pytorch/tools/autograd/templates/python_variable_methods.cpp
Vitaly Fedyunin d39ab0312a Add memory_format support to and type operators (#27107)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27107

Adds memory_format keyword argument (positional for cpp).

'Preserve' behavior now follows next rules:
1) If tensor is non-overlapping and dense - output tensor will have the same strides as input tensor.
2) If not (1) and tensor is stored in the channels last format, output tensor going to have channels last format.
3) Output tensor is going to be contiguous in all other cases.

 ---
Dense tensor is the tensor that store values in a contiguous block of memory.
Non-overlapping tensor is the tensor in which elements occupy individual non-repetitive memory.

Test Plan: Imported from OSS

Differential Revision: D17931062

Pulled By: VitalyFedyunin

fbshipit-source-id: 2c5dd3dd05bf58a9a29f25562cd45190b009c3f9
2019-10-15 12:55:56 -07:00

815 lines
31 KiB
C++

// ${generated_comment}
#include <Python.h>
#include "torch/csrc/DynamicTypes.h"
#include "torch/csrc/Exceptions.h"
#include "torch/csrc/Size.h"
#include "torch/csrc/autograd/generated/VariableType.h"
#include "torch/csrc/autograd/python_variable.h"
#include "torch/csrc/autograd/utils/python_arg_parsing.h"
#include "torch/csrc/autograd/utils/python_error_messages.h"
#include "torch/csrc/autograd/utils/wrap_outputs.h"
#include "torch/csrc/jit/tracer.h"
#ifdef USE_CUDA
#include "torch/csrc/cuda/Stream.h"
#include "torch/csrc/cuda/Event.h"
#endif
#include "torch/csrc/utils/cuda_lazy_init.h"
#include "torch/csrc/utils/object_ptr.h"
#include "torch/csrc/utils/python_arg_parser.h"
#include "torch/csrc/utils/python_numbers.h"
#include "torch/csrc/utils/python_strings.h"
#include "torch/csrc/utils/python_tuples.h"
#include "torch/csrc/utils/tensor_apply.h"
#include "torch/csrc/utils/tensor_list.h"
#include "torch/csrc/utils/tensor_new.h"
#include "torch/csrc/utils/tensor_numpy.h"
#include "torch/csrc/utils/tensor_types.h"
#include "torch/csrc/utils/structseq.h"
#include <ATen/core/EnableNamedTensor.h>
#include <ATen/ATen.h>
#include "c10/util/Optional.h"
#include "python_variable_methods_dispatch.h"
#include <stdexcept>
using at::DeviceGuard;
using at::device_of;
using at::OptionalDeviceGuard;
using at::Backend;
using at::Scalar;
using at::ScalarType;
using at::Tensor;
using namespace torch::autograd::utils;
namespace torch { namespace autograd {
static PyObject * THPVariable__is_view(PyObject *self, PyObject* args)
{
HANDLE_TH_ERRORS
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
if (self_.is_view()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_apply_(PyObject* self, PyObject* arg)
{
HANDLE_TH_ERRORS
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
if (self_.requires_grad()) {
throw std::runtime_error(
"Can't call apply_() on Variable that requires grad. Use "
"var.detach().apply_() instead.");
}
return THPVariable_Wrap(torch::utils::apply_(self_, arg));
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_size(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"size(int64_t dim)",
"size()",
#ifdef BUILD_NAMEDTENSOR
"size(Dimname dim)",
#endif
});
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
ParsedArgs<3> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
if (jit::tracer::isTracing()) {
return wrap(jit::tracer::getSizeOf(self_, r.toInt64(0)));
} else {
return wrap(self_.size(r.toInt64(0)));
}
} else if (r.idx == 1) {
// we can't do the normal wrapping here because IntArrayRef maps to both
// torch.Size and tuple in python.
return THPSize_New(self_);
}
#ifdef BUILD_NAMEDTENSOR
else if (r.idx == 2) {
if (jit::tracer::isTracing()) {
TORCH_INTERNAL_ASSERT(false, "NYI: Named tensors w/ JIT");
}
return wrap(self_.size(r.dimname(0)));
}
#endif
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_stride(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"stride(int64_t dim)",
"stride()",
#ifdef BUILD_NAMEDTENSOR
"stride(Dimname dim)",
#endif
});
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
ParsedArgs<3> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return wrap(self_.stride(r.toInt64(0)));
} else if (r.idx == 1) {
// yes, this is called strides in ATen.
