mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: This PR aims to add `make_tensor` to the `torch.testing` module in PyTorch docs. TODOs: * [x] Add examples cc: pmeier mruberry brianjo Pull Request resolved: https://github.com/pytorch/pytorch/pull/63925 Reviewed By: ngimel Differential Revision: D30633487 Pulled By: mruberry fbshipit-source-id: 8e5a1f880c6ece5925b4039fee8122bd739538af
533 lines
26 KiB
Python
533 lines
26 KiB
Python
import torch
|
|
import warnings
|
|
import unittest
|
|
import random
|
|
import itertools
|
|
|
|
from torch.testing import make_tensor
|
|
from torch.testing._internal.common_utils import \
|
|
(IS_MACOS, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff)
|
|
from torch.testing._internal.common_device_type import \
|
|
(instantiate_device_type_tests, dtypes, onlyCPU, onlyCUDA)
|
|
|
|
# load_tests from torch.testing._internal.common_utils is used to automatically filter tests for
|
|
# sharding on sandcastle. This line silences flake warnings
|
|
load_tests = load_tests
|
|
|
|
|
|
class TestSparseCSRSampler(TestCase):
|
|
|
|
def test_make_crow_indices(self):
|
|
# Here we test the correctness of the crow_indices algorithm
|
|
# and testing it on CPU and with int32 dtype will be
|
|
# sufficient.
|
|
device = torch.device('cpu')
|
|
index_dtype = torch.int32
|
|
for n_rows in range(1, 10):
|
|
for n_cols in range(1, 10):
|
|
for nnz in range(0, n_rows * n_cols + 1):
|
|
crow_indices = self._make_crow_indices(
|
|
n_rows, n_cols, nnz,
|
|
device=device, dtype=index_dtype)
|
|
self.assertEqual(len(crow_indices), n_rows + 1)
|
|
counts = crow_indices[1:] - crow_indices[:-1]
|
|
self.assertEqual(counts.sum(), nnz)
|
|
self.assertGreaterEqual(counts.min(), 0)
|
|
self.assertLessEqual(counts.max(), n_cols)
|
|
|
|
|
|
class TestSparseCSR(TestCase):
|
|
|
|
@onlyCPU
|
|
def test_csr_layout(self):
|
|
self.assertEqual(str(torch.sparse_csr), 'torch.sparse_csr')
|
|
self.assertEqual(type(torch.sparse_csr), torch.layout)
|
|
|
|
@dtypes(*torch.testing.get_all_dtypes())
|
|
def test_sparse_csr_constructor_shape_inference(self, device, dtype):
|
|
crow_indices = [0, 2, 4]
|
|
col_indices = [0, 1, 0, 1]
|
|
values = [1, 2, 3, 4]
|
|
sparse = torch.sparse_csr_tensor(torch.tensor(crow_indices, dtype=torch.int64),
|
|
torch.tensor(col_indices, dtype=torch.int64),
|
|
torch.tensor(values), dtype=dtype, device=device)
|
|
self.assertEqual(torch.tensor(crow_indices, dtype=torch.int64), sparse.crow_indices())
|
|
self.assertEqual((len(crow_indices) - 1, max(col_indices) + 1), sparse.shape)
|
|
self.assertEqual(dtype, sparse.dtype)
|
|
self.assertEqual(torch.device(device), sparse.device)
|
|
|
|
@dtypes(*torch.testing.get_all_dtypes())
|
|
def test_sparse_csr_constructor(self, device, dtype):
|
|
crow_indices = [0, 2, 4]
|
|
col_indices = [0, 1, 0, 1]
|
|
values = [1, 2, 3, 4]
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
sparse = torch.sparse_csr_tensor(torch.tensor(crow_indices, dtype=index_dtype),
|
|
torch.tensor(col_indices, dtype=index_dtype),
|
|
torch.tensor(values),
|
|
size=(2, 10),
|
|
dtype=dtype,
|
