mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Debugging illegal memory access is hard; even CUDA_LAUNCH_BLOCKING=1 and using C10_CUDA_KERNEL_LAUNCH_CHECK doesn't guarantee a useful stack trace. doesn't necessarily guarantee that you'll get a stack trace pointing to the right kernel. This diff adds a config option to force a CUDA synchronize after every kernel call in inductor, for debugging those tricky cases. Differential Revision: [D41744967](https://our.internmc.facebook.com/intern/diff/D41744967/) Differential Revision: [D41744967](https://our.internmc.facebook.com/intern/diff/D41744967) Pull Request resolved: https://github.com/pytorch/pytorch/pull/90472 Approved by: https://github.com/jansel
699 lines
23 KiB
Python
699 lines
23 KiB
Python
import collections
|
|
import contextlib
|
|
import dataclasses
|
|
import functools
|
|
import hashlib
|
|
from itertools import count
|
|
from typing import Any, Dict, List
|
|
|
|
from .. import codecache, config, ir
|
|
from ..codecache import cpp_compile_command, get_code_path
|
|
from ..utils import dynamo_utils, has_triton, sympy_dot, sympy_product
|
|
from ..virtualized import V
|
|
from .common import CodeGen, DeferredLine, IndentedBuffer, Kernel
|
|
from .triton import texpr
|
|
|
|
pexpr = texpr
|
|
|
|
|
|
def buffer_reuse_key(node: ir.Buffer):
|
|
size = node.get_size()
|
|
stride = node.get_stride()
|
|
last_element = sympy_dot([s - 1 for s in size], stride)
|
|
return (
|
|
node.get_device(),
|
|
node.get_dtype(),
|
|
V.graph.sizevars.simplify(sympy_product(size)),
|
|
# Detect gaps in tensor storage caused by strides
|
|
V.graph.sizevars.size_hint(last_element),
|
|
)
|
|
|
|
|
|
def make_buffer_reuse(old, new, del_func, declare, ending, as_strided):
|
|
assert old.get_dtype() == new.get_dtype()
|
|
del_line = ""
|
|
if old.get_name() not in V.graph.get_output_names():
|
|
del_line = del_func(old.get_name())
|
|
if old.get_size() == new.get_size() and old.get_stride() == new.get_stride():
|
|
return f"{declare}{new.get_name()} = {old.get_name()}{del_line}{ending}"
|
|
|
|
return (
|
|
f"{declare}{new.get_name()} = {as_strided}({old.get_name()}, "
|
|
f"{V.graph.sizevars.codegen_shape_tuple(new.get_size())}, "
|
|
f"{V.graph.sizevars.codegen_shape_tuple(new.get_stride())}){del_line}{ending}"
|
|
)
|
|
|
|
|
|
def make_buffer_allocation(buffer):
|
|
device = buffer.get_device()
|
|
dtype = buffer.get_dtype()
|
|
shape = tuple(buffer.get_size())
|
|
stride = tuple(buffer.get_stride())
|
|
return (
|
|
f"{buffer.get_name()} = empty_strided("
|
|
f"{V.graph.sizevars.codegen_shape_tuple(shape)}, "
|
|
f"{V.graph.sizevars.codegen_shape_tuple(stride)}, "
|
|
f"device='{device.type}', dtype={dtype})"
|
|
)
|
|
|
|
|
|
def make_cpp_buffer_allocation(buffer):
|
|
from .cpp import DTYPE_TO_ATEN
|
|
|
|
# TODO: map layout and device here
|
|
dtype = buffer.get_dtype()
|
|
shape = tuple(buffer.get_size())
|
|
stride = tuple(buffer.get_stride())
|
|
return (
|
|
f"auto {buffer.get_name()} = at::empty_strided("
|
|
f"{V.graph.sizevars.codegen_shape_tuple(shape)}, "
|
|
f"{V.graph.sizevars.codegen_shape_tuple(stride)}, "
|
|
f"{DTYPE_TO_ATEN[dtype]}); "