IntArrayRef strides = self_.strides();
// we can't do the normal wrapping here because IntArrayRef maps to both
// torch.Size and tuple in python
return THPUtils_packInt64Array(strides.size(), strides.data());
}
#ifdef BUILD_NAMEDTENSOR
else if (r.idx == 2) {
return wrap(self_.stride(r.dimname(0)));
}
#endif
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_get_device(PyObject* self_, PyObject* args)
{
HANDLE_TH_ERRORS
auto& self = reinterpret_cast<THPVariable*>(self_)->cdata;
return wrap(self.get_device());
END_HANDLE_TH_ERRORS
}
#ifdef BUILD_NAMEDTENSOR
static PyObject * THPVariable_has_names(PyObject* self_, PyObject* args)
{
HANDLE_TH_ERRORS
auto& self = reinterpret_cast<THPVariable*>(self_)->cdata;
return wrap(self.has_names());
END_HANDLE_TH_ERRORS
}
#endif
static PyObject * THPVariable_data_ptr(PyObject* self_, PyObject* args)
{
HANDLE_TH_ERRORS
auto& self = reinterpret_cast<THPVariable*>(self_)->cdata;
return wrap(self.data_ptr());
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_storage_offset(PyObject* self_, PyObject* args)
{
HANDLE_TH_ERRORS
auto& self = reinterpret_cast<THPVariable*>(self_)->cdata;
return wrap(self.storage_offset());
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_dim(PyObject* self, PyObject* args)
{
HANDLE_TH_ERRORS
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
return THPUtils_packInt64(self_.dim());
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_numel(PyObject* self, PyObject* args)
{
HANDLE_TH_ERRORS
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
return THPUtils_packInt64(self_.numel());
END_HANDLE_TH_ERRORS
}
static Tensor dispatch_contiguous(const Tensor & self, at::MemoryFormat memory_format) {
AutoNoGIL no_gil;
OptionalDeviceGuard device_guard(device_of(self));
return self.contiguous(memory_format);
}
static PyObject * THPVariable_contiguous(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"contiguous(*, MemoryFormat memory_format=contiguous_format)",
});
ParsedArgs<1> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
auto memory_format = r.memoryformat(0);
// avoids touching the GIL or current device if self is already contiguous
if (self_.is_contiguous(memory_format)) {
// NOTE: this logic is duplicated from VariableType.cpp. Since we need to
// record this call to contiguous() in the trace regardless of whether
// we actually call contiguous here, we need to record this information
// manually.
if (jit::tracer::isTracing()) {
auto tracer_state = jit::tracer::getTracingState();
auto node = tracer_state->graph->create(jit::aten::contiguous, /*num_outputs=*/0);
jit::tracer::recordSourceLocation(node);
jit::tracer::addInputs(node, "self", self_);
jit::tracer::addInputs(node, "memory_format", memory_format);
tracer_state->graph->insertNode(node);
jit::tracer::addOutput(node, self_);
}
Py_INCREF(self);
return self;
}
return THPVariable_Wrap(dispatch_contiguous(self_, memory_format));
END_HANDLE_TH_ERRORS
}
static Tensor dispatch_copy_(Tensor & self, const Tensor & other, bool non_blocking) {
AutoNoGIL no_gil;
OptionalDeviceGuard device_guard(device_of(self));
return self.copy_(other, non_blocking);
}
static PyObject * THPVariable_copy_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"copy_(Tensor other, bool non_blocking=False)",
"copy_(Tensor other, bool async=False)|deprecated"
});
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
ParsedArgs<2> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
return THPVariable_Wrap(dispatch_copy_(self_, r.tensor(0), r.toBool(1)));
END_HANDLE_TH_ERRORS
}
static double dispatch_to_CDouble(const Tensor & self) {
AutoNoGIL no_gil;
OptionalDeviceGuard device_guard(device_of(self));
if (self.numel() != 1) {
throw ValueError("only one element tensors can be converted to Python scalars");
}
return self.item<double>();
}
static std::complex<double> dispatch_to_CComplexDouble(const Tensor & self) {
AutoNoGIL no_gil;
OptionalDeviceGuard device_guard(device_of(self));
if (self.numel() != 1) {