|
device=device)
|
|
self.assertEqual((2, 10), sparse.shape)
|
|
self.assertEqual(torch.tensor(crow_indices, dtype=index_dtype), sparse.crow_indices())
|
|
self.assertEqual(torch.tensor(col_indices, dtype=index_dtype), sparse.col_indices())
|
|
self.assertEqual(torch.tensor(values, dtype=dtype), sparse.values())
|
|
|
|
@dtypes(*torch.testing.get_all_dtypes())
|
|
def test_sparse_csr_constructor_from_lists(self, device, dtype):
|
|
# without size
|
|
sparse = torch.sparse_csr_tensor([0, 2, 4],
|
|
[0, 1, 0, 1],
|
|
[1, 2, 3, 4],
|
|
dtype=dtype,
|
|
device=device)
|
|
|
|
self.assertEqual((2, 2), sparse.shape)
|
|
self.assertEqual(4, sparse.numel())
|
|
self.assertEqual(torch.tensor([0, 2, 4], dtype=torch.int64, device=device), sparse.crow_indices())
|
|
self.assertEqual(torch.tensor([0, 1, 0, 1], dtype=torch.int64, device=device), sparse.col_indices())
|
|
self.assertEqual(torch.tensor([1, 2, 3, 4], dtype=dtype, device=device), sparse.values())
|
|
|
|
# with size
|
|
for sparse_csr_tensor in [torch.sparse_csr_tensor, torch._sparse_csr_tensor_unsafe]:
|
|
sparse = sparse_csr_tensor([0, 2, 4],
|
|
[0, 1, 0, 1],
|
|
[1, 2, 3, 4],
|
|
size=(2, 10),
|
|
dtype=dtype,
|
|
device=device)
|
|
|
|
self.assertEqual((2, 10), sparse.shape)
|
|
self.assertEqual(torch.tensor([0, 2, 4], dtype=torch.int64, device=device), sparse.crow_indices())
|
|
self.assertEqual(torch.tensor([0, 1, 0, 1], dtype=torch.int64, device=device), sparse.col_indices())
|
|
self.assertEqual(torch.tensor([1, 2, 3, 4], dtype=dtype, device=device), sparse.values())
|
|
|
|
def test_factory_type_invariants_check(self, device):
|
|
with self.assertRaisesRegex(RuntimeError, "both crow_indices and col_indices should have the same type."):
|
|
torch.sparse_csr_tensor(torch.tensor([0, 2, 4], dtype=torch.int64),
|
|
torch.tensor([0, 1, 0, 1], dtype=torch.int32),
|
|
torch.tensor([1, 2, 3, 4]),
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"\"csr_construct_check\" not implemented for 'Short'"):
|
|
torch.sparse_csr_tensor(torch.tensor([0, 2, 4], dtype=torch.int16),
|
|
torch.tensor([0, 1, 0, 1], dtype=torch.int16),
|
|
torch.tensor([1, 2, 3, 4]),
|
|
device=device)
|
|
|
|
def test_factory_layout_invariants_check(self, device):
|
|
with self.assertRaisesRegex(RuntimeError, "expected values to be a strided and contiguous tensor"):
|
|
values = torch.tensor([1.], device=device).expand(4,)
|
|
torch.sparse_csr_tensor(torch.tensor([0, 2, 4], device=device),
|
|
torch.tensor([0, 1, 0, 1], device=device),
|
|
values)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "expected col_indices to be a strided and contiguous tensor"):
|
|
col_indices = torch.tensor([0], device=device).expand(4,)
|
|
torch.sparse_csr_tensor(torch.tensor([0, 2, 4]),
|
|
col_indices,
|
|
torch.tensor([1, 2, 3, 4]))
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "expected crow_indices to be a strided and contiguous tensor"):
|
|
crow_indices = torch.arange(6, device=device)
|
|
torch.sparse_csr_tensor(crow_indices[::2],
|
|
torch.tensor([0, 1, 0, 1], device=device),
|
|
torch.tensor([1, 2, 3, 4]))
|
|
|
|