|
|
)
|
|
|
|
|
|
class MemoryPlanningState:
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.reuse_pool: Dict[
|
|
Any, List["FreeIfNotReusedLine"]
|
|
] = collections.defaultdict(list)
|
|
|
|
def __contains__(self, key):
|
|
return bool(self.reuse_pool.get(key, None))
|
|
|
|
def pop(self, key) -> "FreeIfNotReusedLine":
|
|
item = self.reuse_pool[key].pop()
|
|
assert not item.is_reused
|
|
return item
|
|
|
|
def push(self, key, item: "FreeIfNotReusedLine"):
|
|
assert not item.is_reused
|
|
self.reuse_pool[key].append(item)
|
|
|
|
|
|
class MemoryPlanningLine:
|
|
def plan(self, state: MemoryPlanningState) -> "MemoryPlanningLine":
|
|
"""First pass to find reuse"""
|
|
return self
|
|
|
|
def codegen(self, code: IndentedBuffer):
|
|
"""Second pass to output code"""
|
|
pass
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class AllocateLine(MemoryPlanningLine):
|
|
node: ir.Buffer
|
|
|
|
def plan(self, state: MemoryPlanningState):
|
|
if self.node.get_name() in V.graph.removed_buffers:
|
|
return NullLine()
|
|
|
|
# try to reuse a recently freed buffer
|
|
key = buffer_reuse_key(self.node)
|
|
if key in state:
|
|
free_line = state.pop(key)
|
|
free_line.is_reused = True
|
|
return ReuseLine(free_line.node, self.node)
|
|
|
|
return self
|
|
|
|
def codegen(self, code: IndentedBuffer):
|
|
assert self.node.get_name() not in V.graph.removed_buffers
|
|
code.writeline(make_buffer_allocation(self.node))
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class CppAllocateLine(AllocateLine):
|
|
def plan(self, state: MemoryPlanningState):
|
|
if self.node.get_name() in V.graph.removed_buffers:
|
|
return NullLine()
|
|
|
|
# try to reuse a recently freed buffer
|
|
key = buffer_reuse_key(self.node)
|
|
|
|
if key in state:
|
|
free_line = state.pop(key)
|
|
free_line.is_reused = True
|
|
return CppReuseLine(free_line.node, self.node)
|
|
|
|
return self
|
|
|
|
def codegen(self, code: IndentedBuffer):
|
|
assert self.node.get_name() not in V.graph.removed_buffers
|
|
code.writeline(make_cpp_buffer_allocation(self.node))
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class FreeIfNotReusedLine(MemoryPlanningLine):
|
|
node: ir.Buffer
|
|
is_reused: bool = False
|
|
|
|
def plan(self, state: MemoryPlanningState):
|
|
assert not self.is_reused
|
|
if self.node.get_name() in V.graph.removed_buffers:
|
|
return NullLine()
|
|
state.push(buffer_reuse_key(self.node), self)
|
|
return self
|
|
|
|
def codegen(self, code: IndentedBuffer):
|
|
assert self.node.get_name() not in V.graph.removed_buffers
|
|
if not self.is_reused:
|
|
code.writeline(f"del {self.node.get_name()}")
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class CppFreeIfNotReusedLine(FreeIfNotReusedLine):
|
|
node: ir.Buffer
|
|
is_reused: bool = False
|
|
|
|
def codegen(self, code: IndentedBuffer):
|
|
assert (self.node.get_name()) not in V.graph.removed_buffers
|
|
if not self.is_reused:
|
|
code.writeline(f"{self.node.get_name()}.reset();")
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class ReuseLine(MemoryPlanningLine):
|
|
node: ir.Buffer
|
|
reused_as: ir.Buffer
|
|
|
|
