads, 1, head_dim)
|
|
k_shape = SdpaShape(batch, num_heads, seq_lens, head_dim)
|
|
v_shape = SdpaShape(batch, 1, seq_lens, head_dim_v)
|
|
|
|
# create a dense query
|
|
query = torch.randn(q_shape, device=device, dtype=torch.float16, requires_grad=True)
|
|
key = rand_nested_tensor(k_shape)
|
|
value = rand_nested_tensor(v_shape)
|
|
|
|
query = query.transpose(1, 2)
|
|
key = key.transpose(1, 2)
|
|
value = value.transpose(1, 2)
|
|
|
|
with sdp_kernel(**backend_map[SDPBackend.FLASH_ATTENTION]):
|
|
with self.assertWarnsRegex(UserWarning, "Both fused kernels do not support training with broadcasted NT inputs"):
|
|
with self.assertRaisesRegex(RuntimeError, "No available kernel"):
|
|
out = torch.nn.functional.scaled_dot_product_attention(
|
|
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False)
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Does not support flash attention")
|
|
def test_flash_attention_fail_with_non_square_causal_attention(self, device):
|
|
dtype = torch.bfloat16
|
|
q_shape = SdpaShape(1, 1, 8, 16)
|
|
kv_shape = SdpaShape(1, 1, 12, 16)
|
|
make_q = partial(torch.rand, q_shape, device=device, dtype=dtype)
|
|
make_kv = partial(torch.rand, kv_shape, device=device, dtype=dtype)
|
|
q, k, v = make_q(), make_kv(), make_kv()
|
|
warning_str = "Flash attention does not support the is_causal flag when seqlen_q != seqlen_k."
|
|
with sdp_kernel(**backend_map[SDPBackend.FLASH_ATTENTION]):
|
|
with self.assertWarnsRegex(UserWarning, warning_str):
|
|
self.assertRaises(RuntimeError, lambda: torch.nn.functional.scaled_dot_product_attention(
|
|
q, k, v, None, 0.0, is_causal=True))
|
|
|
|
def _get_block_size(device, head_dim, is_causal):
|
|
# This should match the block sizes in the CUDA kernel
|
|
# Mask is only interesting when we are setting dropout
|
|
is_dropout = True
|
|
assert head_dim <= 256
|
|
major, minor = torch.cuda.get_device_capability(device)
|
|
is_sm8x = major == 8 and minor > 0 # Only include sm86 and sm89, exclude sm80 (A100)
|
|
is_sm80 = major == 8 and minor == 0
|
|
is_sm90 = major == 9 and minor == 0
|
|
if head_dim <= 32:
|
|
return 128, 128
|
|
if head_dim <= 64:
|
|
return (128, 128) if not is_dropout else (128, 64)
|
|
elif head_dim <= 96:
|
|
return (64, 64) if (is_sm8x and is_causal) else (128, 64)
|
|
elif head_dim <= 128:
|
|
if is_sm8x:
|
|
return (64, 64) if (not is_dropout and is_causal) else (128, 32)
|
|
else:
|
|
return 128, (64 if not is_dropout else 32)
|
|
elif head_dim <= 160:
|
|
if is_sm8x:
|
|
return (128, 64) if not is_causal else (64, 64)
|
|
else:
|
|
return 128, 32
|
|
elif head_dim <= 192:
|
|
return (128, 64) if not is_dropout else (64, 64)
|
|
elif head_dim <= 224:
|
|
return (128, 64) if (is_sm80 or is_sm90) else (64, 64)
|
|
elif head_dim <= 256:
|
|
return (128, 64) if is_sm80 else (64, 64)
|
|
|
|
|
|
def pad_last_dim(input_tensor, alignment_size, slice: bool = False):
|
|
last_dim_size = input_tensor.size(-1)
|
|
if (last_dim_size % alignment_size == 0):
|
|
return input_tensor, last_dim_size
|
|
pad_count = alignment_size - (last_dim_size % alignment_size)
|
|
padded_tensor = F.pad(input_tensor, (0, pad_count))
|
|
if slice:
|
|
return padded_tensor[..., :last_dim_size], last_dim_size
|
|
return padded_tensor, last_dim_size
|
|
|
|
|
|
class TestSDPA(NNTestCase):
|
|
""" Used to test generic functionality of scaled_dot_product_attention
|
|
Summary:
|
|
If you are adding a new test to this class, make sure that it runs
|
|
for both cpu and cuda. If you're test is only applicable to cuda,
|
|
add it to TestSDPACudaOnly.
|
|
"""
|
|
@parametrize("contiguous_inputs", [True, False])
|
|
def test_sdp_math_gradcheck(self, device, contiguous_inputs: bool):
|
|
|
|
batch_size, seq_len, num_heads, head_dim = 4, 4, 2, 16
|
|
shape = SdpaShape(batch_size, num_heads, seq_len, head_dim)
|
|
make_tensor = partial(rand_sdpa_tensor, type="dense", device=device,
|
|
dtype=torch.float64, requires_grad=True, packed=True)
|
|
|
|
qkv = make_tensor(shape)
|
|
query, key, value = qkv.chunk(3, dim=-1)
|
|
|
|
query = query.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
key = key.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
|
|
if contiguous_inputs:
|
|
query = query.contiguous()
|
|
key = key.contiguous()
|
|
value = value.contiguous()
|
|
|
|
with sdp_kernel(enable_math=True, enable_mem_efficient=False, enable_flash=False):
|
|
assert gradcheck(lambda *args, **kwargs:
|
|
wrapper_set_seed(torch.nn.functional.scaled_dot_product_attention, *args, **kwargs),
|
|
(query, key, value, None, 0.0, False)
|
|
)
|
|
|
|
@onlyCPU
|
|
@parametrize("type", ["dense", "nested"])
|
|
@parametrize("dropout", [0.0, 0.7])
|
|
@parametrize("dtype", [torch.float64, torch.float32, torch.bfloat16, torch.half])
|
|
def test_fused_sdp_choice_cpu(self, device, type: str, dropout: float, dtype: torch.dtype):
|
|
# Test that cpu and nestedtensor cpu return MATH backend
|
|
make_tensor = partial(rand_sdpa_tensor, type=type, device=device, dtype=dtype)
|
|
size = SdpaShape(2, 8, 128, 64)
|
|
q, k, v = make_tensor(size), make_tensor(size), make_tensor(size)
|
|
if type == "nested" \
|
|
or dropout > 0.0 \
|
|
or dtype not in [torch.float32, torch.float64, torch.bfloat16]:
|
|
assert torch._fused_sdp_choice(q, k, v, dropout_p=dropout) == SDPBackend.MATH.value
|
|
else:
|
|
assert torch._fused_sdp_choice(q, k, v, dropout_p=dropout) == SDPBackend.FLASH_ATTENTION.value
|
|
|
|
@onlyCPU
|
|
@parametrize("fused_kernel", [SDPBackend.FLASH_ATTENTION])
|
|
@parametrize("dtype", [torch.float64, torch.float32, torch.bfloat16])
|
|
@parametrize("batch_size", [2, 12])
|
|
@parametrize("seq_len", [267, 1030])
|
|
@parametrize("n_head", [1, 3])
|
|
@parametrize("head_dim", [8, 16])
|
|
@parametrize("causal", [True, False])
|
|
@parametrize("train", [True, False])
|
|
def test_scaled_dot_product_fused_attention_vs_math_cpu(
|
|
self,
|
|
device,
|
|
fused_kernel,
|
|
dtype,
|
|
batch_size,
|
|
seq_len,
|
|
n_head,
|
|
head_dim,
|
|
causal,
|
|
train,
|
|
):
|
|
atol = 1e-5
|
|
rtol = 5e-6
|
|
if dtype is torch.bfloat16:
|
|
atol = 2e-2
|
|
rtol = 2e-2
|
|
|
|
n_embd = n_head * head_dim
|
|
make_tensor = partial(rand_sdpa_tensor, type="dense", device=device, dtype=dtype, packed=True, requires_grad=False)
|
|
shape = SdpaShape(batch_size, n_head, seq_len, head_dim)
|
|
x = make_tensor(shape)
|
|
x2 = x.clone()
|
|
|
|
if train:
|
|
x.requires_grad_(True)
|
|
x2.requires_grad_(True)
|
|
|
|
q, k, v = x.split(n_embd, dim=2)
|
|
q2, k2, v2 = x2.split(n_embd, dim=2)
|
|
|
|
if dtype is torch.bfloat16:
|
|
q2 = q2.float()
|
|
k2 = k2.float()
|
|
v2 = v2.float()
|
|
|
|
# (B, nh, T, hs)
|
|
k = k.view(batch_size, seq_len, n_head, head_dim).transpose(1, 2)
|
|
q = q.view(batch_size, seq_len, n_head, head_dim).transpose(1, 2)
|
|
v = v.view(batch_size, seq_len, n_head, head_dim).transpose(1, 2)
|
|
k2 = k2.view(batch_size, seq_len, n_head, head_dim).transpose(1, 2)
|
|
q2 = q2.view(batch_size, seq_len, n_head, head_dim).transpose(1, 2)
|
|
v2 = v2.view(batch_size, seq_len, n_head, head_dim).transpose(1, 2)
|
|
|
|
with sdp_kernel(**backend_map[fused_kernel]):
|
|
actual = torch.nn.functional.scaled_dot_product_attention(
|
|
q, k, v, attn_mask=None, dropout_p=0.0, is_causal=causal)
|
|
with sdp_kernel(enable_flash=False, enable_math=True, enable_mem_efficient=False):
|
|
math_ref = torch.nn.functional.scaled_dot_product_attention(
|
|
q2, k2, v2, attn_mask=None, dropout_p=0.0, is_causal=causal)
|
|
|
|
if dtype is torch.bfloat16:
|
|
math_ref = math_ref.bfloat16()
|
|
|
|
self.assertEqual(actual, math_ref, atol=atol, rtol=rtol)
|
|
|
|
if train:
|
|
actual.sum().backward()
|
|
math_ref.sum().backward()
|
|
|
|
grad_x, grad_x2 = x.grad, x2.grad
|
|
grad_q_actual, grad_k_actual, grad_v_actual = grad_x.split(n_embd, dim=2)
|
|
grad_q_ref, grad_k_ref, grad_v_ref = grad_x2.split(n_embd, dim=2)
|
|
|
|
self.assertEqual(grad_q_actual, grad_q_ref, atol=atol, rtol=rtol)
|
|
self.assertEqual(grad_k_actual, grad_k_ref, atol=atol, rtol=rtol)
|
|
self.assertEqual(grad_v_actual, grad_v_ref, atol=atol, rtol=rtol)
|
|
|
|
@parametrize("kernel", [SDPBackend.MATH])
|
|
def test_scaled_dot_product_attention_math_with_negative_scale(self, device, kernel: SDPBackend):
|
|
# https://github.com/pytorch/pytorch/issues/105190.
|
|
def ref(x):
|
|
v1 = torch.matmul(x, x.transpose(-1, -2))
|
|
v2 = v1 / -0.0001
|
|
v3 = v2.softmax(dim=-1)
|
|
v4 = torch.matmul(v3, x)
|
|
return v4
|
|
|
|
x = torch.randn(1, 3, 64, 64, device=device)
|
|
ref_result = ref(x)
|
|
with sdp_kernel(**backend_map[kernel]):
|
|
sdp_math = torch.nn.functional.scaled_dot_product_attention(x, x, x, scale=-1.0 / 0.0001)
|
|
self.assertEqual(ref_result, sdp_math)
|
|
|
|
class TestSDPACudaOnly(NNTestCase):
|
|
""" Used to test CUDA only functionality of scaled_dot_product_attention
|
|
Quarks:
|
|
There is some trickiness with this function. It's runtime behavior
|
|
is dependent on the CUDA architecture you are testing it on. See
|
|
`PLATFORM_SUPPORTS_FUSED_ATTENTION` at the top of the file.