def test_factory_shape_invariants_check(self, device):
|
|
crow_indices = [0, 2, 4]
|
|
col_indices = [0, 1, 0, 1]
|
|
values = [1, 2, 3, 4]
|
|
size = (2, 10)
|
|
torch.sparse_csr_tensor(torch.tensor(crow_indices), torch.tensor(col_indices), torch.tensor(values), size,
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"size of a CSR tensor must be of length 2, but got: 3"):
|
|
torch.sparse_csr_tensor(torch.tensor(crow_indices), torch.tensor(col_indices), torch.tensor(values),
|
|
size=(2, 10, 2),
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"crow_indices must have dim\=1 but got crow_indices\.dim\(\)\=2"):
|
|
torch.sparse_csr_tensor(torch.tensor(crow_indices).repeat(2, 1),
|
|
torch.tensor(col_indices),
|
|
torch.tensor(values),
|
|
size,
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"col_indices must have dim\=1 but got col_indices\.dim\(\)\=2"):
|
|
torch.sparse_csr_tensor(torch.tensor(crow_indices),
|
|
torch.tensor(col_indices).repeat(2, 1),
|
|
torch.tensor(values),
|
|
size,
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"values must have dim\=1 but got values\.dim\(\)\=2"):
|
|
torch.sparse_csr_tensor(torch.tensor(crow_indices),
|
|
torch.tensor(col_indices),
|
|
torch.tensor(values).repeat(2, 1),
|
|
size,
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
r"crow_indices\.numel\(\) must be size\(0\) \+ 1, but got: 3"):
|
|
torch.sparse_csr_tensor(torch.tensor(crow_indices), torch.tensor(col_indices), torch.tensor(values), (1, 1),
|
|
device=device)
|
|
|
|
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
r"col_indices and values must have equal sizes, " +
|
|
r"but got col_indices\.numel\(\): 3, values\.numel\(\): 4"):
|
|
torch.sparse_csr_tensor(torch.tensor(crow_indices), torch.tensor([0, 1, 0]), torch.tensor(values), size,
|
|
device=device)
|
|
|
|
def test_factory_indices_invariants_check(self, device):
|
|
crow_indices = [0, 2, 4]
|
|
col_indices = [0, 1, 0, 1]
|
|
values = [1, 2, 3, 4]
|
|
size = (2, 10)
|
|
with self.assertRaisesRegex(RuntimeError, "0th value of crow_indices must be 0."):
|
|
torch.sparse_csr_tensor(torch.tensor([-1, 0, 4]), torch.tensor(col_indices), torch.tensor(values), size,
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
"last value of crow_indices should be equal to the length of col_indices."):
|
|
torch.sparse_csr_tensor(torch.tensor([0, 2, 5]), torch.tensor(col_indices), torch.tensor(values), size,
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
r"at position i \= 2," +
|
|
r" this condition crow_indices\[i - 1\] <\= crow_indices\[i\] fails"):
|
|
torch.sparse_csr_tensor(torch.tensor([0, 5, 4]), torch.tensor(col_indices), torch.tensor(values), size,
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"col_indices\.min\(\) should be greater or equal to zero"):
|
|
torch.sparse_csr_tensor(torch.tensor(crow_indices), torch.tensor([0, -1, 0, 1]), torch.tensor(values), size,
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"size\(1\) should be greater than col_indices\.max\(\)"):
|
|
torch.sparse_csr_tensor(torch.tensor(crow_indices), torch.tensor([0, 11, 0, 1]), torch.tensor(values), size,