def plan(self, state: MemoryPlanningState):
|
|
assert self.node.get_name() not in V.graph.removed_buffers
|
|
assert self.reused_as.get_name() not in V.graph.removed_buffers
|
|
return self
|
|
|
|
def codegen(self, code: IndentedBuffer):
|
|
assert self.node.get_name() not in V.graph.removed_buffers
|
|
assert self.reused_as.get_name() not in V.graph.removed_buffers
|
|
code.writeline(
|
|
make_buffer_reuse(
|
|
self.node,
|
|
self.reused_as,
|
|
del_func=lambda name: f"; del {name}",
|
|
declare="",
|
|
ending="",
|
|
as_strided="as_strided",
|
|
)
|
|
+ " # reuse"
|
|
)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class CppReuseLine(ReuseLine):
|
|
node: ir.Buffer
|
|
reused_as: ir.Buffer
|
|
|
|
def codegen(self, code: IndentedBuffer):
|
|
assert self.node.get_name() not in V.graph.removed_buffers
|
|
assert self.reused_as.get_name() not in V.graph.removed_buffers
|
|
code.writeline(
|
|
make_buffer_reuse(
|
|
self.node,
|
|
self.reused_as,
|
|
del_func=lambda name: f"; {name}.reset()",
|
|
declare="auto ",
|
|
ending=";",
|
|
as_strided="at::as_strided",
|
|
)
|
|
+ " // reuse"
|
|
)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class FreeLine(MemoryPlanningLine):
|
|
node: ir.Buffer
|
|
|
|
def plan(self, state: MemoryPlanningState):
|
|
if self.node.get_name() in V.graph.removed_buffers:
|
|
return NullLine()
|
|
return self
|
|
|
|
def codegen(self, code: IndentedBuffer):
|
|
assert self.node.get_name() not in V.graph.removed_buffers
|
|
code.writeline(f"del {self.node.get_name()}")
|
|
|
|
|
|
class NullLine(MemoryPlanningLine):
|
|
pass
|
|
|
|
|
|
class WrapperCodeGen(CodeGen):
|
|
"""
|
|
The outer wrapper that calls the kernels.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self._names_iter = count()
|
|
self.header = IndentedBuffer()
|
|
self.prefix = IndentedBuffer()
|
|
self.wrapper_call = IndentedBuffer()
|
|
self.kernels = {}
|
|
self.lines = []
|
|
self.header.splice(
|
|
f"""
|
|
from ctypes import c_void_p, c_long
|
|
import torch
|
|
import random
|
|
from torch import empty_strided, as_strided, device
|
|
from {codecache.__name__} import AsyncCompile
|
|
|
|
aten = torch.ops.aten
|
|
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
|
|
async_compile = AsyncCompile()
|
|
|
|
"""
|
|
)
|
|
|
|
if has_triton():
|
|
self.header.splice(
|
|
f"""
|
|
import triton
|
|
import triton.language as tl
|
|
from {config.inductor_import}.triton_ops.autotune import grid
|
|
from torch._C import _cuda_getCurrentRawStream as get_cuda_stream
|
|
"""
|
|
)
|
|
|
|
if config.triton.convolution != "aten":
|
|
self.header.splice(
|
|
f"""
|
|
from {config.inductor_import}.triton_ops.conv_perf_model import early_config_prune
|
|
from {config.inductor_import}.triton_ops.conv_perf_model import estimate_conv_time
|
|
from {config.inductor_import}.triton_ops.autotune import conv_heuristics
|
|
"""
|
|
)
|
|
|
|
if config.triton.mm != "aten":
|
|
self.header.splice(
|
|
f"""
|
|
from {config.inductor_import}.triton_ops.autotune import mm_heuristics
|
|
from {config.inductor_import}.triton_ops.autotune import mm_autotune
|
|
"""
|
|
)
|
|
|
|
if config.triton.use_bmm:
|
|