throw ValueError("only one element tensors can be converted to Python scalars");
}
return self.item<std::complex<double>>();
}
static int64_t dispatch_to_CLong(const Tensor & self) {
AutoNoGIL no_gil;
OptionalDeviceGuard device_guard(device_of(self));
if (self.numel() != 1) {
throw ValueError("only one element tensors can be converted to Python scalars");
}
return self.item<int64_t>();
}
static bool dispatch_to_Bool(const Tensor & self) {
AutoNoGIL no_gil;
OptionalDeviceGuard device_guard(device_of(self));
if (self.numel() != 1) {
throw ValueError("only one element tensors can be converted to Python scalars");
}
return self.item<bool>();
}
static PyObject * THPVariable_float_scalar(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
jit::tracer::warn("Converting a tensor to a Python float", jit::tracer::WARN_PYTHON_DATAFLOW);
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
return wrap(dispatch_to_CDouble(self_));
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_integral_scalar(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
jit::tracer::warn("Converting a tensor to a Python integer", jit::tracer::WARN_PYTHON_DATAFLOW);
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
if (isFloatingType(self_.scalar_type())) {
// we can't dispatch to item<int64_t> here because we want to avoid ATen overflow checks;
// the python integral type (long in python2) can't overflow.
return THPUtils_packDoubleAsInt(dispatch_to_CDouble(self_));
} else {
return wrap(dispatch_to_CLong(self_));
}
END_HANDLE_TH_ERRORS
}
// This is the __index__ function in Python which is similar to __int__, but
// called when used as a slice.
static PyObject * THPVariable_index_scalar(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
jit::tracer::warn("Converting a tensor to a Python index", jit::tracer::WARN_PYTHON_DATAFLOW);
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
// TODO: change the condition to `self_.dim() != 0` once we expose scalars
// in PyTorch.
if (!isIntegralType(self_.scalar_type(), /*includeBool=*/true) || self_.numel() != 1) {
throw TypeError("only integer tensors of a single element can be converted to an index");
}
return wrap(dispatch_to_CLong(self_));
END_HANDLE_TH_ERRORS
}
static Tensor dispatch_invert(const Tensor & self) {
AutoNoGIL no_gil;
OptionalDeviceGuard device_guard(device_of(self));
return self.bitwise_not();
}
static PyObject * THPVariable_invert(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
if (!isIntegralType(self_.scalar_type(), /*includeBool=*/true)) {
throw TypeError("~ (operator.invert) is only implemented on integer and Boolean-type tensors");
}
return THPVariable_Wrap(dispatch_invert(self_));
END_HANDLE_TH_ERRORS
}
static Tensor dispatch_to(const Tensor & self, Device device, bool non_blocking, bool copy, c10::optional<c10::MemoryFormat> optional_memory_format) {
AutoNoGIL no_gil;
// NOTE: this is where we record aten::to in the graph during tracing. However, the behavior of aten::to
// is different with respect to TensorOptions fields that are not present: aten::to inherits fields that
// are missing from the self argument while the tracer assumes that they should be populated with the
// default values (eg. float for scalar type). By explicitly copying over the tensor options here we fully
// specify all tensor options and thus record the proper trace
return self.to(self.options().device(device), non_blocking, copy, optional_memory_format);
}
static Tensor dispatch_to(const Tensor & self, ScalarType dtype, bool non_blocking, bool copy, c10::optional<c10::MemoryFormat> optional_memory_format) {
AutoNoGIL no_gil;
return self.to(dtype, non_blocking, copy, optional_memory_format);
}
static Tensor dispatch_to(const Tensor & self, Device device, ScalarType dtype, bool non_blocking, bool copy, c10::optional<c10::MemoryFormat> optional_memory_format) {
AutoNoGIL no_gil;
return self.to(device, dtype, non_blocking, copy, optional_memory_format);
}
static PyObject * THPVariable_cpu(PyObject* self, PyObject* args)