|
|
device=device)
|
|
|
|
@onlyCUDA
|
|
@dtypes(*torch.testing.get_all_dtypes())
|
|
def test_factory_device_type_inference(self, device, dtype):
|
|
cpu_cuda = ('cpu', 'cuda')
|
|
cpu_cuda_none = cpu_cuda + (None,)
|
|
for crow_indices_device, col_indices_device, values_device, device in itertools.product(cpu_cuda,
|
|
cpu_cuda,
|
|
cpu_cuda,
|
|
cpu_cuda_none):
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
crow_indices = torch.tensor([0, 2, 4], dtype=index_dtype, device=crow_indices_device)
|
|
col_indices = torch.tensor([0, 1, 0, 1], dtype=index_dtype, device=col_indices_device)
|
|
values = torch.tensor([1, 2, 3, 4], dtype=dtype, device=values_device)
|
|
if device is None and (crow_indices_device != col_indices_device or
|
|
crow_indices_device != values_device):
|
|
with self.assertRaises(RuntimeError):
|
|
torch.sparse_csr_tensor(crow_indices,
|
|
col_indices,
|
|
values,
|
|
size=(2, 10),
|
|
device=device)
|
|
else:
|
|
t = torch.sparse_csr_tensor(crow_indices,
|
|
col_indices,
|
|
values,
|
|
size=(2, 10),
|
|
device=device)
|
|
should_be_cuda = (device == 'cuda' or (device is None and values_device == 'cuda'))
|
|
self.assertEqual(should_be_cuda, t.is_cuda)
|
|
t.crow_indices().dtype == index_dtype
|
|
t.col_indices().dtype == index_dtype
|
|
t.values().dtype == dtype
|
|
t.crow_indices().device == t.values().device
|
|
t.col_indices().device == t.values().device
|
|
|
|
def test_sparse_csr_print(self, device):
|
|
orig_maxDiff = self.maxDiff
|
|
self.maxDiff = None
|
|
shape_nnz = [
|
|
((10, 10), 10),
|
|
((100, 10), 10),
|
|
((1000, 10), 10)
|
|
]
|
|
printed = []
|
|
for shape, nnz in shape_nnz:
|
|
values_shape = torch.Size((nnz,))
|
|
col_indices_shape = torch.Size((nnz,))
|
|
crow_indices_shape = torch.Size((shape[0] + 1,))
|
|
printed.append("# shape: {}".format(torch.Size(shape)))
|
|
printed.append("# nnz: {}".format(nnz))
|
|
printed.append("# crow_indices shape: {}".format(crow_indices_shape))
|
|
printed.append("# col_indices shape: {}".format(col_indices_shape))
|
|
printed.append("# values_shape: {}".format(values_shape))
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
for dtype in torch.testing.floating_types():
|
|
printed.append("########## {}/{} ##########".format(dtype, index_dtype))
|
|
x = torch.sparse_csr_tensor(torch.tensor([0, 2, 4], dtype=index_dtype),
|
|
torch.tensor([0, 1, 0, 1], dtype=index_dtype),
|
|
torch.tensor([1, 2, 3, 4]), dtype=dtype, device=device)
|
|
printed.append("# sparse tensor")
|
|
printed.append(str(x))
|
|
printed.append("# _crow_indices")
|
|
printed.append(str(x.crow_indices()))
|
|
printed.append("# _col_indices")
|
|
printed.append(str(x.col_indices()))
|
|
printed.append("# _values")
|
|
printed.append(str(x.values()))
|
|
printed.append('')
|
|
printed.append('')
|
|
self.assertExpected('\n'.join(printed))
|
|
self.maxDiff = orig_maxDiff
|
|
|
|
@dtypes(*torch.testing.get_all_dtypes())
|
|
def test_sparse_csr_from_dense(self, device, dtype):
|
|
dense = torch.tensor([[4, 5, 0], [0, 0, 0], [1, 0, 0]], dtype=dtype, device=device)