self.header.writeline(
|
|
f"from {config.inductor_import}.triton_ops.batched_matmul import bmm_out as triton_bmm_out"
|
|
)
|
|
|
|
self.write_prefix()
|
|
|
|
for name, value in V.graph.constants.items():
|
|
# include a hash so our code cache gives different constants different files
|
|
hashed = hashlib.sha256(repr(value).encode("utf-8")).hexdigest()
|
|
self.header.writeline(f"{name} = None # {hashed}")
|
|
|
|
self.allocated = set()
|
|
self.freed = set()
|
|
self.write_get_cuda_stream = functools.lru_cache(None)(
|
|
self.write_get_cuda_stream
|
|
)
|
|
|
|
def write_prefix(self):
|
|
self.prefix.splice(
|
|
"""
|
|
|
|
async_compile.wait(globals())
|
|
del async_compile
|
|
|
|
def call(args):
|
|
"""
|
|
)
|
|
with self.wrapper_call.indent():
|
|
if config.triton.debug_sync_graph:
|
|
self.wrapper_call.writeline("torch.cuda.synchronize()")
|
|
inp_len = len(V.graph.graph_inputs.keys())
|
|
if inp_len != 0:
|
|
lhs = f"{', '.join(V.graph.graph_inputs.keys())}{'' if inp_len != 1 else ','}"
|
|
self.wrapper_call.writeline(f"{lhs} = args")
|
|
self.wrapper_call.writeline("args.clear()")
|
|
for name in V.graph.randomness_seeds:
|
|
self.wrapper_call.writeline(
|
|
f"torch.randint(2**31, size=(), dtype=torch.int64, out={name})"
|
|
)
|
|
V.graph.sizevars.codegen(self.wrapper_call, V.graph.graph_inputs)
|
|
|
|
def write_get_cuda_stream(self, index):
|
|
name = f"stream{index}"
|
|
self.writeline(f"{name} = get_cuda_stream({index})")
|
|
return name
|
|
|
|
def next_kernel_suffix(self):
|
|
return f"{next(self._names_iter)}"
|
|
|
|
def write_allocate_line(self, buffer):
|
|
self.writeline(AllocateLine(buffer))
|
|
|
|
def get_deferred_line(self, name, layout):
|
|
return DeferredLine(
|
|
name, f"{name} = {layout.view.codegen_reference()} # alias"
|
|
)
|
|
|
|
def codegen_allocation(self, buffer):
|
|
name = buffer.get_name()
|
|
if name in V.graph.removed_buffers or name in self.allocated:
|
|
return
|
|
self.allocated.add(name)
|
|
|
|
if isinstance(
|
|
buffer,
|
|
(ir.ExternKernelAlloc, ir.MultiOutput),
|
|
):
|
|
return
|
|
|
|
layout = buffer.get_layout()
|
|
if isinstance(layout, ir.MutationLayout):
|
|
return
|
|
if isinstance(layout, ir.AliasedLayout):
|
|
assert isinstance(layout.view, ir.ReinterpretView)
|
|
if not layout.maybe_guard_aligned():
|
|
V.graph.unaligned_buffers.add(name)
|
|
self.codegen_allocation(layout.view.data)
|
|
allocation = self.get_deferred_line(name, layout)
|
|
self.writeline(allocation)
|
|
return
|
|
|
|
self.write_allocate_line(buffer)
|
|
|
|
def write_del_line(self, name):
|
|
self.writeline(f"del {name}")
|
|
|
|
def write_free_if_not_reused_line(self, buffer):
|
|
self.writeline(FreeIfNotReusedLine(buffer))
|
|
|
|
def codegen_free(self, buffer):
|
|
name = buffer.get_name()
|
|
|
|
# can be freed but not reused
|
|
if isinstance(buffer, ir.InputBuffer):
|
|
self.write_del_line(name)
|
|
return
|
|
|
|
if not self.can_reuse(buffer):
|
|
return
|
|
self.freed.add(name)
|
|
|
|
layout = buffer.get_layout()
|
|
if isinstance(layout, (ir.AliasedLayout, ir.MultiOutputLayout)):
|
|
self.write_del_line(name)
|
|
return
|
|
|
|