{
HANDLE_TH_ERRORS
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
// Setting to MemoryFormat::Contiguous now, will change to accept memory_format in next PR
return THPVariable_Wrap(dispatch_to(self_, at::Device(at::DeviceType::CPU), false, false, MemoryFormat::Contiguous));
END_HANDLE_TH_ERRORS
}
static Tensor dispatch_nonzero(const Tensor & self) {
AutoNoGIL no_gil;
OptionalDeviceGuard device_guard(device_of(self));
return self.nonzero();
}
static std::vector<Tensor> dispatch_nonzero_numpy(const Tensor & self) {
AutoNoGIL no_gil;
OptionalDeviceGuard device_guard(device_of(self));
return self.nonzero_numpy();
}
static PyObject * THPVariable_nonzero(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"nonzero()|deprecated",
"nonzero(*, bool as_tuple=False)",
});
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
ParsedArgs<2> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0 || (r.idx == 1 && !r.toBool(0))) {
return wrap(dispatch_nonzero(self_));
} else {
return wrap(dispatch_nonzero_numpy(self_));
}
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_cuda(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"cuda(Device? device=None, bool non_blocking=False)",
"cuda(Device? device=None, bool async=False)|deprecated"
});
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
ParsedArgs<2> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
auto device = r.isNone(0) ? at::Device(at::DeviceType::CUDA) : r.device(0);
TORCH_CHECK(device.is_cuda(), "Invalid device, must be cuda device");
torch::utils::cuda_lazy_init();
// Setting to MemoryFormat::Contiguous now, will change to accept memory_format in next PR
return THPVariable_Wrap(dispatch_to(self_, device, r.toBool(1), false, MemoryFormat::Contiguous));
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_to_type(PyObject* self, ScalarType scalarType) {
HANDLE_TH_ERRORS
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
// Setting to MemoryFormat::Contiguous now, will change to accept memory_format in next PR
return THPVariable_Wrap(dispatch_to(self_, scalarType, false, false, MemoryFormat::Contiguous));
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_byte(PyObject* self, PyObject* args) {
return THPVariable_to_type(self, ScalarType::Byte);
}
static PyObject * THPVariable_char(PyObject* self, PyObject* args) {
return THPVariable_to_type(self, ScalarType::Char);
}
static PyObject * THPVariable_double(PyObject* self, PyObject* args) {
return THPVariable_to_type(self, ScalarType::Double);
}
static PyObject * THPVariable_float(PyObject* self, PyObject* args) {
return THPVariable_to_type(self, ScalarType::Float);
}
static PyObject * THPVariable_half(PyObject* self, PyObject* args) {
return THPVariable_to_type(self, ScalarType::Half);
}
static PyObject * THPVariable_int(PyObject* self, PyObject* args) {
return THPVariable_to_type(self, ScalarType::Int);
}
static PyObject * THPVariable_long(PyObject* self, PyObject* args) {
return THPVariable_to_type(self, ScalarType::Long);
}
static PyObject * THPVariable_short(PyObject* self, PyObject* args) {
return THPVariable_to_type(self, ScalarType::Short);
}
static PyObject * THPVariable_bool(PyObject* self, PyObject* args) {
return THPVariable_to_type(self, ScalarType::Bool);
}
static PyObject * THPVariable_bfloat16(PyObject* self, PyObject* args) {
return THPVariable_to_type(self, ScalarType::BFloat16);
}
static PyObject * THPVariable_element_size(PyObject* self, PyObject* args)
{
HANDLE_TH_ERRORS
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
return THPUtils_packInt64(self_.element_size());
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_numpy(PyObject* self, PyObject* arg)
{
HANDLE_TH_ERRORS
jit::tracer::warn("Converting a tensor to a NumPy array", jit::tracer::WARN_PYTHON_DATAFLOW);
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
return torch::utils::tensor_to_numpy(self_);
END_HANDLE_TH_ERRORS
}
// TODO: move this to ATen. We would need to expose Stream objects in ATen.