|
|
Summary:
|
|
Math: always supported
|
|
FlashAttention: Supported on sm80 or newer hardware
|
|
MemEfficientAttention: Supported on sm50 or newer hardware
|
|
"""
|
|
_do_cuda_memory_leak_check = True
|
|
_do_cuda_non_default_stream = True
|
|
|
|
def convert_flash_attn_S_to_softmax(self, S, query_padding_mask, key_padding_mask, head_dim, causal=False):
|
|
"""FlashAttention stores the S matrix in a different way.
|
|
Arguments:
|
|
S: (batch_size, nheads, seqlen_q, seqlen_k)
|
|
query_padding_mask: (batch_size, seqlen_q)
|
|
key_padding_mask: (batch_size, seqlen_k)
|
|
"""
|
|
b, h, seqlen_q, seqlen_k = S.shape
|
|
warps_n = 4
|
|
blocksize_m, blocksize_n = _get_block_size(S.device, head_dim, causal)
|
|
nblocks_m = (seqlen_q + blocksize_m - 1) // blocksize_m
|
|
nblocks_n = (seqlen_k + blocksize_n - 1) // blocksize_n
|
|
mmas_n = (blocksize_n + 16 - 1) // 16
|
|
|
|
# Reshape S using PyTorch native functions
|
|
S_flat = S.view(b, h, nblocks_m, blocksize_m, nblocks_n, blocksize_n)
|
|
S_flat = S_flat.permute(0, 1, 2, 4, 3, 5)
|
|
S_flat = S_flat.reshape(b, h, nblocks_m, nblocks_n, (blocksize_m * blocksize_n))
|
|
S_converted = S_flat.view(b, h, nblocks_m, nblocks_n, mmas_n, -1, warps_n, 8, 4, 2, 2, 2)
|
|
S_converted = S_converted.permute(0, 1, 2, 5, 6, 10, 7, 3, 4, 9, 8, 11)
|
|
S_converted = S_converted.reshape(b, h, (nblocks_m * S_converted.size(3) *
|
|
warps_n * 2 * 8), (nblocks_n * mmas_n * 2 * 4 * 2))
|
|
|
|
if causal:
|
|
causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=S.device), 1)
|
|
S_converted.masked_fill_(causal_mask, 0.0)
|
|
# Need to zero out things not in attention_mask in case S was initialized with random values
|
|
# and some of those values aren't overwritten.
|
|
seqlen_q_og = query_padding_mask.shape[-1] if query_padding_mask is not None else seqlen_q
|
|
if query_padding_mask is not None:
|
|
if seqlen_q_og < seqlen_q:
|
|
query_padding_mask = F.pad(query_padding_mask, (0, seqlen_q - seqlen_q_og))
|
|
else:
|
|
query_padding_mask = query_padding_mask[:, :seqlen_q]
|
|
q_mask_fill = ~query_padding_mask.view(query_padding_mask.shape[0], 1, query_padding_mask.shape[1], 1)
|
|
S_converted = S_converted.masked_fill(q_mask_fill, 0.0)
|
|
seqlen_k_og = key_padding_mask.shape[-1] if key_padding_mask is not None else seqlen_k
|
|
if key_padding_mask is not None:
|
|
if seqlen_k_og < seqlen_k:
|
|
key_padding_mask = F.pad(key_padding_mask, (0, seqlen_k - seqlen_k_og))
|
|
else:
|
|
key_padding_mask = key_padding_mask[:, :seqlen_k]
|
|
k_mask_fill = ~key_padding_mask.view(key_padding_mask.shape[0], 1, 1, key_padding_mask.shape[1])
|
|
S_converted = S_converted.masked_fill(k_mask_fill, 0.0)
|
|
if seqlen_q_og < seqlen_q:
|
|
S_converted = S_converted[:, :, :seqlen_q_og, :]
|
|
else:
|
|
S_converted = F.pad(S_converted, (0, 0, 0, seqlen_q_og - seqlen_q))
|
|
if seqlen_k_og < seqlen_k:
|
|
S_converted = S_converted[:, :, :, :seqlen_k_og]
|
|
else:
|
|
S_converted = F.pad(S_converted, (0, seqlen_k_og - seqlen_k))
|
|
return S_converted
|
|
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Fused SDPA was not built for this system")
|
|
@parametrize("mask_dim", [1, 2, 3, 4])
|
|
def test_mem_efficient_attetntion_mask_variants(self, device, mask_dim: List[int]):
|
|
dtype = torch.float16
|
|
make_tensor = partial(torch.rand, device=device, dtype=dtype, requires_grad=True)
|
|
batch, num_heads, head_dim = 8, 8, 64
|
|
seq_len_q, seq_len_kv = 64, 32
|
|
query = make_tensor(SdpaShape(batch, num_heads, seq_len_q, head_dim))
|
|
kv_shape = SdpaShape(batch, num_heads, seq_len_kv, head_dim)
|
|
key, value = make_tensor(kv_shape), make_tensor(kv_shape)
|
|
|
|
if mask_dim == 1:
|
|
mask = torch.randn((seq_len_kv,), device=device, dtype=dtype)
|
|
elif mask_dim == 2:
|
|
mask = torch.randn((seq_len_q, seq_len_kv), device=device, dtype=dtype)
|
|
elif mask_dim == 3:
|
|
mask = torch.randn((num_heads, seq_len_q, seq_len_kv), device=device, dtype=dtype)
|
|
elif mask_dim == 4:
|
|
mask = torch.randn((batch, num_heads, seq_len_q, seq_len_kv), device=device, dtype=dtype)
|
|
with sdp_kernel(**backend_map[SDPBackend.EFFICIENT_ATTENTION]):
|
|
out = F.scaled_dot_product_attention(query, key, value, mask)
|
|
out.sum().backward()
|
|
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Fused SDPA was not built for this system")
|
|
@parametrize("dtype", [torch.float, torch.float16])
|
|
def test_mem_eff_attention_pad_mask(self, device, dtype):
|
|
make_tensor = partial(torch.rand, device=device, dtype=dtype, requires_grad=True)
|
|
batch, num_heads, head_dim = 8, 8, 64
|
|
seq_len_q, seq_len_kv = 64, 15
|
|
query = make_tensor(SdpaShape(batch, num_heads, seq_len_q, head_dim))
|
|
kv_shape = SdpaShape(batch, num_heads, seq_len_kv, head_dim)
|
|
key, value = make_tensor(kv_shape), make_tensor(kv_shape)
|
|
mask = torch.randn((batch, num_heads, seq_len_q, seq_len_kv), device=device, dtype=dtype)
|
|
with sdp_kernel(**backend_map[SDPBackend.EFFICIENT_ATTENTION]):
|
|
out = F.scaled_dot_product_attention(query, key, value, mask)
|
|
out.sum().backward()
|
|
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Fused SDPA was not built for this system")
|
|
@parametrize("dtype", [torch.float, torch.float16])
|
|
def test_mem_eff_attention_non_contiguous_mask(self, device, dtype):
|
|
make_tensor = partial(torch.rand, device=device, dtype=dtype, requires_grad=True)
|
|
batch, num_heads, head_dim = 8, 8, 64
|
|
seq_len_q, seq_len_kv = 64, 16
|
|
query = make_tensor(SdpaShape(batch, num_heads, seq_len_q, head_dim))
|
|
kv_shape = SdpaShape(batch, num_heads, seq_len_kv, head_dim)
|
|
key, value = make_tensor(kv_shape), make_tensor(kv_shape)
|
|
mask = torch.randn((batch, num_heads, seq_len_q, seq_len_kv), device=device, dtype=dtype)
|
|
mask = torch.as_strided(mask, (batch, num_heads, seq_len_q, seq_len_kv), (0, 0, 0, 1))
|
|
with sdp_kernel(**backend_map[SDPBackend.EFFICIENT_ATTENTION]):
|
|
out = F.scaled_dot_product_attention(query, key, value, mask)
|
|
out.sum().backward()
|
|
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Fused SDPA was not built for this system")
|
|
@parametrize("dtype", [torch.float, torch.float16])
|
|
def test_mem_eff_attention_long_sequence_mask(self, device, dtype):
|
|
if torch.cuda.get_device_properties('cuda').total_memory < 80 * 2**30:
|
|
unittest.skip("This test requires substatnial GPU memory.")
|
|
return
|
|
make_tensor = partial(torch.rand, device=device, dtype=dtype, requires_grad=True)
|
|
batch, num_heads, head_dim = 1, 32, 64
|
|
seq_len_q, seq_len_kv = 8192, 8192
|
|
query = make_tensor(SdpaShape(batch, num_heads, seq_len_q, head_dim))
|
|
kv_shape = SdpaShape(batch, num_heads, seq_len_kv, head_dim)
|
|
key, value = make_tensor(kv_shape), make_tensor(kv_shape)
|
|
mask = torch.randn((batch, num_heads, seq_len_q, seq_len_kv), device=device, dtype=dtype)
|
|
with sdp_kernel(**backend_map[SDPBackend.EFFICIENT_ATTENTION]):
|
|
out = F.scaled_dot_product_attention(query, key, value, mask)
|
|
out.sum().backward()
|
|
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Fused SDPA was not built for this system")
|
|
def test_mem_eff_attention_non_contig_mask_bug(self, device):
|
|
dtype = torch.float32
|
|
make_tensor = partial(torch.rand, device=device, dtype=dtype, requires_grad=True)
|
|
batch, num_heads, head_dim = 1, 16, 128
|
|
seq_len_q, seq_len_kv = 1, 16
|
|
query = make_tensor(batch, seq_len_q, num_heads * head_dim).view(batch, seq_len_q, num_heads, head_dim).transpose(1, 2)
|
|
kv_shape = (batch, seq_len_kv, head_dim)
|
|
key, value = make_tensor(kv_shape).unsqueeze(1), make_tensor(kv_shape).unsqueeze(1)
|
|
key = key.expand(-1, num_heads, -1, -1)
|
|
value = value.expand(-1, num_heads, -1, -1)
|
|
mask = torch.ones((1, 1, seq_len_q, seq_len_kv), device=device, dtype=torch.bool)
|
|
with sdp_kernel(**backend_map[SDPBackend.EFFICIENT_ATTENTION]):
|
|
out = F.scaled_dot_product_attention(query, key, value, mask)
|
|
out_no_mask = F.scaled_dot_product_attention(query, key, value, None)
|
|
max_diff = (out - out_no_mask).abs().mean()
|
|
assert max_diff.item() < 1e-9
|
|
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Fused SDPA was not built for this system")
|
|
@parametrize("type", ["dense", "nested"])
|
|
@parametrize("is_contiguous", [True, False])
|
|
def test_scaled_dot_product_attention_fused_kernels_packed(self, device, type: str, is_contiguous: bool):
|
|
make_tensor = partial(rand_sdpa_tensor, type=type, device=device, dtype=torch.float16, packed=True)
|
|
|
|
batch_size, seq_len, num_heads, head_dim = 32, 64, 16, 64
|
|
shape = SdpaShape(batch_size, num_heads, seq_len, head_dim)
|
|
|
|
# Test Packed
|
|
qkv = make_tensor(shape)
|
|
query, key, value = qkv.chunk(3, dim=-1)
|
|
|
|
query = query.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
key = key.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
|
|
if is_contiguous:
|
|
query = query.contiguous()
|
|
key = key.contiguous()
|
|
value = value.contiguous()
|
|
|
|
with sdp_kernel(enable_flash=False, enable_math=False, enable_mem_efficient=True):
|
|
actual = torch.nn.functional.scaled_dot_product_attention(
|
|
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False)
|
|
with sdp_kernel(enable_flash=False, enable_math=True, enable_mem_efficient=False):
|
|
math_ref = torch.nn.functional.scaled_dot_product_attention(
|
|
query.contiguous(), key.contiguous(), value.contiguous(),
|
|
attn_mask=None, dropout_p=0.0, is_causal=False)
|
|
|
|
self.assertEqual(actual.contiguous(), math_ref.contiguous(), atol=2e-3, rtol=1e-2)
|
|
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FUSED_ATTENTION, "Fused SDPA was not built for this system")
|
|
@parametrize("type", ["dense", "nested"])
|
|
@parametrize("fused_kernel", [SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION] if
|
|
PLATFORM_SUPPORTS_FLASH_ATTENTION else [SDPBackend.EFFICIENT_ATTENTION])
|
|
def test_scaled_dot_product_attention_fused_kernels_packed_accuracy(self, device, type: str, fused_kernel: str):
|
|
def rand_nt(shape):
|
|
batch, seq_len, num_heads, head_dim = shape
|
|
tensors = [6 * torch.rand((seq_len, 3 * num_heads * head_dim), device=device, dtype=torch.float32) - 3
|
|
for _ in range(batch)]
|
|
return (torch.nested.nested_tensor(tensors, device=device, dtype=torch.float32),
|
|
torch.nested.nested_tensor(tensors, device=device, dtype=torch.float16))
|
|
|
|
def rand_tensor(shape):
|
|
batch, seq_len, num_heads, head_dim = shape
|
|
