pytorch/test/inductor/test_loop_ordering.py
Dmitry Nikolaev d4871750d9 [ROCm] Enable post-merge trunk workflow on MI300 runners; skip and fix MI300 related failed tests (#143673)
This PR
* makes changes to the workflow files and scripts so we can run CI workflows on the MI300 runners
* skips and fixes several tests, failed on MI300, observed in https://github.com/pytorch/pytorch/pull/140989

Skipped due to unsupported Float8_e4m3fn data type on MI300 (need to update test code to use datatypes supported by MI300):
- distributed.tensor.parallel.test_micro_pipeline_tp.py::MicroPipelineTPTest::test_fuse_all_gather_scaled_matmul_A_dims_\*_gather_dim_\* (24 tests across inductor/distributed configs)
- distributed.tensor.parallel.test_micro_pipeline_tp.py::test_fuse_scaled_matmul_reduce_scatter_A_dims_\*_scatter_dim_\* (12 tests across inductor/distributed configs))
- inductor.test_loop_ordering::LoopOrderingTest::test_fp8_cast_and_t
- inductor.test_loop_ordering::LoopOrderingTest::test_fp8_pattern_2

Skipped due to AssertionError on MI300:
- inductor.test_mkldnn_pattern_matcher.py::test_qconv2d_int8_mixed_bf16
- distributed._tools.test_sac_ilp::TestSACILP::test_sac_ilp_case1

Skipped:
- test_cuda.py::TestCudaMallocAsync::test_clock_speed
- test_cuda.py::TestCudaMallocAsync::test_power_draw
- test_torch.py::TestTorchDeviceTypeCUDA::test_deterministic_cumsum_cuda

Skipped flaky tests on MI300:
- distributed.test_c10d_gloo.py::ProcessGroupGlooTest::test_gather_stress_cuda
- inductor.test_cpu_repro::CPUReproTests::test_lstm_packed_unbatched_False* (256 tests)

Fixed:
- test_matmul_cuda.py::TestFP8MatmulCudaCUDA::test_float8_basics_cuda

Features:
- inductor/test_fp8.py - declare a new function to convert FP8 datatypes to ROCm supported FP8 datatypes. It keeps test names for CUDA and ROCm and allows to enable Inductor FP8 tests on CPU

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143673
Approved by: https://github.com/jeffdaily, https://github.com/malfet, https://github.com/pruthvistony

Co-authored-by: saienduri <saimanas.enduri@amd.com>
Co-authored-by: Jithun Nair <jithun.nair@amd.com>
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2025-01-09 05:18:57 +00:00