static PyObject * THPVariable_record_stream(PyObject* self, PyObject* arg)
{
HANDLE_TH_ERRORS
#ifdef USE_CUDA
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
if (!THCPStream_Check(arg)) {
return PyErr_Format(PyExc_TypeError, "expected Stream object");
}
void* data = self_.storage().data_ptr().get();
c10::cuda::CUDACachingAllocator::recordStream(data, at::cuda::CUDAStream::unpack(((THCPStream*)arg)->cdata));
Py_RETURN_NONE;
#else
throw std::runtime_error("PyTorch compiled without CUDA support");
#endif
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_requires_grad_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"requires_grad_(bool requires_grad=True)",
});
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
ParsedArgs<1> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
auto requires_grad = r.toBool(0);
// should we throw if requires_grad is true? var.requires_grad = True throws here
// but it's nice to let this be a no-op.
if (!self_.is_leaf() && !requires_grad) {
throw std::runtime_error(autograd::utils::requires_grad_leaf_error(requires_grad));
}
if (requires_grad && !self_.is_floating_point()) {
throw std::runtime_error("only Tensors of floating point dtype can require gradients");
}
self_.set_requires_grad(requires_grad);
return THPVariable_Wrap(self_);
END_HANDLE_TH_ERRORS
}
inline bool dispatch_is_contiguous(Tensor & self, MemoryFormat memory_format) {
return self.is_contiguous(memory_format);
}
static PyObject * THPVariable_is_contiguous(PyObject* self_, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"is_contiguous(*, MemoryFormat memory_format=contiguous_format)",
});
ParsedArgs<1> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
auto memory_format = r.memoryformat(0);
auto& self = reinterpret_cast<THPVariable*>(self_)->cdata;
return wrap(dispatch_is_contiguous(self, memory_format));
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_item(PyObject* self, PyObject* args)
{
HANDLE_TH_ERRORS
jit::tracer::warn("Converting a tensor to a Python number", jit::tracer::WARN_PYTHON_DATAFLOW);
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
if (self_.is_floating_point()) {
return wrap(dispatch_to_CDouble(self_));
} else if (self_.is_complex()) {
return wrap(dispatch_to_CComplexDouble(self_));
} else if (self_.scalar_type() == ScalarType::Bool) {
return wrap(dispatch_to_Bool(self_));
} else {
return wrap(dispatch_to_CLong(self_));
}
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_map_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({ "map_(Tensor other, PyObject* callable)" });
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
ParsedArgs<2> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
Variable other = r.tensor(0);
if (self_.requires_grad() || other.requires_grad()) {
throw std::runtime_error(
"Can't call map_() on Variable that requires grad. Use "
"var.detach().map_() instead.");
}
return THPVariable_Wrap(torch::utils::map_(self_, other, r.pyobject(1)));
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_map2_(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({ "map2_(Tensor x, Tensor y, PyObject* callable)" });
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
ParsedArgs<3> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
Variable x = r.tensor(0);
Variable y = r.tensor(1);
if (self_.requires_grad() || x.requires_grad() || y.requires_grad()) {
throw std::runtime_error(
"Can't call map2_() on Variable that requires grad. Use "
"var.detach().map2_() instead.");
}