tensor = 6 * torch.rand((batch, seq_len, 3 * num_heads * head_dim), device=device, dtype=torch.float32) - 3
|
|
return tensor, tensor.to(dtype=torch.float16)
|
|
|
|
batch_size, seq_len, num_heads, head_dim = 16, 8, 4, 64
|
|
shape = (batch_size, seq_len, num_heads, head_dim)
|
|
|
|
# Test Packed
|
|
qkv, qkv_low_precision = rand_tensor(shape) if type == "dense" else rand_nt(shape)
|
|
query, key, value = qkv.chunk(3, dim=-1)
|
|
query_lp, key_lp, value_lp = qkv_low_precision.chunk(3, dim=-1)
|
|
|
|
query = query.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
key = key.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
|
|
query_lp = query_lp.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
key_lp = key_lp.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
value_lp = value_lp.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
|
|
with sdp_kernel(**backend_map[fused_kernel]):
|
|
actual = torch.nn.functional.scaled_dot_product_attention(
|
|
query_lp, key_lp, value_lp, attn_mask=None, dropout_p=0.0, is_causal=False)
|
|
|
|
with sdp_kernel(**backend_map[SDPBackend.MATH]):
|
|
math_ref_lp = torch.nn.functional.scaled_dot_product_attention(
|
|
query_lp.contiguous(), key_lp.contiguous(), value_lp.contiguous(),
|
|
attn_mask=None, dropout_p=0.0, is_causal=False)
|
|
|
|
math_query = query.contiguous()
|
|
math_key = key.contiguous()
|
|
math_value = value.contiguous()
|
|
|
|
math_ref = torch.nn.functional.scaled_dot_product_attention(
|
|
math_query, math_key, math_value, attn_mask=None, dropout_p=0.0, is_causal=False)
|
|
|
|
actual_test = actual
|
|
math_ref_test = math_ref
|
|
math_ref_lp_test = math_ref_lp
|
|
|
|
if actual_test.is_nested:
|
|
actual_test = torch.nested.to_padded_tensor(actual_test.contiguous(), padding=0.0)
|
|
math_ref_test = torch.nested.to_padded_tensor(math_ref_test, padding=0.0)
|
|
math_ref_lp_test = torch.nested.to_padded_tensor(math_ref_lp_test, padding=0.0)
|
|
|
|
actual_test = actual_test.to(dtype=torch.float32).contiguous()
|
|
math_ref_test = math_ref_test.to(dtype=torch.float32).contiguous()
|
|
math_ref_lp_test = math_ref_lp_test.to(dtype=torch.float32).contiguous()
|
|
|
|
self.assertEqual(math_ref_test, math_ref_lp_test, atol=7e-3, rtol=7e-3)
|
|
self.assertEqual(actual_test, math_ref_test, atol=5e-3, rtol=5e-3)
|
|
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Flash Attention was not built for this system")
|
|
@parametrize("contiguous_inputs", [True, False])
|
|
@parametrize("is_causal", [True, False])
|
|
def test_sdp_mem_efficient_grad_against_math(self, device, contiguous_inputs: bool, is_causal: bool):
|
|
batch_size, seq_len, num_heads, head_dim = 4, 4, 2, 16
|
|
make_tensor = partial(rand_sdpa_tensor, type="dense", device=device,
|
|
dtype=torch.float64, requires_grad=True, packed=True)
|
|
|
|
qkv = make_tensor(SdpaShape(batch_size, num_heads, seq_len, head_dim))
|
|
qkv_lp = qkv.detach().clone().to(torch.float32).requires_grad_()
|
|
|
|
query, key, value = qkv.chunk(3, dim=-1)
|
|
query_lp, key_lp, value_lp = qkv_lp.chunk(3, dim=-1)
|
|
|
|
query = query.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
key = key.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
|
|
query_lp = query_lp.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
key_lp = key_lp.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
value_lp = value_lp.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
|
|
if contiguous_inputs:
|
|
query = query.contiguous()
|
|
key = key.contiguous()
|
|
value = value.contiguous()
|
|
|
|
query_lp = query_lp.contiguous()
|
|
key_lp = key_lp.contiguous()
|
|
value_lp = value_lp.contiguous()
|
|
|
|
with sdp_kernel(enable_math=True, enable_mem_efficient=False, enable_flash=False):
|
|
out = torch.nn.functional.scaled_dot_product_attention(query, key, value, None, 0.0, is_causal)
|
|
|
|
with sdp_kernel(enable_math=False, enable_mem_efficient=True, enable_flash=False):
|
|
out_lp = torch.nn.functional.scaled_dot_product_attention(
|
|
query_lp, key_lp, value_lp, None, 0.0, is_causal)
|
|
|
|
rand_upward = torch.rand_like(out)
|
|
rand_upward_lp = rand_upward.to(torch.float32)
|
|
|
|
out.backward(rand_upward)
|
|
out_lp.backward(rand_upward_lp)
|
|
|
|
# Cast up and compare
|
|
self.assertEqual(qkv.grad, qkv_lp.grad.to(torch.float64), atol=1e-5, rtol=1e-5)
|
|
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Flash Attention was not built for this system")
|
|
@parametrize("contiguous_inputs", [True, False])
|
|
@parametrize("is_causal", [True, False])
|
|
@parametrize("dtype", [torch.float16, torch.bfloat16])
|
|
def test_sdp_flash_attention_grad_against_math(self, device, contiguous_inputs: bool, is_causal: bool, dtype: torch.dtype):
|
|
batch_size, seq_len, num_heads, head_dim = 4, 4, 2, 16
|
|
make_tensor = partial(rand_sdpa_tensor, type="dense", device=device,
|
|
dtype=torch.float64, requires_grad=True, packed=True)
|
|
|
|
qkv = make_tensor(SdpaShape(batch_size, num_heads, seq_len, head_dim))
|
|
qkv_lp = qkv.detach().clone().to(dtype).requires_grad_()
|
|
|
|
query, key, value = qkv.chunk(3, dim=-1)
|
|
query_lp, key_lp, value_lp = qkv_lp.chunk(3, dim=-1)
|
|
|
|
query = query.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
key = key.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
|
|
query_lp = query_lp.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
key_lp = key_lp.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
value_lp = value_lp.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
|
|
if contiguous_inputs:
|
|
query = query.contiguous()
|
|
key = key.contiguous()
|
|
value = value.contiguous()
|
|
|
|
query_lp = query_lp.contiguous()
|
|
key_lp = key_lp.contiguous()
|
|
value_lp = value_lp.contiguous()
|
|
|
|
with sdp_kernel(enable_math=True, enable_mem_efficient=False, enable_flash=False):
|
|
out = torch.nn.functional.scaled_dot_product_attention(query, key, value, None, 0.0, is_causal)
|
|
|
|
with sdp_kernel(enable_math=False, enable_mem_efficient=False, enable_flash=True):
|
|
out_lp = torch.nn.functional.scaled_dot_product_attention(
|
|
query_lp, key_lp, value_lp, None, 0.0, is_causal)
|
|
|
|
rand_upward = torch.rand_like(out)
|
|
rand_upward_lp = rand_upward.to(dtype)
|
|
|
|
out.backward(rand_upward)
|
|
out_lp.backward(rand_upward_lp)
|
|
|
|
# Cast up and compare
|
|
# Since we are doing the compute on fp16 we have to bump the tolerance
|
|
# Bump down the tolearnce for blfoat16
|
|
atol = 7e-4 if dtype == torch.float16 else 7e-3
|
|
rtol = 7e-4 if dtype == torch.float16 else 7e-3
|
|
self.assertEqual(qkv.grad, qkv_lp.grad.to(torch.float64), atol=atol, rtol=rtol)
|
|
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FUSED_ATTENTION, "Platform does not support fused SDPA")
|
|
@parametrize("type", ["dense", "nested"])
|
|
def test_fused_sdp_choice(self, device, type: str):
|
|
batch_size, seq_len, num_heads, head_dim = 2, 128, 8, 64
|
|
shape = SdpaShape(batch_size, num_heads, seq_len, head_dim)
|
|
make_tensor = partial(rand_sdpa_tensor, device=device, dtype=torch.float16, packed=True, requires_grad=True)
|
|
|
|
qkv = make_tensor(shape, type=type)
|
|
query, key, value = qkv.chunk(3, dim=-1)
|
|
|
|
query = query.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
key = key.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
|
|
if PLATFORM_SUPPORTS_FLASH_ATTENTION:
|
|
assert torch._fused_sdp_choice(query, key, value) == SDPBackend.FLASH_ATTENTION.value
|
|
else:
|
|
assert torch._fused_sdp_choice(query, key, value) == SDPBackend.EFFICIENT_ATTENTION.value
|
|
|
|
# Change dtype to float32 so that efficient attention should get chosen
|
|
make_tensor = partial(rand_sdpa_tensor, device=device, dtype=torch.float32, packed=True)
|
|
|
|
qkv = make_tensor(shape, type=type)
|
|
query, key, value = qkv.chunk(3, dim=-1)
|
|
|
|
query = query.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
key = key.view(batch_size, -1, num_heads, head_dim).transpose(1, 2)
|
|
|
|
assert torch._fused_sdp_choice(query, key, value) == SDPBackend.EFFICIENT_ATTENTION.value
|
|
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Platform does not support fused SDPA")
|
|
@parametrize("warn_only", [True, False])
|
|
def test_sdp_choice_with_determinism(self, device, warn_only):
|
|
batch_size, seq_len, num_heads, head_dim = 1, 64, 8, 64
|
|
shape = SdpaShape(batch_size, num_heads, seq_len, head_dim)
|
|
make_tensor = partial(rand_sdpa_tensor, type="dense", device=device, dtype=torch.float32, packed=False)
|
|
query, key, value = make_tensor(shape), make_tensor(shape), make_tensor(shape)
|
|
|
|
with use_deterministic_algorithims(True, warn_only=warn_only):
|
|
with sdp_kernel(enable_flash=False, enable_math=True, enable_mem_efficient=True):
|
|
assert torch._fused_sdp_choice(query, key, value) == SDPBackend.EFFICIENT_ATTENTION.value
|
|
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Platform does not support fused SDPA")
|
|
@parametrize("warn_only", [True, False])
|
|
def test_mem_eff_backwards_throws_determinism_warning(self, device, warn_only):
|
|
batch_size, seq_len, num_heads, head_dim = 1, 64, 8, 64
|
|
shape = SdpaShape(batch_size, num_heads, seq_len, head_dim)
|
|
make_tensor = partial(rand_sdpa_tensor, type="dense", device=device, dtype=torch.float32, packed=False, requires_grad=True)
|
|
query, key, value = make_tensor(shape), make_tensor(shape), make_tensor(shape)
|
|
|
|
warning_context = (
|
|
self.assertWarnsRegex(
|
|
UserWarning,
|
|
"Memory Efficient attention defaults to a non-deterministic algorithm.",
|
|
)
|
|
if warn_only
|
|
else contextlib.nullcontext()
|
|
)
|
|
with use_deterministic_algorithims(True, warn_only=warn_only):
|
|
with sdp_kernel(**backend_map[SDPBackend.EFFICIENT_ATTENTION]):
|
|
with warning_context:
|
|
torch.nn.functional.scaled_dot_product_attention(query, key, value).sum().backward()
|
|
|
|
@unittest.skip("This test is not behaving deterministaclly non-deterministaclly on CI/CD")
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Platform does not support fused SDPA")
|
|
def test_mem_eff_backwards_determinism(self, device):
|
|
# Need big seq_len to ensure that num_splits > 1
|
|
dtype = torch.float32
|
|
batch_size, seq_len, n_heads, head_dim = 1, 1024, 8, 64
|
|
query = torch.rand(batch_size, n_heads, seq_len, head_dim,
|
|
device=device, dtype=dtype, requires_grad=True)
|
|
key = torch.rand(batch_size, n_heads, seq_len, head_dim, device=device,
|
|
dtype=dtype, requires_grad=True)
|
|
value = torch.rand(batch_size, n_heads, seq_len, head_dim,