self.write_free_if_not_reused_line(buffer)
|
|
|
|
def can_reuse(self, buffer):
|
|
name = buffer.get_name()
|
|
if (
|
|
name in V.graph.removed_buffers
|
|
or name in V.graph.graph_inputs
|
|
or name in V.graph.constants
|
|
or name in self.freed
|
|
):
|
|
return False
|
|
return True
|
|
|
|
def write_reuse_line(self, input_buffer, output_buffer):
|
|
self.writeline(ReuseLine(input_buffer, output_buffer))
|
|
|
|
def codegen_inplace_reuse(self, input_buffer, output_buffer):
|
|
assert buffer_reuse_key(input_buffer) == buffer_reuse_key(output_buffer)
|
|
self.codegen_allocation(input_buffer)
|
|
self.freed.add(input_buffer.get_name())
|
|
self.allocated.add(output_buffer.get_name())
|
|
self.write_reuse_line(input_buffer, output_buffer)
|
|
|
|
def generate_return(self, output_refs):
|
|
if output_refs:
|
|
self.wrapper_call.writeline("return (" + ", ".join(output_refs) + ", )")
|
|
else:
|
|
self.wrapper_call.writeline("return ()")
|
|
|
|
def generate_end(self, result):
|
|
return
|
|
|
|
@dynamo_utils.dynamo_timed
|
|
def generate(self):
|
|
result = IndentedBuffer()
|
|
result.splice(self.header)
|
|
result.splice(self.prefix)
|
|
|
|
out_names = V.graph.get_output_names()
|
|
with contextlib.ExitStack() as stack:
|
|
stack.enter_context(self.wrapper_call.indent())
|
|
if config.profiler_mark_wrapper_call:
|
|
self.wrapper_call.writeline(
|
|
"from torch.profiler import record_function"
|
|
)
|
|
self.wrapper_call.writeline(
|
|
"with record_function('inductor_wrapper_call'):"
|
|
)
|
|
stack.enter_context(self.wrapper_call.indent())
|
|
while (
|
|
self.lines
|
|
and isinstance(self.lines[-1], MemoryPlanningLine)
|
|
and self.lines[-1].node.name not in out_names
|
|
):
|
|
# these lines will be pointless
|
|
self.lines.pop()
|
|
|
|
# codegen allocations in two passes
|
|
planning_state = MemoryPlanningState()
|
|
for i in range(len(self.lines)):
|
|
if isinstance(self.lines[i], MemoryPlanningLine):
|
|
self.lines[i] = self.lines[i].plan(planning_state)
|
|
|
|
for line in self.lines:
|
|
if isinstance(line, MemoryPlanningLine):
|
|
line.codegen(self.wrapper_call)
|
|
else:
|
|
self.wrapper_call.writeline(line)
|
|
|
|
output_refs = [x.codegen_reference() for x in V.graph.graph_outputs]
|
|
if config.triton.debug_sync_graph:
|
|
self.wrapper_call.writeline("torch.cuda.synchronize()")
|
|
self.generate_return(output_refs)
|
|
|
|
with result.indent():
|
|
result.splice(self.wrapper_call)
|
|
|
|
self.generate_end(result)
|
|
|
|
self.add_benchmark_harness(result)
|
|
|
|
return result.getvalue()
|
|
|
|
def add_benchmark_harness(self, output):
|
|
"""
|
|
Append a benchmark harness to generated code for debugging
|
|
"""
|
|
if not config.benchmark_harness:
|
|
return
|
|
|
|
def add_fake_input(name, shape, stride, device, dtype):
|
|
output.writeline(
|
|
f"{name} = rand_strided("
|
|
f"{V.graph.sizevars.codegen_benchmark_shape_tuple(shape)}, "
|
|
f"{V.graph.sizevars.codegen_benchmark_shape_tuple(stride)}, "
|
|
f"device='{device.type}', dtype={dtype})"
|
|
)
|
|
|
|
output.writelines(["", "", 'if __name__ == "__main__":'])
|
|
with output.indent():
|
|
output.splice(
|
|
f"""
|
|