return THPVariable_Wrap(torch::utils::map2_(self_, x, y, r.pyobject(2)));
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_new(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
OptionalDeviceGuard device_guard(device_of(self_));
return THPVariable_Wrap(torch::utils::legacy_tensor_new(legacyExtractTypeId(self_), self_.scalar_type(), args, kwargs));
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_new_ones(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
OptionalDeviceGuard device_guard(device_of(self_));
return THPVariable_Wrap(torch::utils::new_ones(legacyExtractTypeId(self_), self_.scalar_type(), args, kwargs));
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_new_tensor(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
OptionalDeviceGuard device_guard(device_of(self_));
return THPVariable_Wrap(torch::utils::new_tensor(legacyExtractTypeId(self_), self_.scalar_type(), args, kwargs));
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_storage(PyObject* self, PyObject* arg)
{
HANDLE_TH_ERRORS
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
return createPyObject(self_.storage());
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_storage_type(PyObject* self, PyObject* arg)
{
HANDLE_TH_ERRORS
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
auto storage = THPObjectPtr(createPyObject(self_.storage()));
auto storage_type = (PyObject*)Py_TYPE(storage);
Py_INCREF(storage_type);
return storage_type;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_to(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
auto parsed = parse_to_conversion(args, kwargs, /*allow_copy*/ true);
auto& device = std::get<0>(parsed);
auto& scalarType = std::get<1>(parsed);
auto non_blocking = std::get<2>(parsed);
auto copy = std::get<3>(parsed);
auto opt_memory_format = std::get<4>(parsed);
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
if (device && device->is_cuda()) {
torch::utils::cuda_lazy_init();
}
if (!device && !scalarType && !copy) {
Py_INCREF(self);
return self;
} else if (!device) {
return THPVariable_Wrap(dispatch_to(self_, *scalarType, non_blocking, copy, opt_memory_format));
} else if (!scalarType) {
return THPVariable_Wrap(dispatch_to(self_, *device, non_blocking, copy, opt_memory_format));
} else {
return THPVariable_Wrap(dispatch_to(self_, *device, *scalarType, non_blocking, copy, opt_memory_format));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_tolist(PyObject* self, PyObject* args)
{
HANDLE_TH_ERRORS
jit::tracer::warn("Converting a tensor to a Python list", jit::tracer::WARN_PYTHON_DATAFLOW);
auto self_ = reinterpret_cast<THPVariable*>(self)->cdata;
return torch::utils::tensor_to_list(self_);
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_type(PyObject* self, PyObject* args, PyObject* kwargs)
{
HANDLE_TH_ERRORS
static PythonArgParser parser({
"type(PyObject* dtype=None, bool non_blocking=False, *, MemoryFormat? memory_format=None)",
"type(PyObject* dtype=None, bool async=False, *, MemoryFormat? memory_format=None)|deprecated"
});
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
ParsedArgs<3> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.isNone(0)) {
return THPUtils_packString(torch::utils::type_to_string(self_.type()));
}
auto obj = r.pyobject(0);
auto opt_memory_format = r.memoryformatOptional(2);
std::string type_name;
bool is_dtype = false;
if (PyType_Check(obj)) {
if (obj == THPVariableClass) {
type_name = "torch.Tensor";
} else {
type_name = ((PyTypeObject*)obj)->tp_name;
}
} else if (THPUtils_checkString(obj)) {