|
|
device=device, dtype=dtype, requires_grad=True)
|
|
|
|
with sdp_kernel(enable_mem_efficient=True, enable_math=False, enable_flash=False):
|
|
# Run once to establish baseline
|
|
out = F.scaled_dot_product_attention(query, key, value)
|
|
upward_grad = torch.rand_like(out)
|
|
out.backward(upward_grad)
|
|
intial_query_grad = query.grad
|
|
|
|
# Re-run the op with the same upward grad and check that the backward is
|
|
# not deterministic
|
|
diff_anwser_once = False
|
|
for _ in range(100):
|
|
query.grad = None
|
|
out = F.scaled_dot_product_attention(query, key, value)
|
|
out.backward(upward_grad)
|
|
if not torch.equal(intial_query_grad, query.grad):
|
|
diff_anwser_once = True
|
|
break
|
|
self.assertTrue(diff_anwser_once)
|
|
|
|
with use_deterministic_algorithims(True, warn_only=False):
|
|
query.grad = None
|
|
out = F.scaled_dot_product_attention(query, key, value)
|
|
upward_grad = torch.rand_like(out)
|
|
out.backward(upward_grad)
|
|
intial_query_grad = query.grad
|
|
|
|
# Re-run the op with the same upward grad and check that the backward is
|
|
# deterministic now that we have enforced it
|
|
diff_anwser_once = False
|
|
for _ in range(100):
|
|
query.grad = None
|
|
out = F.scaled_dot_product_attention(query, key, value)
|
|
out.backward(upward_grad)
|
|
if not torch.equal(intial_query_grad, query.grad):
|
|
diff_anwser_once = True
|
|
break
|
|
self.assertFalse(diff_anwser_once)
|
|
|
|
# verified passing successfully on H100
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Does not support SDPA")
|
|
@parametrize("batch_size", [1, 8])
|
|
@parametrize("seq_len_q", [4, 8, 64, 128, 256, 512, 1024, 2048] if SM80OrLater else [4, 8, 64, 128, 256, 512])
|
|
@parametrize("seq_len_k", [4, 8, 64, 128, 256, 512, 1024, 2048] if SM80OrLater else [4, 8, 64, 128, 256, 512])
|
|
@parametrize("head_dim", [8, 16, 32, 64, 72, 96, 128] if SM80OrLater else [8, 16, 32, 64])
|
|
@parametrize("is_causal", [False, True])
|
|
@parametrize("dropout_p", [0.0, 0.22])
|
|
@parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32] if
|
|
SM80OrLater else [torch.float16, torch.float32])
|
|
@parametrize("scale", [None, "l1"])
|
|
def test_mem_efficient_attention_vs_math_ref_grads(self, device, batch_size: int, seq_len_q: int, seq_len_k: int,
|
|
head_dim: int, is_causal: bool, dropout_p: float, dtype: torch.dtype,
|
|
scale: str):
|
|
def _get_mem_eff_drop_mask(batch_size, n_heads, q_len, kv_len, p, seed, offset, device=device):
|
|
mask = torch.empty((batch_size, n_heads, q_len, kv_len), device=device, dtype=torch.float32)
|
|
rand_uniform = torch._fill_mem_eff_dropout_mask_(mask, p, seed, offset)
|
|
mask = (rand_uniform > p).to(torch.float32)
|
|
return mask
|
|
if max(seq_len_q, seq_len_k) >= 2048 and torch.cuda.get_device_properties('cuda').total_memory < 40 * 2**30:
|
|
unittest.skip("Reference implementation OOM")
|
|
return
|
|
seed = 42
|
|
scale = scale if scale is None else (1 / head_dim)
|
|
n_heads = 4
|
|
query = torch.rand(batch_size, n_heads, seq_len_q, head_dim,
|
|
device=device, dtype=dtype, requires_grad=True)
|
|
key = torch.rand(batch_size, n_heads, seq_len_k, head_dim, device=device,
|
|
dtype=dtype, requires_grad=True)
|
|
value = torch.rand(batch_size, n_heads, seq_len_k, head_dim,
|
|
device=device, dtype=dtype, requires_grad=True)
|
|
|
|
# Run the math kernel on low precision references
|
|
query_ref_lp, key_ref_lp, value_ref_lp = query_key_value_clones(query, key, value, dtype=dtype)
|
|
|
|
higher_precision_dtype = torch.float64 if dtype == torch.float32 else torch.float32
|
|
query_ref, key_ref, value_ref = query_key_value_clones(query, key, value, dtype=higher_precision_dtype)
|
|
|
|
# Create real output
|
|
with sdp_kernel(enable_mem_efficient=True, enable_flash=False, enable_math=False):
|
|
# Set the seed and run the kernel
|
|
torch.manual_seed(seed)
|
|
out = F.scaled_dot_product_attention(query, key, value, dropout_p=dropout_p, is_causal=is_causal, scale=scale)
|
|
|
|
if dropout_p == 0.0:
|
|
with sdp_kernel(enable_math=True, enable_flash=False, enable_mem_efficient=False):
|
|
# High Precision Math Reference
|
|
out_ref = F.scaled_dot_product_attention(query_ref, key_ref, value_ref,
|
|
dropout_p=dropout_p, is_causal=is_causal, scale=scale)
|
|
# Low Precision Math Reference
|
|
out_lp_ref = F.scaled_dot_product_attention(query_ref_lp, key_ref_lp, value_ref_lp,
|
|
dropout_p=dropout_p, is_causal=is_causal, scale=scale)
|
|
else:
|
|
if seq_len_q > 1024:
|
|
self.skipTest("Will call _fill_mem_eff_dropout_mask with too many threads!")
|
|
# Create the dropout_mask
|
|
torch.manual_seed(seed)
|
|
dropout_mask = _get_mem_eff_drop_mask(batch_size, n_heads, seq_len_q, seq_len_k, dropout_p, seed, 0, device=device)
|
|
# High Precision Math Reference
|
|
out_ref = torch.ops.aten._scaled_dot_product_attention_math(
|
|
query_ref, key_ref, value_ref, dropout_p=dropout_p, is_causal=is_causal, scale=scale, dropout_mask=dropout_mask)[0]
|
|
# Low Precision Math Reference
|
|
out_lp_ref = torch.ops.aten._scaled_dot_product_attention_math(
|
|
query_ref_lp, key_ref_lp, value_ref_lp, dropout_p=dropout_p, is_causal=is_causal, scale=scale,
|
|
dropout_mask=dropout_mask)[0]
|
|
|
|
upstream_grad = torch.rand_like(out, requires_grad=False)
|
|
|
|
out.backward(upstream_grad)
|
|
out_ref.backward(upstream_grad.to(out_ref.dtype))
|
|
out_lp_ref.backward(upstream_grad.to(out_lp_ref.dtype))
|
|
|
|
# [Note] Fused Tolerances
|
|
# Establish the numerical error between the "true" high precision math output
|
|
# and the low precision math reference. We use this reference for the atol
|
|
# And we use the default rtol for the low precision type.
|
|
# We then provide a fudge factor for gradients respectively to account
|
|
# for the use of the fused kernel rather than the eager implemntation.
|
|
output_ref_atol, output_ref_rtol = get_tolerances(out_ref, out_lp_ref)
|
|
|
|
# Fudge Factor when dropout is enabled
|
|
dropout_fudge_factor = 1.0 if dropout_p == 0.0 else 2.0
|
|
|
|
query_fudge_factor = dropout_fudge_factor
|
|
grad_q_ref_atol, grad_q_ref_rtol = get_tolerances(query_ref.grad, query_ref_lp.grad, query_fudge_factor)
|
|
|
|
# TODO: Investigate why grad_k needs larger tolerances
|
|
key_fudge_factor = 8 * dropout_fudge_factor
|
|
grad_k_ref_atol, grad_k_ref_rtol = get_tolerances(key_ref.grad, key_ref_lp.grad, key_fudge_factor)
|
|
|
|
value_fudge_factor = 7 if not SM80OrLater and dtype == torch.float16 else 1.0
|
|
grad_v_ref_atol, grad_v_ref_rtol = get_tolerances(value_ref.grad, value_ref_lp.grad, value_fudge_factor)
|
|
|
|
self.assertEqual(out, out_ref.to(out.dtype), atol=output_ref_atol, rtol=output_ref_rtol)
|
|
self.assertEqual(query.grad, query_ref.grad.to(query.grad.dtype),
|
|
atol=grad_q_ref_atol, rtol=grad_q_ref_rtol)
|
|
self.assertEqual(key.grad, key_ref.grad.to(key.grad.dtype),
|
|
atol=grad_k_ref_atol, rtol=grad_k_ref_rtol)
|
|
self.assertEqual(value.grad, value_ref.grad.to(value.grad.dtype),
|
|
atol=grad_v_ref_atol, rtol=grad_v_ref_rtol)
|
|
|
|
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Does not support SDPA")
|
|
@parametrize("batch_size", [1, 8])
|
|
@parametrize("seq_len_q", [4, 8, 64, 128, 256, 312, 512, 1024, 2048] if SM80OrLater else [4, 8, 64, 128, 152, 256, 512])
|
|
@parametrize("seq_len_k", [4, 8, 64, 65, 128, 256, 408, 512, 1024, 2048] if SM80OrLater else [4, 8, 37, 64, 128, 256, 512])
|
|
@parametrize("head_dim", [8, 16, 32, 64, 72, 96, 128] if SM80OrLater else [8, 16, 32, 64])
|
|
@parametrize("is_causal", [False])
|
|
@parametrize("dropout_p", [0.0, 0.22])
|
|
@parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32] if
|
|
SM80OrLater else [torch.float16, torch.float32])
|
|
@parametrize("scale", [None, "l1"])
|
|
def test_mem_efficient_attention_attn_mask_vs_math_ref_grads(self, device, batch_size: int, seq_len_q: int,
|
|
seq_len_k: int, head_dim: int, is_causal: bool,
|
|
dropout_p: float, dtype: torch.dtype,
|
|
scale: str):
|
|
def _get_mem_eff_drop_mask(batch_size, n_heads, q_len, kv_len, p, seed, offset, device=device):
|
|
mask = torch.empty((batch_size, n_heads, q_len, kv_len), device=device, dtype=torch.float32)
|
|
rand_uniform = torch._fill_mem_eff_dropout_mask_(mask, p, seed, offset)
|
|
mask = (rand_uniform > p).to(torch.float32)
|
|
return mask
|
|
if max(seq_len_q, seq_len_k) >= 2048 and torch.cuda.get_device_properties('cuda').total_memory < 40 * 2**30:
|
|
unittest.skip("Reference implementation OOM")
|
|
return
|
|
seed = 42
|
|
scale = scale if scale is None else (1 / head_dim)
|
|
n_heads = 4
|
|
query = torch.rand(batch_size, n_heads, seq_len_q, head_dim,
|
|
device=device, dtype=dtype, requires_grad=True)
|
|
key = torch.rand(batch_size, n_heads, seq_len_k, head_dim, device=device,
|
|
dtype=dtype, requires_grad=True)
|
|
value = torch.rand(batch_size, n_heads, seq_len_k, head_dim,
|
|
device=device, dtype=dtype, requires_grad=True)
|
|
|
|
attn_mask = torch.rand(seq_len_q, seq_len_k, device=device, dtype=dtype, requires_grad=True)
|
|
|
|
# Run the math kernel on low precision references
|
|
query_ref_lp, key_ref_lp, value_ref_lp = query_key_value_clones(query, key, value, dtype=dtype)
|
|
attn_mask_ref_lp = attn_mask.detach().to(dtype).requires_grad_(True)
|
|
|
|
higher_precision_dtype = torch.float64 if dtype == torch.float32 else torch.float32
|
|
query_ref, key_ref, value_ref = query_key_value_clones(query, key, value, dtype=higher_precision_dtype)
|
|
attn_mask_ref = attn_mask.detach().to(higher_precision_dtype).requires_grad_(True)
|
|
|
|
# Create real output
|
|
with sdp_kernel(enable_mem_efficient=True, enable_flash=False, enable_math=False):
|
|
# Set the seed and run the kernel
|
|
torch.manual_seed(seed)
|
|
out = F.scaled_dot_product_attention(query, key, value, attn_mask, dropout_p=dropout_p,
|
|
is_causal=is_causal, scale=scale)
|
|
|
|
if dropout_p == 0.0:
|
|
with sdp_kernel(enable_math=True, enable_flash=False, enable_mem_efficient=False):
|
|
# High Precision Math Reference
|
|
out_ref = F.scaled_dot_product_attention(query_ref, key_ref, value_ref, attn_mask_ref,
|
|
dropout_p=dropout_p, is_causal=is_causal, scale=scale)
|
|
# Low Precision Math Reference
|
|
out_lp_ref = F.scaled_dot_product_attention(query_ref_lp, key_ref_lp, value_ref_lp, attn_mask_ref_lp,
|
|
dropout_p=dropout_p, is_causal=is_causal, scale=scale)
|
|
else:
|
|
if seq_len_q > 1024:
|
|
self.skipTest("Will call _fill_mem_eff_dropout_mask with too many threads!")