513 lines
17 KiB
Python

# Owner(s): ["module: inductor"]
import contextlib
import os
import unittest
import numpy as np
import torch
from torch import nn
from torch._dynamo.testing import rand_strided
from torch._dynamo.utils import same
from torch._inductor import config as inductor_config, ir, metrics
from torch._inductor.codegen.triton import TritonScheduling
from torch._inductor.graph import GraphLowering
from torch._inductor.scheduler import SchedulerNode
from torch._inductor.test_case import run_tests, TestCase
from torch._inductor.test_operators import realize
from torch._inductor.utils import sympy_index_symbol
from torch._inductor.virtualized import ops, V
from torch.testing._internal.common_cuda import PLATFORM_SUPPORTS_FP8
from torch.testing._internal.common_utils import skipIfRocm
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU
from torch.utils._pytree import tree_map
from torch.utils._sympy.functions import ModularIndexing
DO_PERF_TEST = os.environ.get("DO_PERF_TEST") == "1"
if HAS_GPU:
torch.set_default_device(GPU_TYPE)
class MockScheduler:
available_buffer_names = ()
@staticmethod
def get_backend(cls, *args):
return TritonScheduling(cls)
@inductor_config.patch(loop_ordering_after_fusion=True)
class ImplDetailTest(TestCase):
_exit_stack = None
@classmethod
def setUpClass(cls):
super().setUpClass()
gm = torch.fx.symbolic_trace(lambda: 0)
graph = GraphLowering(gm)
graph.scheduler = MockScheduler
cls._exit_stack = contextlib.ExitStack()
cls._exit_stack.enter_context(V.set_graph_handler(graph))
@classmethod
def tearDownClass(cls):
super().tearDownClass()
cls._exit_stack.close()
@staticmethod
def _get_snode_body_sym_prefix(snode):
body = snode._body
prefix = ""
for var in body.var_ranges:
prefix = str(var)[0]
break
assert prefix
return prefix
@staticmethod
def _create_computed_buffer_ax2(sizes=(32, 64), strides=None):
"""
Create a ComputedBuffer for 'a x 2'
"""
if strides is None:
strides = ir.FlexibleLayout.contiguous_strides(sizes)
box_a = ir.TensorBox.create(
ir.Buffer(
name="a",
layout=ir.FixedLayout(
torch.device(GPU_TYPE),
dtype=torch.float32,
size=sizes,
stride=strides,
),
)
)
box_a_loader = box_a.make_loader()
def inner_fn(index):
return box_a_loader(index) * 2
buf = ir.Pointwise.create(
device=box_a.get_device(),
dtype=box_a.get_dtype(),
inner_fn=inner_fn,
ranges=box_a.get_size(),
)
buf.realize()
computed_buf = buf.data.data
computed_buf.decide_layout()
return computed_buf
def test_reorder_twice(self):
"""
This may happen in practice if we pick a order when fusing A and B.
Then we pick another order for AB when we fusion C into it.
E.g. happens for BertForMaskedLM.
"""
buf = self._create_computed_buffer_ax2()
snode = SchedulerNode(V.graph.scheduler, buf)
snode.apply_new_loop_order([1, 0])
prefix1 = self._get_snode_body_sym_prefix(snode)
self.assertTrue(prefix1 == "p")
snode.apply_new_loop_order([1, 0])
prefix2 = self._get_snode_body_sym_prefix(snode)
self.assertTrue(prefix2 == "p")
def test_reorder_and_merge_loops(self):
sizes = (1024, 2048)
strides = (1, 1024)
buf = self._create_computed_buffer_ax2(sizes, strides)
old_sizes, old_body = buf.simplify_and_reorder()
# Make sure loop reordering happens here
self.assertTrue(tuple(old_sizes[0]) == tuple(reversed(sizes)), f"{old_sizes=}")
new_body = old_body.merge_loops()
new_sizes = new_body.sizes
self.assertTrue(tuple(new_sizes[0]) == (np.prod(sizes),), f"{new_sizes=}")
def test_merge_loops_invalidate_pw_dep_cache(self):
sizes = (1024, 2048)
strides = (2048, 1)
buf = self._create_computed_buffer_ax2(sizes, strides)
snode = SchedulerNode(V.graph.scheduler, buf)
old_var_ranges = snode.pointwise_read_writes().var_ranges
self.assertTrue(len(old_var_ranges) == 2) # 2 dimension not merged
snode.merge_loops()
new_var_ranges = snode.pointwise_read_writes().var_ranges
# we cache pointwise_read_writes result on a scheduler node
# make sure new_var_ranges is refreshed by invalidating the cache.
self.assertTrue(len(new_var_ranges) == 1) # 2 dimensions get merged
def test_reorder_modular_indexing(self):
"""
There was a bug that we wrongly map i0 to the dimension with size 49
when reordering the loop and cause ModularIndexing get optimized away
as an no-op.
"""
def _create_computed_buffer():
def inner_fn(index):
i0, _, i2, i3 = index
return ops.load(
"primal", i3 + 49 * i2 + 2401 * ModularIndexing(i0, 1, 64)
)
buf = ir.Pointwise.create(
device=torch.device(GPU_TYPE),
dtype=torch.float32,
inner_fn=inner_fn,
ranges=[128, 4, 49, 49],
)
buf.realize()
cbuf = buf.data.data