|
|
sparse = dense.to_sparse_csr()
|
|
self.assertEqual(torch.tensor([0, 2, 2, 3], dtype=torch.int64), sparse.crow_indices())
|
|
self.assertEqual(torch.tensor([0, 1, 0], dtype=torch.int64), sparse.col_indices())
|
|
self.assertEqual(torch.tensor([4, 5, 1], dtype=dtype), sparse.values())
|
|
|
|
dense = torch.tensor([[0, 0, 0], [0, 0, 1], [1, 0, 0]], dtype=dtype, device=device)
|
|
sparse = dense.to_sparse_csr()
|
|
self.assertEqual(torch.tensor([0, 0, 1, 2], dtype=torch.int64), sparse.crow_indices())
|
|
self.assertEqual(torch.tensor([2, 0], dtype=torch.int64), sparse.col_indices())
|
|
self.assertEqual(torch.tensor([1, 1], dtype=dtype), sparse.values())
|
|
|
|
dense = torch.tensor([[2, 2, 2], [2, 2, 2], [2, 2, 2]], dtype=dtype, device=device)
|
|
sparse = dense.to_sparse_csr()
|
|
self.assertEqual(torch.tensor([0, 3, 6, 9], dtype=torch.int64), sparse.crow_indices())
|
|
self.assertEqual(torch.tensor([0, 1, 2] * 3, dtype=torch.int64), sparse.col_indices())
|
|
self.assertEqual(torch.tensor([2] * 9, dtype=dtype), sparse.values())
|
|
|
|
@dtypes(*torch.testing.get_all_dtypes())
|
|
def test_sparse_csr_to_dense(self, device, dtype):
|
|
mn = [5, 2, 0]
|
|
for (m, n) in itertools.product(mn, mn):
|
|
size = (m, n)
|
|
dense = make_tensor(size, dtype=dtype, device=device)
|
|
sparse = dense.to_sparse_csr()
|
|
self.assertEqual(sparse.to_dense(), dense)
|
|
|
|
crow_indices = torch.tensor([0, 3, 5])
|
|
col_indices = torch.tensor([0, 1, 2, 0, 1])
|
|
values = torch.tensor([1, 2, 1, 3, 4], dtype=dtype)
|
|
csr = torch.sparse_csr_tensor(crow_indices, col_indices,
|
|
values, dtype=dtype, device=device)
|
|
dense = torch.tensor([[1, 2, 1], [3, 4, 0]], dtype=dtype, device=device)
|
|
self.assertEqual(csr.to_dense(), dense)
|
|
|
|
@coalescedonoff
|
|
@dtypes(torch.double)
|
|
def test_coo_to_csr_convert(self, device, dtype, coalesced):
|
|
with self.assertRaisesRegex(RuntimeError, "Input is supposed to be a vector"):
|
|
torch._convert_indices_from_coo_to_csr(
|
|
torch.randint(100, (5, 5), device=device),
|
|
size=100)
|
|
|
|
size = (5, 5)
|
|
sparse_dim = 2
|
|
nnz = 10
|
|
sparse_coo, _, _ = self.genSparseTensor(size, sparse_dim, nnz, coalesced, device, dtype)
|
|
sparse_csr = sparse_coo.to_sparse_csr()
|
|
|
|
self.assertTrue(sparse_csr.is_sparse_csr)
|
|
self.assertEqual(sparse_csr.to_dense(), sparse_coo.to_dense())
|
|
|
|
vec = torch.randn((5, 1), dtype=dtype, device=device)
|
|
coo_product = sparse_coo.matmul(vec)
|
|
csr_product = sparse_csr.matmul(vec)
|
|
|
|
self.assertEqual(coo_product, csr_product)
|
|
|
|
vec = torch.randn((100, 1), dtype=dtype, device=device)
|
|
index = torch.tensor([
|
|
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
|
|
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
|
|
], dtype=torch.int32)
|
|
values = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dtype, device=device)
|
|
coo = torch.sparse_coo_tensor(index, values, torch.Size([100, 100]), dtype=dtype, device=device)
|
|
csr = coo.to_sparse_csr()
|
|
|
|
self.assertEqual(coo.matmul(vec), csr.matmul(vec))
|
|
|
|
col_indices = torch.tensor([