|
|
# Create the dropout_mask
|
|
torch.manual_seed(seed)
|
|
dropout_mask = _get_mem_eff_drop_mask(batch_size, n_heads, seq_len_q,
|
|
seq_len_k, dropout_p, seed, 0, device=device)
|
|
# High Precision Math Reference
|
|
out_ref = torch.ops.aten._scaled_dot_product_attention_math(
|
|
query_ref, key_ref, value_ref, attn_mask_ref, dropout_p=dropout_p, is_causal=is_causal,
|
|
scale=scale, dropout_mask=dropout_mask)[0]
|
|
# Low Precision Math Reference
|
|
out_lp_ref = torch.ops.aten._scaled_dot_product_attention_math(
|
|
query_ref_lp, key_ref_lp, value_ref_lp, attn_mask_ref_lp,
|
|
dropout_p=dropout_p, is_causal=is_causal, scale=scale,
|
|
dropout_mask=dropout_mask)[0]
|
|
|
|
upstream_grad = torch.rand_like(out, requires_grad=False)
|
|
|
|
out.backward(upstream_grad)
|
|
out_ref.backward(upstream_grad.to(out_ref.dtype))
|
|
out_lp_ref.backward(upstream_grad.to(out_lp_ref.dtype))
|
|
|
|
# [Note] Fused Tolerances
|
|
# Establish the numerical error between the "true" high precision math output
|
|
# and the low precision math reference. We use this reference for the atol
|
|
# And we use the default rtol for the low precision type.
|
|
# We then provide a fudge factor for gradients respectively to account
|
|
# for the use of the fused kernel rather than the eager implemntation.
|
|
output_ref_atol, output_ref_rtol = get_tolerances(out_ref, out_lp_ref)
|
|
|
|
# Fudge Factor when dropout is enabled
|
|
dropout_fudge_factor = 1.0 if dropout_p == 0.0 else 1.5
|
|
mask_fudge_factor = 1.0 if attn_mask is None else 1.5
|
|
|
|
query_fudge_factor = dropout_fudge_factor
|
|
grad_q_ref_atol, grad_q_ref_rtol = get_tolerances(query_ref.grad, query_ref_lp.grad, query_fudge_factor)
|
|
|
|
# TODO: Investigate why grad_k needs larger tolerances
|
|
key_fudge_factor = 8 * dropout_fudge_factor * mask_fudge_factor
|
|
grad_k_ref_atol, grad_k_ref_rtol = get_tolerances(key_ref.grad, key_ref_lp.grad, key_fudge_factor)
|
|
|
|
value_fudge_factor = 7 if not SM80OrLater and dtype == torch.float16 else 1.0
|
|
grad_v_ref_atol, grad_v_ref_rtol = get_tolerances(value_ref.grad, value_ref_lp.grad, value_fudge_factor)
|
|
|
|
mask_fudge_factor = 12 if attn_mask.numel() > 512 else 22
|
|
grad_attn_mask_atol, grad_attn_mask_rtol = get_tolerances(
|
|
attn_mask_ref.grad, attn_mask_ref_lp.grad, mask_fudge_factor)
|
|
|
|
self.assertEqual(out, out_ref.to(out.dtype), atol=output_ref_atol, rtol=output_ref_rtol)
|
|
self.assertEqual(query.grad, query_ref.grad.to(query.grad.dtype),
|
|
atol=grad_q_ref_atol, rtol=grad_q_ref_rtol)
|
|
self.assertEqual(key.grad, key_ref.grad.to(key.grad.dtype),
|
|
atol=grad_k_ref_atol, rtol=grad_k_ref_rtol)
|
|
self.assertEqual(value.grad, value_ref.grad.to(value.grad.dtype),
|
|
atol=grad_v_ref_atol, rtol=grad_v_ref_rtol)
|
|
|
|
self.assertEqual(attn_mask.grad, attn_mask_ref.grad.to(attn_mask.grad.dtype),
|
|
atol=grad_attn_mask_atol, rtol=grad_attn_mask_rtol)
|
|
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Does not support SDPA or pre-SM80 hardware")
|
|
@parametrize("batch_size", [1, 8])
|
|
@parametrize("seq_len_q", [4, 8, 64, 143, 256, 512, 1024, 2048])
|
|
@parametrize("seq_len_k", [4, 8, 64, 128, 256, 587, 1024, 2048])
|
|
@parametrize("head_dim", [8, 16, 21, 32, 64, 72, 96, 128, 160, 192, 203, 256])
|
|
@parametrize("is_causal", [True, False])
|
|
@parametrize("dropout_p", [0.0, 0.22, 0.48])
|
|
@parametrize("dtype", [torch.float16, torch.bfloat16])
|
|
@parametrize("scale", [None, "l1"])
|
|
def test_flash_attention_vs_math_ref_grads(self, device, batch_size: int, seq_len_q: int, seq_len_k: int,
|
|
head_dim: int, is_causal: bool, dropout_p: float, dtype: torch.dtype,
|
|
scale: str):
|
|
|
|
if isSM86or89Device and head_dim in range(193, 256 + 1):
|
|
self.skipTest("Flash attention on sm86 and sm89 for headdim > 192 currently disabled")
|
|
if is_causal and seq_len_q != seq_len_k:
|
|
self.skipTest("Flash V2 does not accept is_casual when seq_len_q != seq_len_k")
|
|
|
|
scale = scale if scale is None else (1 / head_dim)
|
|
n_heads = 4
|
|
query = torch.rand(batch_size, n_heads, seq_len_q, head_dim,
|
|
device=device, dtype=dtype, requires_grad=True)
|
|
key = torch.rand(batch_size, n_heads, seq_len_k, head_dim, device=device,
|
|
dtype=dtype, requires_grad=True)
|
|
value = torch.rand(batch_size, n_heads, seq_len_k, head_dim,
|
|
device=device, dtype=dtype, requires_grad=True)
|
|
|
|
# Run the math kernel on low precision references
|
|
query_ref_lp, key_ref_lp, value_ref_lp = query_key_value_clones(query, key, value, dtype=dtype)
|
|
|
|
higher_precision_dtype = torch.float64 if dtype == torch.float32 else torch.float32
|
|
query_ref, key_ref, value_ref = query_key_value_clones(query, key, value, dtype=higher_precision_dtype)
|
|
|
|
is_dropout = dropout_p > 0.0
|
|
|
|
if not is_dropout:
|
|
# Problem: We pad sizes in the composite region of the top level SDPA. But we need the
|
|
# Debug mask when have dropout. So I am going to manualy pad up here when testing dropout
|
|
with sdp_kernel(enable_math=False, enable_flash=True, enable_mem_efficient=False):
|
|
out = F.scaled_dot_product_attention(query, key, value, dropout_p=dropout_p, is_causal=is_causal, scale=scale)
|
|
with sdp_kernel(enable_math=True, enable_flash=False, enable_mem_efficient=False):
|
|
# High Precision Math Reference
|
|
out_ref = F.scaled_dot_product_attention(
|
|
query_ref, key_ref, value_ref, is_causal=is_causal, scale=scale)
|
|
# Low Precision Math Reference
|
|
out_lp_ref = F.scaled_dot_product_attention(
|
|
query_ref_lp, key_ref_lp, value_ref_lp, is_causal=is_causal, scale=scale)
|
|
else:
|
|
q_padded, q_og_size = pad_last_dim(query, 8)
|
|
k_padded, k_og_size = pad_last_dim(key, 8)
|
|
v_padded, v_og_size = pad_last_dim(value, 8)
|
|
# scale needs to be calculated on the og head_size
|
|
if scale is None:
|
|
scale = 1 / math.sqrt(q_og_size)
|
|
output_tuple = torch.ops.aten._scaled_dot_product_flash_attention(
|
|
q_padded, k_padded, v_padded, dropout_p=dropout_p, is_causal=is_causal, scale=scale, return_debug_mask=is_dropout)
|
|
out = output_tuple[0]
|
|
out = out[..., :v_og_size]
|
|
# Build dropout_mask
|
|
dbug_mask = output_tuple[-1]
|
|
query_padding_mask = torch.ones(
|
|
batch_size, seq_len_q, device=device, dtype=torch.bool)
|
|
key_padding_mask = torch.ones(
|
|
batch_size, seq_len_k, device=device, dtype=torch.bool)
|
|
|
|
softmax_mask = self.convert_flash_attn_S_to_softmax(
|
|
dbug_mask, query_padding_mask, key_padding_mask, head_dim=head_dim,
|
|
causal=is_causal)[:, :, :seq_len_q, :seq_len_k]
|
|
dropout_mask = softmax_mask >= 0
|
|
# High Precision Math Reference
|
|
out_ref = torch.ops.aten._scaled_dot_product_attention_math(
|
|
query_ref, key_ref, value_ref, dropout_p=dropout_p, is_causal=is_causal, scale=scale, dropout_mask=dropout_mask)[0]
|
|
# Low Precision Math Reference
|
|
out_lp_ref = torch.ops.aten._scaled_dot_product_attention_math(
|
|
query_ref_lp, key_ref_lp, value_ref_lp, dropout_p=dropout_p, is_causal=is_causal, scale=scale,
|
|
dropout_mask=dropout_mask)[0]
|
|
|
|
upstream_grad = torch.rand_like(out, requires_grad=False)
|
|
|
|
# backward for flash attention on sm86 and sm89 for headdim > 64 currently disabled
|
|
if isSM86or89Device and head_dim in range(193, 256):
|
|
self.assertRaises(RuntimeError, lambda: out.backward(upstream_grad))