type_name = THPUtils_unpackString(obj);
} else if (THPDtype_Check(obj)) {
is_dtype = true;
} else {
throw TypeError("dtype must be a type, str, or dtype object");
}
ScalarType scalar_type;
Device device = self_.device();
if (is_dtype) {
scalar_type = r.scalartype(0);
} else {
at::DeprecatedTypeProperties* type = torch::utils::type_from_string(type_name);
scalar_type = type->scalarType();
auto device_type = backendToDeviceType(type->backend());
if (device_type != device.type()) {
device = at::Device(device_type);
}
}
if (device.is_cuda()) {
torch::utils::cuda_lazy_init();
}
return THPVariable_Wrap(dispatch_to(self_, device, scalar_type, /*non_blocking=*/ r.toBool(1), /*copy=*/ false, opt_memory_format));
END_HANDLE_TH_ERRORS
}
// generated methods start here
${py_methods}
static PyObject * THPVariable_bool_scalar(PyObject* self, PyObject* args) {
jit::tracer::warn("Converting a tensor to a Python boolean", jit::tracer::WARN_PYTHON_DATAFLOW);
return THPVariable_is_nonzero(self, args);
}
// Wrapper converts a raised TypeError into returning NotImplemented
// Used to implement binary arithmetic operators
template <PyObject* (*Func)(PyObject*, PyObject*, PyObject*)>
static PyObject * TypeError_to_NotImplemented_(PyObject* self, PyObject* args, PyObject* kwargs) {
PyObject* ret = Func(self, args, kwargs);
if (!ret && PyErr_ExceptionMatches(PyExc_TypeError)) {
PyErr_Clear();
Py_INCREF(Py_NotImplemented);
ret = Py_NotImplemented;
}
return ret;
}
PyMethodDef variable_methods[] = {
{"__add__", (PyCFunction)(void(*)(void))TypeError_to_NotImplemented_<THPVariable_add>, METH_VARARGS | METH_KEYWORDS, NULL},
{"__radd__", (PyCFunction)(void(*)(void))TypeError_to_NotImplemented_<THPVariable_add>, METH_VARARGS | METH_KEYWORDS, NULL},
{"__iadd__", (PyCFunction)(void(*)(void))TypeError_to_NotImplemented_<THPVariable_add_>, METH_VARARGS | METH_KEYWORDS, NULL},
{"__rmul__", (PyCFunction)(void(*)(void))TypeError_to_NotImplemented_<THPVariable_mul>, METH_VARARGS | METH_KEYWORDS, NULL},
{"__mul__", (PyCFunction)(void(*)(void))TypeError_to_NotImplemented_<THPVariable_mul>, METH_VARARGS | METH_KEYWORDS, NULL},
{"__imul__", (PyCFunction)(void(*)(void))TypeError_to_NotImplemented_<THPVariable_mul_>, METH_VARARGS | METH_KEYWORDS, NULL},
{"__sub__", (PyCFunction)(void(*)(void))TypeError_to_NotImplemented_<THPVariable_sub>, METH_VARARGS | METH_KEYWORDS, NULL},
{"__isub__", (PyCFunction)(void(*)(void))TypeError_to_NotImplemented_<THPVariable_sub_>, METH_VARARGS | METH_KEYWORDS, NULL},
{"__div__", (PyCFunction)(void(*)(void))TypeError_to_NotImplemented_<THPVariable_div>, METH_VARARGS | METH_KEYWORDS, NULL},
{"__truediv__", (PyCFunction)(void(*)(void))TypeError_to_NotImplemented_<THPVariable_div>, METH_VARARGS | METH_KEYWORDS, NULL},
{"__idiv__", (PyCFunction)(void(*)(void))TypeError_to_NotImplemented_<THPVariable_div_>, METH_VARARGS | METH_KEYWORDS, NULL},
{"__mod__", (PyCFunction)(void(*)(void))TypeError_to_NotImplemented_<THPVariable_remainder>, METH_VARARGS | METH_KEYWORDS, NULL},
{"__bool__", (PyCFunction)THPVariable_bool_scalar, METH_NOARGS, NULL},
{"__float__", (PyCFunction)THPVariable_float_scalar, METH_NOARGS, NULL},
{"__int__", (PyCFunction)THPVariable_integral_scalar, METH_NOARGS, NULL},
{"__long__", (PyCFunction)THPVariable_integral_scalar, METH_NOARGS, NULL},
{"__index__", (PyCFunction)THPVariable_index_scalar, METH_NOARGS, NULL},
{"__nonzero__", (PyCFunction)THPVariable_bool_scalar, METH_NOARGS, NULL},
{"__invert__", (PyCFunction)THPVariable_invert, METH_NOARGS, NULL},