cbuf.decide_layout()
return cbuf
buf = _create_computed_buffer()
_, body = buf.simplify_and_reorder()
new_body = body.reorder_iter_loops([1, 2, 3, 0])
z0, z1, z2, z3 = (sympy_index_symbol(f"p{i}") for i in range(4))
self.assertEqual(body.var_ranges, {z0: 128, z1: 4, z2: 49, z3: 49})
self.assertEqual(
body.indexing_exprs["index0"],
z3 + 49 * z2 + 2401 * ModularIndexing(z0, 1, 64),
)
self.assertEqual(new_body.var_ranges, {z0: 4, z1: 49, z2: 49, z3: 128})
self.assertEqual(
new_body.indexing_exprs["index0"],
z2 + 49 * z1 + 2401 * ModularIndexing(z3, 1, 64),
)
@inductor_config.patch(
{
"benchmark_kernel": True,
"loop_ordering_after_fusion": True,
"triton.unique_kernel_names": True,
}
)
class LoopOrderingTest(TestCase):
device = GPU_TYPE
def do_acc_test(self, f, *args, cast_fp8=True):
expect = f(*args)
actual = torch.compile(f)(*args)
if cast_fp8:
def _cast(x):
if isinstance(x, torch.Tensor) and x.dtype in (
torch.float8_e5m2,
torch.float8_e4m3fn,
):
return x.to(torch.float32)
return x
# Wordaround the issue that call allclose on fp8 tensor triggers error
# RuntimeError: "mul_cuda" not implemented for 'Float8_e4m3fn'
expect = tree_map(_cast, expect)
actual = tree_map(_cast, actual)
self.assertTrue(same(expect, actual, tol=1e-3))
def setUp(self):
super().setUp()
metrics.reset()
def test_for_reordering_reindex(self):
"""
ComputedBuffer.iter_reoredering_reindex can cause some fusion
opportunitiies being skipped.
In this test case, Inductor generates 2 triton kernels before.
By removing ComputedBuffer.iter_reoredering_reindex, we can fuse those
two kernels into a single one.
"""
def f(x, y):
"""
Add a matmul since inductor may force layout for output.
"""
return (x.sum(dim=-1) + 1) @ y
A, B = 20, 30
# Make the first 2 dimension not able to merge on purpose so that
# ComputedBuffer.iter_reoredering_reindex will be updated.
x = rand_strided([A, A, B], [B, B * A + 300, 1], device=GPU_TYPE)
y = torch.randn(A, A)
self.do_acc_test(f, x, y)
self.assertEqual(1, metrics.generated_kernel_count)
expected_num_bytes = 0
expected_num_bytes += A * A * B + A * A # for the fused reduction
expected_num_bytes += A * A * 3 # for matmul
expected_num_bytes *= x.itemsize
self.assertEqual(expected_num_bytes, metrics.num_bytes_accessed)
def test_apbt_realize(self):
M = 1024
N = 2048
def f(x, y):
"""
There will be 2 kernels being generated without loop ordering after fusion:
https://gist.github.com/shunting314/44df83f71de2c110232c50ac6638ed69
"""
x = realize(x * 2)
y = realize(y * 3)
return x + y
x = torch.randn(M, N)
y = torch.randn(N, M).t()
self.do_acc_test(f, x, y)
self.assertEqual(1, metrics.generated_kernel_count)
def test_sum_and_t(self):
N = 1024
def f(x):
return x.sum(dim=-1), x.t().contiguous()
x = torch.randn(N, N * 2)
self.do_acc_test(f, x)
self.assertEqual(1, metrics.generated_kernel_count)
def test_pw_outer_red(self):
def f(x):
x = realize(x + 1)
return x.sum(dim=[0, 1])
# make the first 2 dimension small so we don't split the reduction
x = torch.randn(2, 4, 512)
self.do_acc_test(f, x)
self.assertEqual(1, metrics.generated_kernel_count)
def test_pw_outer_red_2(self):
"""
The pointwise kernel is a fused kernel
"""
def f(x):
x = realize(x + 1)
x = realize(x - 2)
x = realize(x * 3)
return x.sum(dim=[0, 1])
# make the first 2 dimension small so we don't split the reduction
x = torch.randn(2, 4, 512)
self.do_acc_test(f, x)
self.assertEqual(1, metrics.generated_kernel_count)
@inductor_config.patch(split_reductions=False)
def test_different_reduction_order(self):
"""
We should not reorder loops in this case. Since reordering loops does
not help!
"""
def f(x):
return x.sum(dim=0), x.sum(dim=1)
x = torch.randn(1024, 2048)
self.do_acc_test(f, x)
self.assertEqual(2, metrics.generated_kernel_count)
self.assertEqual(0, metrics.num_loop_reordering)
def test_keep_fake_dep(self):
"""
In this model, there are fake dependencies (StarDep) between Scatter
and a following mutation kernel that computes the gradients of
the embedding tables.
When we do loop reordering for the mutation kernel, we re-analyze
the node's dependencies. But the analysis result does not contains
those fake dependencies. Have to add them back manually.
"""
V = 2048
hidden_size = 64
max_seqlen = 512
batch_size = 8
class Model(nn.Module):
def __init__(self):
super().__init__()
self.word_embeddings = nn.Embedding(V, hidden_size)
self.position_embeddings = nn.Embedding(max_seqlen, hidden_size)
self.layer_norm = nn.LayerNorm(hidden_size)
def forward(self, input_ids, labels, position_ids):