|
|
return
|
|
out.backward(upstream_grad)
|
|
out_ref.backward(upstream_grad.to(out_ref.dtype))
|
|
out_lp_ref.backward(upstream_grad.to(out_lp_ref.dtype))
|
|
|
|
# See [Note] Fused Tolerances above
|
|
output_fudge_factor = 3 if head_dim % 8 != 0 else 1
|
|
output_ref_atol, output_ref_rtol = get_tolerances(out_ref, out_lp_ref, output_fudge_factor)
|
|
|
|
# TODO: Investigate why grad_q needs larger tolerances
|
|
query_fudge_factor = 4
|
|
grad_q_ref_atol, grad_q_ref_rtol = get_tolerances(query_ref.grad, query_ref_lp.grad, query_fudge_factor)
|
|
|
|
grad_k_ref_atol, grad_k_ref_rtol = get_tolerances(key_ref.grad, key_ref_lp.grad)
|
|
value_fudge_factor = 2
|
|
grad_v_ref_atol, grad_v_ref_rtol = get_tolerances(value_ref.grad, value_ref_lp.grad, value_fudge_factor)
|
|
|
|
self.assertEqual(out, out_ref.to(out.dtype), atol=output_ref_atol, rtol=output_ref_rtol)
|
|
self.assertEqual(query.grad, query_ref.grad.to(query.grad.dtype),
|
|
atol=grad_q_ref_atol, rtol=grad_q_ref_rtol)
|
|
self.assertEqual(key.grad, key_ref.grad.to(key.grad.dtype),
|
|
atol=grad_k_ref_atol, rtol=grad_k_ref_rtol)
|
|
self.assertEqual(value.grad, value_ref.grad.to(value.grad.dtype),
|
|
atol=grad_v_ref_atol, rtol=grad_v_ref_rtol)
|
|
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Does not support SDPA or pre-SM80 hardware")
|
|
@parametrize("batch_size", [1, 8])
|
|
@parametrize("seq_len_q", [256, 512, 1024])
|
|
@parametrize("seq_len_k", [256, 512, 1024])
|
|
@parametrize("head_dim", [32, 64])
|
|
@parametrize("is_causal", [True, False])
|
|
@parametrize("dropout_p", [0.0, 0.22])
|
|
@parametrize("dtype", [torch.float16,])
|
|
@parametrize("scale", [None, "l1"])
|
|
@parametrize("fused_kernel", [SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION])
|
|
def test_fused_attention_vs_math_ref_grads_cudagraph(self, device, batch_size: int, seq_len_q: int, seq_len_k: int,
|
|
head_dim: int,
|
|
is_causal: bool,
|
|
dropout_p: float,
|
|
dtype: torch.dtype,
|
|
scale: str,
|
|
fused_kernel: SDPBackend):
|
|
def _get_mem_eff_drop_mask(batch_size, n_heads, q_len, kv_len, dropout_p, seed, offset, device=device):
|
|
mask = torch.empty((batch_size, n_heads, q_len, kv_len), device=device, dtype=torch.float32)
|
|
rand_uniform = torch._fill_mem_eff_dropout_mask_(mask, dropout_p, seed, offset)
|
|
mask = (rand_uniform > dropout_p).to(torch.float32)
|
|
return mask
|
|
|
|
def get_dropout_mask(output, fused_kernel, batch_size, n_heads, q_len, kv_len, dropout_p, device=device):
|
|
if fused_kernel == SDPBackend.EFFICIENT_ATTENTION:
|
|
output_seed, output_offset = output_tuple[2], output_tuple[3]
|
|
output_seed = output_seed.item()
|
|
output_offset = output_offset.item()
|
|
return _get_mem_eff_drop_mask(batch_size, n_heads, q_len, kv_len,
|
|
dropout_p, output_seed, output_offset, device=device)
|
|
else:
|
|
# Build dropout_mask
|
|
dbug_mask = output_tuple[-1]
|
|
query_padding_mask = torch.ones(
|
|
batch_size, seq_len_q, device=device, dtype=torch.bool)
|
|
key_padding_mask = torch.ones(
|
|
batch_size, seq_len_k, device=device, dtype=torch.bool)
|
|
|
|
softmax_mask = self.convert_flash_attn_S_to_softmax(
|
|
dbug_mask, query_padding_mask, key_padding_mask, head_dim=head_dim, causal=is_causal)
|
|
dropout_mask = softmax_mask >= 0
|
|
return dropout_mask
|
|
|
|
if fused_kernel == SDPBackend.FLASH_ATTENTION and is_causal and seq_len_q != seq_len_k:
|
|
self.skipTest("Flash V2 does not accept is_casual when seq_len_q != seq_len_k")
|
|
|
|
seed = 42
|
|
scale = scale if scale is None else (1 / head_dim)
|
|
n_heads = 4
|
|
query = torch.rand(batch_size, n_heads, seq_len_q, head_dim,
|
|
device=device, dtype=dtype, requires_grad=True)
|
|
key = torch.rand(batch_size, n_heads, seq_len_k, head_dim, device=device,
|
|
dtype=dtype, requires_grad=True)
|
|
value = torch.rand(batch_size, n_heads, seq_len_k, head_dim,
|
|
device=device, dtype=dtype, requires_grad=True)
|
|
|
|
fused_op = (torch.ops.aten._scaled_dot_product_efficient_attention
|
|
if fused_kernel == SDPBackend.EFFICIENT_ATTENTION else torch.ops.aten._scaled_dot_product_flash_attention)
|
|
# Run the math kernel on low precision references
|
|
query_ref_lp, key_ref_lp, value_ref_lp = query_key_value_clones(query, key, value, dtype=dtype)
|
|
|
|
higher_precision_dtype = torch.float64 if dtype == torch.float32 else torch.float32
|
|
query_ref, key_ref, value_ref = query_key_value_clones(query, key, value, dtype=higher_precision_dtype)
|
|
|
|
# warmup
|
|
s = torch.cuda.Stream()
|
|
s.wait_stream(torch.cuda.current_stream())
|
|
# Set the global seed before capture
|
|
torch.manual_seed(seed)
|
|
kwargs = {"dropout_p": dropout_p, "is_causal": is_causal, "scale": scale}
|
|
if fused_kernel == SDPBackend.EFFICIENT_ATTENTION:
|
|
kwargs["compute_log_sumexp"] = True
|
|
kwargs["attn_bias"] = None
|
|
if fused_kernel == SDPBackend.FLASH_ATTENTION:
|
|
kwargs['return_debug_mask'] = dropout_p > 0.0
|
|
with torch.cuda.stream(s):
|
|
# Create real output
|
|
output_tuple = fused_op(query, key, value, **kwargs)
|
|
|
|
torch.cuda.current_stream().wait_stream(s)
|
|
out = output_tuple[0]
|
|
upstream_grad = torch.rand_like(out, requires_grad=False)
|
|
s.wait_stream(torch.cuda.current_stream())
|
|
with torch.cuda.stream(s):
|
|
out.backward(upstream_grad)
|
|
for x in (query, key, value):
|
|
x.grad = None
|
|
g = torch.cuda.CUDAGraph()
|
|
# Create real output
|
|
with torch.cuda.graph(g):
|
|
tmp = torch.rand_like(query, device=query.device) # test non-zero intragraph offset
|
|
# Create real output
|
|
output_tuple = fused_op(query, key, value, **kwargs)
|
|
assert all(not isinstance(o, torch.Tensor) or o.is_cuda for o in output_tuple)
|
|
g.replay()
|
|
out_first = output_tuple[0].clone()
|
|
g.replay()
|
|
out = output_tuple[0]
|
|
if dropout_p == 0.0:
|
|
self.assertEqual(out_first, out, atol=0, rtol=0)
|
|
else:
|
|
# replays produce different results
|
|
self.assertNotEqual(out_first, out)
|
|
|
|
with sdp_kernel(enable_math=True, enable_flash=False, enable_mem_efficient=False):
|
|
if dropout_p == 0.0:
|
|
# High Precision Math Reference
|
|
out_ref = F.scaled_dot_product_attention(query_ref, key_ref, value_ref,
|
|
dropout_p=dropout_p, is_causal=is_causal, scale=scale)
|
|
# Low Precision Math Reference
|
|
out_lp_ref = F.scaled_dot_product_attention(query_ref_lp, key_ref_lp, value_ref_lp,
|
|
dropout_p=dropout_p, is_causal=is_causal, scale=scale)
|
|
else:
|
|
# Create the dropout_mask
|
|
dropout_mask = get_dropout_mask(output_tuple, fused_kernel, batch_size,
|
|
n_heads, seq_len_q, seq_len_k, dropout_p, device)
|
|
# High Precision Math Reference
|
|
out_ref = torch.ops.aten._scaled_dot_product_attention_math(
|
|
query_ref, key_ref, value_ref, dropout_p=dropout_p, is_causal=is_causal,
|
|
scale=scale, dropout_mask=dropout_mask)[0]
|
|
# Low Precision Math Reference
|
|
out_lp_ref = torch.ops.aten._scaled_dot_product_attention_math(
|
|
query_ref_lp, key_ref_lp, value_ref_lp, dropout_p=dropout_p, is_causal=is_causal, scale=scale,
|
|
dropout_mask=dropout_mask)[0]
|
|
|
|
|
|
g1 = torch.cuda.CUDAGraph()
|
|
with torch.cuda.graph(g1):
|
|
out.backward(upstream_grad)
|
|
g1.replay()
|
|
out_ref.backward(upstream_grad.to(out_ref.dtype))
|
|
out_lp_ref.backward(upstream_grad.to(out_lp_ref.dtype))