from {config.dynamo_import}.testing import rand_strided
|
|
from {config.inductor_import}.utils import print_performance
|
|
""",
|
|
strip=True,
|
|
)
|
|
|
|
for name, value in V.graph.constants.items():
|
|
add_fake_input(
|
|
name, value.size(), value.stride(), value.device, value.dtype
|
|
)
|
|
|
|
for name, value in V.graph.graph_inputs.items():
|
|
shape = [V.graph.sizevars.size_hint(x) for x in value.get_size()]
|
|
stride = [V.graph.sizevars.size_hint(x) for x in value.get_stride()]
|
|
add_fake_input(
|
|
name, shape, stride, value.get_device(), value.get_dtype()
|
|
)
|
|
|
|
output.writeline(
|
|
f"print_performance(lambda: call([{', '.join(V.graph.graph_inputs.keys())}]))"
|
|
)
|
|
|
|
def define_kernel(self, name: str, kernel: str):
|
|
self.header.splice(f"\n\n{name} = {kernel}")
|
|
|
|
def load_kernel(self, name: str = None, kernel: str = None, arg_types: List = None):
|
|
return
|
|
|
|
def wrap_kernel_call(self, name, call_args):
|
|
return "{}({})".format(name, ", ".join(call_args))
|
|
|
|
def generate_kernel_call(self, name, call_args):
|
|
self.writeline(
|
|
self.wrap_kernel_call(name, call_args),
|
|
)
|
|
|
|
def call_kernel(self, name: str, kernel: Kernel):
|
|
tmp = IndentedBuffer()
|
|
kernel.call_kernel(self, tmp, name)
|
|
for line in tmp.getvalue().split("\n"):
|
|
line = line.strip()
|
|
if line:
|
|
self.writeline(line)
|
|
|
|
def writeline(self, line):
|
|
self.lines.append(line)
|
|
|
|
|
|
class CppWrapperCodeGen(WrapperCodeGen):
|
|
"""
|
|
The outer wrapper that calls the kernels.
|
|
"""
|
|
|
|
call_func_id = count()
|
|
|
|
def __init__(self):
|
|
self._call_func_id = next(CppWrapperCodeGen.call_func_id)
|
|
super().__init__()
|
|
|
|
def write_prefix(self):
|
|
self.prefix.splice(
|
|
"""
|
|
async_compile.wait(globals())
|
|
del async_compile
|
|
from torch.utils.cpp_extension import load_inline
|
|
wrapper = (
|
|
'''
|
|
#include <dlfcn.h>
|
|
#include <assert.h>
|
|
"""
|
|
)
|
|
with self.wrapper_call.indent():
|
|
inputs_len = len(V.graph.graph_inputs.keys())
|
|
output_refs = [x.codegen_reference() for x in V.graph.graph_outputs]
|
|
if output_refs:
|
|
if len(output_refs) == 1:
|
|
output_types = "at::Tensor"
|
|
else:
|
|
output_types = "std::vector<at::Tensor>"
|
|
else:
|
|
output_types = "void"
|
|
|
|
if inputs_len != 0:
|
|
inputs_args = ["at::Tensor&"] * len(V.graph.graph_inputs.keys())
|
|
inputs_args = ", ".join(inputs_args)
|
|
inputs_args = f"std::tuple<{inputs_args}>"
|
|
|
|
self.wrapper_call.writeline(
|
|
f"{output_types} call_{self._call_func_id}({inputs_args} args) {{"
|
|
)
|
|
inputs_keys_str = ", ".join(V.graph.graph_inputs.keys())
|
|
self.wrapper_call.writeline(f"at::Tensor {inputs_keys_str};")
|
|
self.wrapper_call.writeline(f"std::tie({inputs_keys_str}) = args;")
|
|
else:
|
|
self.wrapper_call.writeline(
|
|
f"{output_types} call_{self._call_func_id}(std::tuple<> args) {{"
|
|
)
|
|
for name in V.graph.randomness_seeds:
|
|
self.wrapper_call.writeline(f"at::Tensor {name};")
|
|
self.wrapper_call.writeline(
|
|
f"{name} = at::randint(std::pow(2, 31), {{}}, at::ScalarType::Long);"
|
|
)
|
|
V.graph.sizevars.codegen(self.wrapper_call, V.graph.graph_inputs)