emb = self.word_embeddings(input_ids) + self.position_embeddings(
position_ids
)
return self.layer_norm(emb)
m = Model()
@torch.compile
def f(*args):
m(*args).sum().backward()
input_ids = torch.randint(0, V, (batch_size, max_seqlen))
labels = torch.randint(0, V, (batch_size, max_seqlen))
position_ids = torch.arange(max_seqlen)[None, :]
# Make sure this line does not raise exceptions. If we miss
# fake dependencies after loop reordering, we may get exception that
# some buffer is used before being defined.
f(input_ids, labels, position_ids)
def test_different_broadcast_shapes(self):
def f(x, y, c):
return x + c, y + c
x = torch.randn(4, 256, 1024)
y = torch.randn(2, 512, 1024)
c = torch.randn(1024)
self.do_acc_test(f, x, y, c)
# The two kernels are not fused due to c is broadcasted
self.assertEqual(2, metrics.generated_kernel_count)
def test_view(self):
"""
Passing this test relies that we compare normalized MemoryDep.
Normlaization here means merging contiguous loops.
To make loop reordering work, we don't merge loops when creating
SchedulerNode. Thus we need explicitly normalize MemoryDep when
we check if two MemeoryDep matches.
"""
def f(x):
y = x.sin()
x = realize(x.view(10, 10))
return x, y
x = torch.randn(100)
self.do_acc_test(f, x)
self.assertEqual(1, metrics.generated_kernel_count)
@skipIfRocm
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, "FP8 requires H100+ and MI300+")
def test_fp8_cast_and_t(self):
"""
This test repros the not able to fuses issue in
https://github.com/pytorch/pytorch/issues/130015
for fp8 cast and transpose
"""
def f(x, scale):
x = x * scale
x = x.clamp(-1 * E4M3_MAX_POS, E4M3_MAX_POS)
x = x.to(torch.float8_e4m3fn)
x_t = x.t().contiguous().t()
return x, x_t
x = torch.randn(4096, 4096, dtype=torch.bfloat16)
scale = torch.Tensor([10.0]).to(GPU_TYPE)
E4M3_MAX_POS = torch.finfo(torch.float8_e4m3fn).max
self.do_acc_test(f, x, scale)
self.assertEqual(1, metrics.generated_kernel_count)
@skipIfRocm
@unittest.skipIf(not PLATFORM_SUPPORTS_FP8, "FP8 requires H100+ and MI300+")
def test_fp8_pattern_2(self):
"""
This test repros the fp8 fusion relation issue here:
https://github.com/pytorch/pytorch/issues/133242
"""
ref_dtype = torch.bfloat16
M, K = 4096, 4096
input_tensor = torch.randn(
M, K, device="cuda", dtype=ref_dtype, requires_grad=False
)
scale = torch.Tensor([10.0]).to("cuda")
E4M3_MAX_POS = torch.finfo(torch.float8_e4m3fn).max
def test_pattern2(tensor_x_inp, scale_x):
tensor_x = tensor_x_inp * scale_x
tensor_x = tensor_x.clamp(min=-1 * E4M3_MAX_POS, max=E4M3_MAX_POS)
tensor_fp8 = tensor_x.to(torch.float8_e4m3fn)
tensor_x_t = (tensor_x_inp * scale_x).t()
tensor_x_t = tensor_x_t.clamp(min=-1 * E4M3_MAX_POS, max=E4M3_MAX_POS)
tensor_fp8_t = tensor_x_t.to(torch.float8_e4m3fn)
tensor_fp8_t = tensor_fp8_t.contiguous().t()
return (tensor_fp8, tensor_fp8_t)
test_pattern = torch.compile(test_pattern2)
tensor_fp8, tensor_fp8_t = test_pattern(input_tensor, scale)
self.assertEqual(1, metrics.generated_kernel_count)
expected_numbytes = scale.nbytes # scalar
expected_numbytes += input_tensor.nbytes # input
expected_numbytes += tensor_fp8.nbytes + tensor_fp8_t.nbytes # output
self.assertEqual(expected_numbytes, metrics.num_bytes_accessed)
# Disable split reduction to make it easier to calculate the expected
# number of bytes accessed. In this case, split reduction does not
# help perf much.
@inductor_config.patch(split_reductions=False)
def test_fuse_reduction_with_tiled_pw(self):
def f(x):
y = torch.sum(torch.sum(x, dim=-1))
z = x / 10.0
z_t = z.t().contiguous().t()
return y, z, z_t
# use this input sizes to test for perf
if DO_PERF_TEST:
M, N = 1024 * 32, 1024 * 8
else:
M, N = 200, 100
x = torch.randn(M, N, device=GPU_TYPE)
actual = f(x)
opt_f = torch.compile(f)
expected = opt_f(x)
self.assertTrue(same(actual, expected, tol=1e-3))
# We should fuse the first sum with the two pointwise.
# Overall we read x once for all these three kernels and write
# out 2 buffers with the same size as x.
# This should be sort of 'optimal' for this workload.
expected_numbytes = x.nbytes * 3
# A small amount of extra memory access for:
# - store output for the first reduction
# - load input for the second redution
# - store output for the second reduction
expected_numbytes += (M * 2 + 1) * x.itemsize
print(expected_numbytes)
self.assertEqual(expected_numbytes, metrics.num_bytes_accessed)
if DO_PERF_TEST:
from triton.testing import do_bench
ms = do_bench(lambda: opt_f(x))
print(f"{ms=:.3f}")
if __name__ == "__main__":
if HAS_GPU:
run_tests()