|
|
|
|
# [Note] Fused Tolerances
|
|
# Establish the numerical error between the "true" high precision math output
|
|
# and the low precision math reference. We use this reference for the atol
|
|
# And we use the default rtol for the low precision type.
|
|
# We then provide a fudge factor for gradients respectively to account
|
|
# for the use of the fused kernel rather than the eager implemntation.
|
|
output_ref_atol, output_ref_rtol = get_tolerances(out_ref, out_lp_ref)
|
|
|
|
# Fudge Factor when dropout is enabled
|
|
dropout_fudge_factor = 1.0 if dropout_p == 0.0 else 1.5
|
|
|
|
query_fudge_factor = dropout_fudge_factor
|
|
grad_q_ref_atol, grad_q_ref_rtol = get_tolerances(query_ref.grad, query_ref_lp.grad, query_fudge_factor)
|
|
|
|
# TODO: Investigate why grad_k needs larger tolerances
|
|
key_fudge_factor = 8 * dropout_fudge_factor
|
|
grad_k_ref_atol, grad_k_ref_rtol = get_tolerances(key_ref.grad, key_ref_lp.grad, key_fudge_factor)
|
|
|
|
value_fudge_factor = 7 if not SM80OrLater and dtype == torch.float16 else 1.0
|
|
grad_v_ref_atol, grad_v_ref_rtol = get_tolerances(value_ref.grad, value_ref_lp.grad, value_fudge_factor)
|
|
|
|
self.assertEqual(out, out_ref.to(out.dtype), atol=output_ref_atol, rtol=output_ref_rtol)
|
|
self.assertEqual(query.grad, query_ref.grad.to(query.grad.dtype),
|
|
atol=grad_q_ref_atol, rtol=grad_q_ref_rtol)
|
|
self.assertEqual(key.grad, key_ref.grad.to(key.grad.dtype),
|
|
atol=grad_k_ref_atol, rtol=grad_k_ref_rtol)
|
|
self.assertEqual(value.grad, value_ref.grad.to(value.grad.dtype),
|
|
atol=grad_v_ref_atol, rtol=grad_v_ref_rtol)
|
|
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FUSED_ATTENTION, "Fused SDPA was not built for this system")
|
|
@parametrize("fused_kernel", [SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION] if
|
|
PLATFORM_SUPPORTS_FLASH_ATTENTION else [SDPBackend.EFFICIENT_ATTENTION])
|
|
def test_fused_kernels_seq_len_1_inputs(self, device, fused_kernel):
|
|
rand_nested_tensor = partial(rand_sdpa_tensor, type="nested", device=device, dtype=torch.float16)
|
|
batch, num_heads, head_dim = 32, 16, 64
|
|
seq_lens = torch.randint(low=1, high=32, size=(batch,))
|
|
# make sure some seq_lens are 1
|
|
num_ones = 10
|
|
indices = torch.randint(low=0, high=batch, size=(num_ones,))
|
|
seq_lens.scatter_(0, indices, 1)
|
|
|
|
shape = SdpaShape(batch, num_heads, seq_lens.tolist(), head_dim)
|
|
query = rand_nested_tensor(shape)
|
|
key = rand_nested_tensor(shape)
|
|
value = rand_nested_tensor(shape)
|
|
|
|
query = query.transpose(1, 2)
|
|
key = key.transpose(1, 2)
|
|
value = value.transpose(1, 2)
|
|
|
|
with sdp_kernel(**backend_map[fused_kernel]):
|
|
actual = torch.nn.functional.scaled_dot_product_attention(
|
|
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False)
|
|
with sdp_kernel(enable_flash=False, enable_math=True, enable_mem_efficient=False):
|
|
math_ref = torch.nn.functional.scaled_dot_product_attention(
|
|
query.contiguous().to(torch.float32),
|
|
key.contiguous().to(torch.float32),
|
|
value.contiguous().to(torch.float32),
|
|
attn_mask=None, dropout_p=0.0, is_causal=False)
|
|
|
|
self.assertEqual(actual.contiguous(), math_ref.contiguous().to(torch.float16), atol=1e-3, rtol=1e-2)
|
|
|
|
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FUSED_ATTENTION, "Fused SDPA was not built for this system")
|
|
@parametrize("kernel", [SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION] if
|
|
PLATFORM_SUPPORTS_FLASH_ATTENTION else [SDPBackend.EFFICIENT_ATTENTION])
|
|
@parametrize("expand_q_batch", [True, False])
|
|
@parametrize("expand_k_batch", [True, False])
|
|
@parametrize("expand_v_batch", [True, False])
|
|
@parametrize("expand_q_num_heads", [True, False])
|
|
@parametrize("expand_k_num_heads", [True, False])
|
|
@parametrize("expand_v_num_heads", [True, False])
|
|
def test_fused_kernels_nested_broadcasting(
|
|
self,
|
|
device,
|
|
kernel,
|
|
expand_q_batch,
|
|
expand_k_batch,
|
|
expand_v_batch,
|
|
expand_q_num_heads,
|
|
expand_k_num_heads,
|
|
expand_v_num_heads,
|
|
):
|
|
is_efficient = kernel == SDPBackend.EFFICIENT_ATTENTION
|
|
dtype = torch.float32 if is_efficient else torch.float16
|
|
rand_nested_tensor = partial(rand_sdpa_tensor, type="nested", device=device, dtype=dtype)
|
|
batch, num_heads, head_dim = 32, 8, 64
|
|
head_dim_v = 32 if is_efficient else head_dim
|
|
seq_lens_q = (torch.randint(low=1, high=5, size=(1,)).item()
|
|
if expand_q_batch
|
|
else torch.randint(low=1, high=32, size=(batch,)).tolist())
|
|
seq_lens_kv = (torch.randint(low=1, high=5, size=(1,)).item()
|
|
if (expand_k_batch or expand_v_batch)
|
|
else torch.randint(low=1, high=32, size=(batch,)).tolist())
|
|
|
|
batch_q = 1 if expand_q_batch else batch
|
|
batch_k = 1 if expand_k_batch else batch
|
|
batch_v = 1 if expand_v_batch else batch
|
|
|
|
# handle case where all batch_sizes are 1
|
|
batch = max(batch_q, batch_k, batch_v)
|
|
|
|
num_heads_q = 1 if expand_q_num_heads else num_heads
|
|
num_heads_k = 1 if expand_k_num_heads else num_heads
|
|
num_heads_v = 1 if expand_v_num_heads else num_heads
|
|
|
|
# handle case where all num_heads are 1
|
|
num_heads = max(num_heads_q, num_heads_k, num_heads_v)
|
|
|
|
q_shape = SdpaShape(batch_q, num_heads_q, seq_lens_q, head_dim)
|
|
k_shape = SdpaShape(batch_k, num_heads_k, seq_lens_kv, head_dim)
|
|
v_shape = SdpaShape(batch_v, num_heads_v, seq_lens_kv, head_dim_v)
|
|
|
|
query = rand_nested_tensor(q_shape)
|
|
key = rand_nested_tensor(k_shape)
|
|
value = rand_nested_tensor(v_shape)
|
|
|
|
def _broadcast(t, batch_broadcasted, num_heads_broadcasted):
|
|
if batch_broadcasted and num_heads_broadcasted:
|
|
# (1, seq_len, 1, head_dim) -> (batch, seq_len, num_heads, head_dim)
|
|
result = torch.nested.nested_tensor(
|
|
[t[0].expand(-1, num_heads, t.size(-1)) for _ in range(batch)], dtype=torch.float32)
|
|
elif batch_broadcasted:
|
|
# (1, seq_len, num_heads, head_dim) -> (batch, seq_len, num_heads, head_dim)
|
|
result = torch.nested.nested_tensor([t[0] for _ in range(batch)], dtype=torch.float32)
|
|
elif num_heads_broadcasted:
|
|
# (batch, seq_len, 1, head_dim) -> (batch, seq_len, num_heads, head_dim)
|
|
result = torch.nested.nested_tensor([x.expand(-1, num_heads, t.size(-1))
|
|
for x in t.unbind()], dtype=torch.float32)
|
|
else:
|
|
result = t.to(torch.float32)
|
|
return result
|
|
|
|
query_expanded = _broadcast(query, expand_q_batch, expand_q_num_heads).transpose(1, 2)
|
|
key_expanded = _broadcast(key, expand_k_batch, expand_k_num_heads).transpose(1, 2)
|
|
value_expanded = _broadcast(value, expand_v_batch, expand_v_num_heads).transpose(1, 2)
|
|
|
|
query = query.transpose(1, 2)
|
|
key = key.transpose(1, 2)
|
|
value = value.transpose(1, 2)
|
|
|
|
with sdp_kernel(**backend_map[kernel]):
|
|
actual = torch.nn.functional.scaled_dot_product_attention(
|
|
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False)
|
|
with sdp_kernel(enable_flash=False, enable_math=True, enable_mem_efficient=False):
|
|
math_ref = torch.nn.functional.scaled_dot_product_attention(
|
|
query_expanded.contiguous(), key_expanded.contiguous(), value_expanded.contiguous(),
|
|
attn_mask=None, dropout_p=0.0, is_causal=False)
|
|
|
|
self.assertEqual(actual.contiguous(), math_ref.contiguous().to(dtype), atol=1e-3, rtol=1e-2)
|
|
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_MEM_EFF_ATTENTION, "Fused SDPA was not built for this system")
|
|
def test_fused_kernels_nested_broadcasting_query_dense(self, device):
|
|
rand_nested_tensor = partial(rand_sdpa_tensor, type="nested", device=device, dtype=torch.float32)
|
|
batch, num_heads, head_dim, head_dim_v = 32, 16, 64, 96
|
|
seq_lens = torch.randint(low=1, high=32, size=(batch,)).tolist()
|
|
q_shape = (1, 1, num_heads, head_dim)
|
|
k_shape = SdpaShape(batch, num_heads, seq_lens, head_dim)
|
|
v_shape = SdpaShape(batch, 1, seq_lens, head_dim_v)
|
|
|
|
# create a dense query
|
|
query = torch.randn(q_shape, device=device, dtype=torch.float32)
|
|
key = rand_nested_tensor(k_shape)
|
|
value = rand_nested_tensor(v_shape)
|
|
|
|
# (1, 1, num_heads, head_dim) -> (batch, 1, num_heads, head_dim)
|
|
query_expanded = torch.nested.nested_tensor([query.squeeze(0) for _ in range(batch)]).transpose(1, 2)
|
|
# (batch, seq_lens, 1, head_dim) -> (batch, seq_lens, num_heads, head_dim)
|
|
value_expanded = torch.nested.nested_tensor(
|
|
[t.expand(-1, num_heads, head_dim_v) for t in value.unbind()]).transpose(1, 2)
|
|
|
|
query = query.transpose(1, 2)
|
|
key = key.transpose(1, 2)
|
|
value = value.transpose(1, 2)
|
|
|
|
with sdp_kernel(enable_flash=False, enable_math=False, enable_mem_efficient=True):
|
|
actual = torch.nn.functional.scaled_dot_product_attention(
|
|
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False)
|
|
with sdp_kernel(enable_flash=False, enable_math=True, enable_mem_efficient=False):
|
|
math_ref = torch.nn.functional.scaled_dot_product_attention(
|
|
query_expanded.contiguous(), key.contiguous(), value_expanded.contiguous(),
|
|
attn_mask=None, dropout_p=0.0, is_causal=False)
|
|
|
|
self.assertEqual(actual.contiguous(), math_ref.contiguous(), atol=1e-3, rtol=1e-2)
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Does not support SDPA or pre-SM80 hardware")
|
|
@parametrize("batch_size", [8, 32])
|
|
@parametrize("max_seq_len_q", [32, 256])
|
|
@parametrize("max_seq_len_kv", [32, 256])
|
|
@parametrize("head_dim", [8, 64])
|
|
@parametrize("dropout_p", [0.0, 0.1])
|
|
@parametrize("dtype", [torch.float16])
|
|
@parametrize("scale", [None, "l1"])
|
|
@parametrize("is_causal", [True, False])
|
|
def test_flash_attention_vs_math_ref_grads_nestedtensor(self, device, batch_size: int, max_seq_len_q: int, max_seq_len_kv: int,
|
|
head_dim: int, dropout_p: float, dtype: torch.dtype,
|
|
scale: str, is_causal: bool):
|
|
if is_causal:
|
|
# TODO we should support this
|
|
self.assertRaisesRegex(RuntimeError, "Nested tensors for query / key are not supported when is_causal=True")
|
|
return
|
|
scale = scale if scale is None else (1 / head_dim)
|
|
n_heads = 4
|
|
seq_lens_q = torch.randint(low=1, high=max_seq_len_q, size=(batch_size,))
|
|
# Set one entry to max length
|
|
seq_lens_q[torch.randint(0, batch_size, size=(1,))] = max_seq_len_q
|
|
seq_lens_kv = torch.randint(low=1, high=max_seq_len_kv, size=(batch_size,))
|
|
seq_lens_kv[torch.randint(0, batch_size, size=(1,))] = max_seq_len_kv
|
|
|
|
def rand_nt(sequence_list, num_heads, head_dim):
|
|
tensors = [torch.rand((num_heads, seq_len, head_dim)) for seq_len in sequence_list]
|
|
return torch.nested.nested_tensor(tensors, requires_grad=True, device=device, dtype=dtype)
|
|
|
|
query = rand_nt(seq_lens_q, n_heads, head_dim)