|
|
31, 92, 65, 50, 34, 62, 22, 56, 74, 89
|
|
], dtype=torch.int64, device=device)
|
|
self.assertEqual(csr.col_indices(), col_indices)
|
|
|
|
values = torch.tensor([2, 1, 6, 4, 10, 3, 5, 9, 8, 7], dtype=dtype, device=device)
|
|
self.assertEqual(csr.values(), values)
|
|
|
|
@onlyCPU
|
|
@unittest.skipIf(IS_MACOS or IS_WINDOWS, "MKL doesn't work on windows or mac")
|
|
@dtypes(torch.float, torch.double)
|
|
def test_mkl_matvec_warnings(self, device, dtype):
|
|
if torch.has_mkl:
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
sp = torch.sparse_csr_tensor(torch.tensor([0, 2, 4]),
|
|
torch.tensor([0, 1, 0, 1]),
|
|
torch.tensor([1, 2, 3, 4], dtype=dtype, device=device))
|
|
vec = torch.randn((2, 1), dtype=dtype, device=device)
|
|
with warnings.catch_warnings(record=True) as w:
|
|
sp.matmul(vec)
|
|
self.assertEqual(len(w), 2)
|
|
self.assertIn("Pytorch is compiled with MKL LP64 and will convert crow_indices to int32",
|
|
str(w[0].message))
|
|
self.assertIn("Pytorch is compiled with MKL LP64 and will convert col_indices to int32",
|
|
str(w[1].message))
|
|
|
|
@dtypes(*torch.testing.get_all_dtypes())
|
|
def test_sparse_csr_from_dense_convert_error(self, device, dtype):
|
|
size = (4, 2, 4)
|
|
dense = make_tensor(size, dtype=dtype, device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "Only 2D"):
|
|
sparse = dense.to_sparse_csr()
|
|
|
|
# TODO: Support auto generation of device check for sparse tensors
|
|
# See: https://github.com/pytorch/pytorch/issues/59058
|
|
@onlyCUDA
|
|
@dtypes(torch.double)
|
|
def test_matmul_device_mismatch(self, device, dtype):
|
|
cpu = torch.rand((10, 10))
|
|
cuda = cpu.cuda()
|
|
for s, m1, m2 in itertools.product((cpu, cuda), repeat=3):
|
|
csr = m1.to_sparse()
|
|
if s.device == csr.device == m2.device:
|
|
torch.addmm(s, csr, m2)
|
|
else:
|
|
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
|
|
torch.addmm(s, csr, m2)
|
|
|
|
@dtypes(torch.float, torch.double)
|
|
def test_csr_matvec(self, device, dtype):
|
|
side = 100
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
csr = self.genSparseCSRTensor((side, side), 1000, device=device, dtype=dtype, index_dtype=index_dtype)
|
|
vec = torch.randn(side, dtype=dtype, device=device)
|
|
|
|
res = csr.matmul(vec)
|
|
expected = csr.to_dense().matmul(vec)
|
|
|
|
self.assertEqual(res, expected)
|
|
|
|
bad_vec = torch.randn(side + 10, dtype=dtype, device=device)
|
|
with self.assertRaisesRegex(RuntimeError, "mv: expected"):
|
|
csr.matmul(bad_vec)
|
|
|
|
@dtypes(torch.double)
|
|
def test_mm(self, device, dtype):
|
|
def test_shape(di, dj, dk, nnz):
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
x = self.genSparseCSRTensor((di, dj), nnz, device=device, dtype=dtype, index_dtype=index_dtype)
|
|
t = torch.randn(di, dk, dtype=dtype, device=device)
|
|
y = torch.randn(dj, dk, dtype=dtype, device=device)
|
|
alpha = random.random()
|
|
beta = random.random()
|
|
|
|
# res = beta * t + alpha * (x @ y)
|
|
res = torch.addmm(t, x, y, beta=beta, alpha=alpha)
|
|
expected = torch.addmm(t, x.to_dense(), y, beta=beta, alpha=alpha)
|