|
|
|
|
def write_allocate_line(self, buffer):
|
|
self.writeline(CppAllocateLine(buffer))
|
|
|
|
def write_del_line(self, name):
|
|
self.writeline(f"{name}.reset();")
|
|
return
|
|
|
|
def write_free_if_not_reused_line(self, buffer):
|
|
self.writeline(CppFreeIfNotReusedLine(buffer))
|
|
return
|
|
|
|
def write_reuse_line(self, input_buffer, output_buffer):
|
|
self.writeline(CppReuseLine(input_buffer, output_buffer))
|
|
|
|
def get_deferred_line(self, name, layout):
|
|
return DeferredLine(
|
|
name, f"auto {name} = {layout.view.codegen_reference()}; // alias"
|
|
)
|
|
|
|
def get_kernel_path(self, code):
|
|
from ..codecache import pick_vec_isa
|
|
|
|
picked_vec_isa = pick_vec_isa()
|
|
ext = "so"
|
|
extra = cpp_compile_command("i", "o", vec_isa=picked_vec_isa)
|
|
# \n is required to match with the CodeCache behavior
|
|
source_code = "\n" + code.getvalue()
|
|
_, _, kernel_path = get_code_path(source_code, ext, extra)
|
|
return kernel_path
|
|
|
|
def load_kernel(self, name: str = None, kernel: str = None, arg_types: List = None):
|
|
kernel_path = self.get_kernel_path(kernel)
|
|
|
|
self.writeline(f'auto {name}_lib = dlopen("{kernel_path}", RTLD_NOW);')
|
|
self.writeline(f"assert({name}_lib != nullptr);")
|
|
self.writeline(f"void (*{name})({arg_types});")
|
|
self.writeline(f'*(void **) (&{name}) = dlsym({name}_lib, "kernel");')
|
|
|
|
def wrap_kernel_call(self, name, call_args):
|
|
return "{}({});".format(name, ", ".join(call_args))
|
|
|
|
def generate_return(self, output_refs):
|
|
if output_refs:
|
|
if len(output_refs) == 1:
|
|
self.wrapper_call.writeline("return " + output_refs[0] + "; }''' )")
|
|
else:
|
|
self.wrapper_call.writeline(
|
|
"return std::vector<at::Tensor>({"
|
|
+ ", ".join(output_refs)
|
|
+ "}); }''' )"
|
|
)
|
|
else:
|
|
self.wrapper_call.writeline("return; }''' )")
|
|
|
|
def generate_end(self, result):
|
|
shared = codecache.get_shared()
|
|
warning_all_flag = codecache.get_warning_all_flag()
|
|
cpp_flags = codecache.cpp_flags()
|
|
ipaths, lpaths, libs, macros = codecache.get_include_and_linking_paths()
|
|
optimization_flags = codecache.optimization_flags()
|
|
use_custom_generated_macros = codecache.use_custom_generated_macros()
|
|
|
|
extra_cflags = f"{cpp_flags} {optimization_flags} {warning_all_flag} {macros} {use_custom_generated_macros}"
|
|
extra_ldflags = f"{shared} {lpaths} {libs}"
|
|
extra_include_paths = f"{ipaths}"
|
|
|
|
# get the hash of the wrapper code to name the extension
|
|
wrapper_call_hash = codecache.code_hash(self.wrapper_call.getvalue())
|
|
result.splice(
|
|
f"""
|
|
module = load_inline(
|
|
name='inline_extension_{wrapper_call_hash}',
|
|
cpp_sources=[wrapper],
|
|
functions=['call_{self._call_func_id}'],
|
|
extra_cflags=['{extra_cflags}'],
|
|
extra_ldflags=['{extra_ldflags}'],
|
|
extra_include_paths=['{extra_include_paths}'])
|
|
"""
|
|
)
|
|
# Wrap the func to support setting result._boxed_call = True
|
|
result.splice(
|
|
f"""
|
|
def _wrap_func(f):
|
|
def g(args):
|
|
return f(args)
|
|
return g
|
|
call = _wrap_func(module.call_{self._call_func_id})
|
|
"""
|
|
)
|