|
|
key = rand_nt(seq_lens_kv, n_heads, head_dim)
|
|
value = rand_nt(seq_lens_kv, n_heads, head_dim)
|
|
|
|
# Run the math kernel on low precision references
|
|
query_ref_lp = query.clone().detach().requires_grad_(True)
|
|
key_ref_lp = key.clone().detach().requires_grad_(True)
|
|
value_ref_lp = value.clone().detach().requires_grad_(True)
|
|
|
|
query_ref = query.clone().detach().to(torch.float32).requires_grad_(True)
|
|
key_ref = key.clone().detach().to(torch.float32).requires_grad_(True)
|
|
value_ref = value.clone().detach().to(torch.float32).requires_grad_(True)
|
|
|
|
is_dropout = dropout_p > 0.0
|
|
|
|
if not is_dropout:
|
|
with sdp_kernel(enable_math=False, enable_flash=True, enable_mem_efficient=False):
|
|
out = F.scaled_dot_product_attention(query, key, value, dropout_p=dropout_p, is_causal=is_causal, scale=scale)
|
|
with sdp_kernel(enable_math=True, enable_flash=False, enable_mem_efficient=False):
|
|
# High Precision Math Reference
|
|
out_ref = F.scaled_dot_product_attention(
|
|
query_ref, key_ref, value_ref, is_causal=is_causal, scale=scale)
|
|
# Low Precision Math Reference
|
|
out_lp_ref = F.scaled_dot_product_attention(
|
|
query_ref_lp, key_ref_lp, value_ref_lp, is_causal=is_causal, scale=scale)
|
|
else:
|
|
# Create real output
|
|
output_tuple = torch.ops.aten._scaled_dot_product_flash_attention(
|
|
query, key, value, dropout_p=dropout_p, is_causal=is_causal,
|
|
scale=scale, return_debug_mask=is_dropout)
|
|
out = output_tuple[0]
|
|
dbug_mask = output_tuple[-1]
|
|
|
|
query_padding_mask = torch.arange(max_seq_len_q).unsqueeze(0).expand(
|
|
batch_size, max_seq_len_q
|
|
) < seq_lens_q.unsqueeze(-1)
|
|
query_padding_mask = query_padding_mask.to("cuda")
|
|
|
|
key_padding_mask = torch.arange(max_seq_len_kv).unsqueeze(0).expand(
|
|
batch_size, max_seq_len_kv
|
|
) < seq_lens_kv.unsqueeze(-1)
|
|
key_padding_mask = key_padding_mask.to("cuda")
|
|
|
|
softmax_mask = self.convert_flash_attn_S_to_softmax(
|
|
dbug_mask, query_padding_mask, key_padding_mask, head_dim=head_dim, causal=is_causal)
|
|
dropout_mask = softmax_mask >= 0
|
|
nt_stack = []
|
|
for tensor_component in range(batch_size):
|
|
batch_stack = []
|
|
for head in range(n_heads):
|
|
batch_stack.append(dropout_mask[tensor_component, head,
|
|
0:seq_lens_q[tensor_component],
|
|
0:seq_lens_kv[tensor_component]].unsqueeze(0))
|
|
nt_stack.append(torch.cat(batch_stack))
|
|
nested_dropout_mask = torch.nested.nested_tensor(nt_stack)
|
|
# High Precision Math Reference
|
|
out_ref = torch.ops.aten._scaled_dot_product_attention_math(
|
|
query_ref, key_ref, value_ref, dropout_p=dropout_p,
|
|
is_causal=is_causal, scale=scale, dropout_mask=nested_dropout_mask)[0]
|
|
# Low Precision Math Reference
|
|
out_lp_ref = torch.ops.aten._scaled_dot_product_attention_math(
|
|
query_ref_lp, key_ref_lp, value_ref_lp, dropout_p=dropout_p, is_causal=is_causal, scale=scale,
|
|
dropout_mask=nested_dropout_mask)[0]
|
|
|
|
upstream_grad = out.detach().clone().contiguous()
|
|
|
|
out.backward(upstream_grad)
|
|
out_ref.backward(upstream_grad.to(out_ref.dtype))
|
|
out_lp_ref.backward(upstream_grad.to(out_lp_ref.dtype))
|
|
|
|
# See [Note] Fused Tolerances above
|
|
output_ref_atol, output_ref_rtol = calculate_nt_tolerances(out_ref, out_lp_ref, out.dtype)
|
|
grad_q_ref_atol, grad_q_ref_rtol = calculate_nt_tolerances(query_ref.grad, query_ref_lp.grad,
|
|
query.grad.dtype, fudge_factor=4)
|
|
grad_k_ref_atol, grad_k_ref_rtol = calculate_nt_tolerances(key_ref.grad, key_ref_lp.grad, key.grad.dtype)
|
|
grad_v_ref_atol, grad_v_ref_rtol = calculate_nt_tolerances(value_ref.grad, value_ref_lp.grad, value.grad.dtype)
|
|
|
|
self.assertEqual(out, out_ref.to(out.dtype), atol=output_ref_atol, rtol=output_ref_rtol)
|
|
self.assertEqual(query.grad, query_ref.grad.to(query.grad.dtype),
|
|
atol=grad_q_ref_atol, rtol=grad_q_ref_rtol)
|
|
self.assertEqual(key.grad.contiguous(), key_ref.grad.contiguous().to(key.grad.dtype),
|
|
atol=grad_k_ref_atol, rtol=grad_k_ref_rtol)
|
|
self.assertEqual(value.grad, value_ref.grad.to(value.grad.dtype),
|
|
atol=grad_v_ref_atol, rtol=grad_v_ref_rtol)
|
|
|
|
class TestAttnMasks(NNTestCase):
|
|
|
|
def run_test(self, device, compile, make_q, make_kv, attn_bias=None,
|
|
forw_tolerances: Optional[Tolerances] = None, grad_tolerances: Optional[Tolerances] = None):
|
|
if compile:
|
|
torch._dynamo.reset()
|
|
|
|
query, key, value = make_q(), make_kv(), make_kv()
|
|
query_prototype, key_prototype, value_prototype = query_key_value_clones(query, key, value)
|
|
|
|
realized = attn_bias._materialize(device) if attn_bias is not None else None
|
|
pytorch_output = scaled_dot_product_attention(
|
|
query, key, value, attn_mask=realized, dropout_p=0.0, is_causal=False
|
|
)
|
|
|
|
sdpa_op = (
|
|
torch.compile(scaled_dot_product_attention, fullgraph=True)
|
|
if compile
|
|
else scaled_dot_product_attention
|
|
)
|
|
sdpa_output = sdpa_op(
|
|
query_prototype,
|
|
key_prototype,
|
|
value_prototype,
|
|
attn_mask=attn_bias,
|
|
dropout_p=0.0,
|
|
is_causal=False,
|
|
scale=None,
|
|
)
|
|
|
|
dOut = torch.randn_like(pytorch_output)
|
|
pytorch_output.backward(dOut)
|
|
sdpa_output.backward(dOut)
|
|
|
|
# Use default assert_close tolerances for dtypes
|
|
if forw_tolerances is None:
|
|
forw_tolerances = Tolerances(atol=None, rtol=None)
|
|
if grad_tolerances is None:
|
|
grad_tolerances = Tolerances(atol=None, rtol=None)
|
|
|
|
torch.testing.assert_close(pytorch_output, sdpa_output, rtol=forw_tolerances.rtol, atol=forw_tolerances.atol)
|
|
torch.testing.assert_close(query.grad, query_prototype.grad, rtol=grad_tolerances.rtol, atol=grad_tolerances.atol)
|
|
torch.testing.assert_close(key.grad, key_prototype.grad, rtol=grad_tolerances.rtol, atol=grad_tolerances.atol)
|
|
torch.testing.assert_close(value.grad, value_prototype.grad, rtol=grad_tolerances.rtol, atol=grad_tolerances.atol)
|
|
|
|
@parametrize("causal_variant", [CausalVariant.UPPER_LEFT, CausalVariant.LOWER_RIGHT])
|
|
@parametrize(
|
|
"shape",
|
|
[(16, 16, 128, 128, 16), (16, 16, 128, 256, 32), (16, 16, 256, 128, 32), (1, 1, 23, 56, 15)],
|
|
)
|
|
def test_causal_variants(self, device, causal_variant: CausalVariant, shape: List[Tuple[int]]):
|
|
make_tensor = partial(
|
|
torch.rand, device=device, dtype=torch.float16, requires_grad=True
|
|
)
|
|
|
|
bsz, num_heads, seq_len_q, seq_len_kv, head_dim = shape
|
|
make_q_tensor = partial(make_tensor, SdpaShape(bsz, num_heads, seq_len_q, head_dim))
|
|
make_kv_tensor = partial(make_tensor, SdpaShape(bsz, num_heads, seq_len_kv, head_dim))
|
|
if causal_variant == CausalVariant.LOWER_RIGHT and seq_len_q > seq_len_kv:
|
|
self.skipTest(
|
|
"Lower right causal mask will produce NaNs in the output when seq_len_q > seq_len_kv!"
|
|
)
|
|
|
|
forw_tol = Tolerances(1e-3, 1e-3)
|
|
grad_tol = Tolerances(5e-3, 5e-3)
|
|
|
|
if causal_variant == CausalVariant.UPPER_LEFT:
|
|
attn_bias = causal_upper_left(seq_len_q, seq_len_kv)
|
|
else:
|
|
attn_bias = causal_lower_right(seq_len_q, seq_len_kv)
|
|
|
|
self.run_test(device, False, make_q_tensor, make_kv_tensor, attn_bias, forw_tol, grad_tol)
|
|
|
|
@parametrize("causal_variant", [CausalVariant.UPPER_LEFT, CausalVariant.LOWER_RIGHT])
|
|
@parametrize(
|
|
"shape",
|
|
[(16, 16, 128, 128, 16), (16, 16, 128, 256, 32), (16, 16, 256, 128, 32), (1, 1, 23, 56, 15)],
|
|
)
|
|
@xfail
|
|
def test_causal_variants_compile(self, device, causal_variant: CausalVariant, shape: List[Tuple[int]]):
|
|
make_tensor = partial(
|
|
torch.rand, device=device, dtype=torch.float16, requires_grad=True
|
|
)
|
|
|
|
bsz, num_heads, seq_len_q, seq_len_kv, head_dim = shape
|
|
make_q_tensor = partial(make_tensor, SdpaShape(bsz, num_heads, seq_len_q, head_dim))
|
|
make_kv_tensor = partial(make_tensor, SdpaShape(bsz, num_heads, seq_len_kv, head_dim))
|
|
if causal_variant == CausalVariant.LOWER_RIGHT and seq_len_q > seq_len_kv:
|
|
self.skipTest(
|
|
"Lower right causal mask will produce NaNs in the output when seq_len_q > seq_len_kv!"
|
|
)
|
|
forw_tol = Tolerances(1e-3, 1e-3)
|
|
grad_tol = Tolerances(5e-3, 5e-3)
|
|
|
|
if causal_variant == CausalVariant.UPPER_LEFT:
|
|
attn_bias = causal_upper_left(seq_len_q, seq_len_kv)
|
|
else:
|
|
attn_bias = causal_lower_right(seq_len_q, seq_len_kv)
|
|
|
|
self.run_test(device, True, make_q_tensor, make_kv_tensor, attn_bias, forw_tol, grad_tol)
|
|
|
|
@parametrize("shape", [(16, 16, 128, 128, 16), (16, 16, 128, 256, 32), (16, 16, 256, 128, 32), (1, 1, 23, 56, 15)])
|
|
def test_is_causal_equals_upper_left(self, device, shape: List[Tuple[int]]):
|
|
make_tensor = partial(
|
|
torch.rand, device=device, dtype=torch.float16, requires_grad=True
|
|
)
|
|
|
|
bsz, num_heads, seq_len_q, seq_len_kv, head_dim = shape
|
|
make_q_tensor = partial(make_tensor, SdpaShape(bsz, num_heads, seq_len_q, head_dim))
|
|
make_kv_tensor = partial(make_tensor, SdpaShape(bsz, num_heads, seq_len_kv, head_dim))
|
|
|
|
forw_tol = Tolerances(1e-3, 1e-3)
|
|
grad_tol = Tolerances(5e-3, 5e-3)
|
|
|
|
query = make_q_tensor()
|
|
key = make_kv_tensor()
|
|
value = make_kv_tensor()
|
|
attn_bias = causal_upper_left(seq_len_q, seq_len_kv)
|
|
|
|
out_attn_bias = scaled_dot_product_attention(query, key, value, attn_mask=attn_bias, dropout_p=0.0)
|
|
out_is_causal = scaled_dot_product_attention(query, key, value, is_causal=True, dropout_p=0.0)
|
|
torch.testing.assert_close(out_attn_bias, out_is_causal, rtol=forw_tol.rtol, atol=forw_tol.atol)
|
|
|
|
def test_is_causal_and_mask_fails(self, device):
|
|
make_tensor = partial(
|
|
torch.rand, device=device, dtype=torch.float16, requires_grad=True
|
|
)
|
|
make_q_tensor = partial(make_tensor, SdpaShape(16, 16, 128, 16))
|
|
make_kv_tensor = partial(make_tensor, SdpaShape(16, 16, 128, 16))
|
|
|
|
query = make_q_tensor()
|
|
key = make_kv_tensor()
|
|
value = make_kv_tensor()
|
|
attn_bias = causal_upper_left(128, 128)
|
|
|
|
with self.assertRaisesRegex(ValueError, "CausalBias should not be used with causal=True"):
|
|
scaled_dot_product_attention(query, key, value, attn_mask=attn_bias, is_causal=True, dropout_p=0.0)
|
|
|
|
if NOTEST_CPU:
|
|
device_types = ("cuda", )
|
|
else:
|
|
device_types = ("cpu", "cuda")
|
|
|
|
instantiate_device_type_tests(TestTransformers, globals(), only_for=device_types)
|
|
instantiate_device_type_tests(TestSDPAFailureModes, globals(), only_for=device_types)
|
|
instantiate_device_type_tests(TestSDPA, globals(), only_for=device_types)
|
|
instantiate_device_type_tests(TestSDPACudaOnly, globals(), only_for=("cuda"))
|
|
instantiate_device_type_tests(TestAttnMasks, globals(), only_for=device_types)
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|