{"__matmul__", (PyCFunction)(void(*)(void))TypeError_to_NotImplemented_<THPVariable_matmul>, METH_VARARGS | METH_KEYWORDS, NULL},
{"_is_view", (PyCFunction)THPVariable__is_view, METH_NOARGS, NULL},
{"apply_", (PyCFunction)THPVariable_apply_, METH_O, NULL},
{"bfloat16", (PyCFunction)THPVariable_bfloat16, METH_NOARGS, NULL},
{"byte", (PyCFunction)THPVariable_byte, METH_NOARGS, NULL},
{"char", (PyCFunction)THPVariable_char, METH_NOARGS, NULL},
{"contiguous", (PyCFunction)(void(*)(void))THPVariable_contiguous, METH_VARARGS | METH_KEYWORDS, NULL},
{"copy_", (PyCFunction)(void(*)(void))THPVariable_copy_, METH_VARARGS | METH_KEYWORDS, NULL},
{"cpu", (PyCFunction)THPVariable_cpu, METH_NOARGS, NULL},
{"cuda", (PyCFunction)(void(*)(void))THPVariable_cuda, METH_VARARGS | METH_KEYWORDS, NULL},
{"data_ptr", (PyCFunction)THPVariable_data_ptr, METH_NOARGS, NULL},
{"dim", (PyCFunction)THPVariable_dim, METH_NOARGS, NULL},
#ifdef BUILD_NAMEDTENSOR
{"has_names", (PyCFunction)THPVariable_has_names, METH_NOARGS, NULL},
#endif
{"double", (PyCFunction)THPVariable_double, METH_NOARGS, NULL},
{"element_size", (PyCFunction)THPVariable_element_size, METH_NOARGS, NULL},
{"float", (PyCFunction)THPVariable_float, METH_NOARGS, NULL},
{"get_device", (PyCFunction)THPVariable_get_device, METH_NOARGS, NULL},
{"bool", (PyCFunction)THPVariable_bool, METH_NOARGS, NULL},
{"half", (PyCFunction)THPVariable_half, METH_NOARGS, NULL},
{"int", (PyCFunction)THPVariable_int, METH_NOARGS, NULL},
{"is_contiguous", (PyCFunction)(void(*)(void))THPVariable_is_contiguous, METH_VARARGS | METH_KEYWORDS, NULL},
{"item", (PyCFunction)THPVariable_item, METH_NOARGS, NULL},
{"long", (PyCFunction)THPVariable_long, METH_NOARGS, NULL},
{"map_", (PyCFunction)(void(*)(void))THPVariable_map_, METH_VARARGS | METH_KEYWORDS, NULL},
{"map2_", (PyCFunction)(void(*)(void))THPVariable_map2_, METH_VARARGS | METH_KEYWORDS, NULL},
{"ndimension", (PyCFunction)THPVariable_dim, METH_NOARGS, NULL},
{"nelement", (PyCFunction)THPVariable_numel, METH_NOARGS, NULL},
{"new", (PyCFunction)(void(*)(void))THPVariable_new, METH_VARARGS | METH_KEYWORDS, NULL},
{"new_ones", (PyCFunction)(void(*)(void))THPVariable_new_ones, METH_VARARGS | METH_KEYWORDS, NULL},
{"new_tensor", (PyCFunction)(void(*)(void))THPVariable_new_tensor, METH_VARARGS | METH_KEYWORDS, NULL},
{"nonzero", (PyCFunction)(void(*)(void))THPVariable_nonzero, METH_VARARGS | METH_KEYWORDS, NULL},
{"numel", (PyCFunction)THPVariable_numel, METH_NOARGS, NULL},
{"numpy", (PyCFunction)THPVariable_numpy, METH_NOARGS, NULL},
{"record_stream", (PyCFunction)THPVariable_record_stream, METH_O, NULL},
{"requires_grad_", (PyCFunction)(void(*)(void))THPVariable_requires_grad_, METH_VARARGS | METH_KEYWORDS, NULL},
{"short", (PyCFunction)THPVariable_short, METH_NOARGS, NULL},
{"size", (PyCFunction)(void(*)(void))THPVariable_size, METH_VARARGS | METH_KEYWORDS, NULL},
{"storage", (PyCFunction)THPVariable_storage, METH_NOARGS, NULL},
{"storage_offset", (PyCFunction)THPVariable_storage_offset, METH_NOARGS, NULL},
{"storage_type", (PyCFunction)THPVariable_storage_type, METH_NOARGS, NULL},
{"stride", (PyCFunction)(void(*)(void))THPVariable_stride, METH_VARARGS | METH_KEYWORDS, NULL},
{"to", (PyCFunction)(void(*)(void))THPVariable_to, METH_VARARGS | METH_KEYWORDS, NULL},
{"tolist", (PyCFunction)THPVariable_tolist, METH_NOARGS, NULL},
{"type", (PyCFunction)(void(*)(void))THPVariable_type, METH_VARARGS | METH_KEYWORDS, NULL},
${py_method_defs}
{NULL}
};
}} // namespace torch::autograd