|
self.assertEqual(res, expected)
|
|
|
|
res = torch.addmm(t, x, y)
|
|
expected = torch.addmm(t, x.to_dense(), y)
|
|
self.assertEqual(res, expected)
|
|
|
|
res = torch.mm(x, y)
|
|
expected = torch.mm(x.to_dense(), y)
|
|
self.assertEqual(res, expected)
|
|
|
|
for i in range(2, 5):
|
|
for j in range(2, 8):
|
|
for k in range(2, 8):
|
|
test_shape(i, j, k, i * j // 2)
|
|
test_shape(4, 4, 4, 0)
|
|
|
|
@dtypes(*torch.testing.floating_types())
|
|
def test_sparse_mm(self, device, dtype):
|
|
def test_shape(d1, d2, d3, nnz, transposed):
|
|
if transposed:
|
|
D = torch.randn(d3, d2, dtype=dtype, device=device).t_()
|
|
else:
|
|
D = torch.randn(d2, d3, dtype=dtype, device=device)
|
|
S = self.genSparseCSRTensor((d1, d2), nnz, device=device, dtype=dtype, index_dtype=torch.int32)
|
|
S_dense = S.to_dense()
|
|
self.assertEqual(torch.sparse.mm(S, D), torch.mm(S_dense, D))
|
|
|
|
test_shape(7, 8, 9, 20, False)
|
|
test_shape(7, 8, 9, 20, True)
|
|
|
|
@dtypes(*torch.testing.floating_types())
|
|
def test_sparse_addmm(self, device, dtype):
|
|
def test_shape(m, n, p, nnz, broadcast, alpha_beta=None):
|
|
if alpha_beta is None:
|
|
alpha = random.random()
|
|
beta = random.random()
|
|
else:
|
|
alpha, beta = alpha_beta
|
|
if broadcast:
|
|
D1 = make_tensor((), dtype=dtype, device=device)
|
|
else:
|
|
D1 = make_tensor([n, p], dtype=dtype, device=device)
|
|
D2 = make_tensor([m, p], dtype=dtype, device=device)
|
|
S = self.genSparseCSRTensor([n, m], nnz, dtype=dtype, device=device, index_dtype=torch.int32)
|
|
S_dense = S.to_dense()
|
|
Y = torch.sparse.addmm(D1, S, D2, beta=beta, alpha=alpha)
|
|
Y_dense = torch.addmm(D1, S_dense, D2, beta=beta, alpha=alpha)
|
|
self.assertEqual(Y, Y_dense)
|
|
|
|
test_shape(7, 8, 9, 20, False, None)
|
|
test_shape(7, 8, 9, 20, True, None)
|
|
test_shape(7, 8, 9, 20, False, (1, 0))
|
|
test_shape(7, 8, 9, 20, True, (1, 0))
|
|
test_shape(7, 8, 9, 20, False, (1, 1))
|
|
test_shape(7, 8, 9, 20, True, (1, 1))
|
|
|
|
@dtypes(torch.float, torch.double)
|
|
def test_add(self, device, dtype):
|
|
def _test_spadd_shape(nnz, shape):
|
|
x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32)
|
|
y = torch.randn(*shape, dtype=dtype, device=device)
|
|
r = random.random()
|
|
|
|
res = torch.add(y, x, alpha=r)
|
|
expected = y + r * x.to_dense()
|
|
self.assertEqual(res, expected)
|
|
|
|
# Non contiguous dense tensor
|
|
s = list(shape)
|
|
s[0] = shape[-1]
|
|
s[-1] = shape[0]
|
|
y = torch.randn(*s, dtype=torch.double, device=device)
|
|
y.transpose_(0, len(s) - 1)
|
|
r = random.random()
|
|
|
|
res = torch.add(y, x, alpha=r)
|
|
expected = y + r * x.to_dense()
|
|
|
|
self.assertEqual(res, expected)
|
|
|
|
_test_spadd_shape(10, [100, 100])
|
|
_test_spadd_shape(0, [100, 100])
|
|
_test_spadd_shape(10, [100, 1])
|
|
_test_spadd_shape(10, [1, 100])
|
|
|
|
@dtypes(*torch.testing.get_all_dtypes())
|
|
def test_coo_csr_conversion(self, device, dtype):
|
|
for m, n in itertools.product([5, 2, 0], [5, 2, 0]):
|
|
size = (m, n)
|
|
dense = make_tensor(size, dtype=dtype, device=device)
|
|
coo_sparse = dense.to_sparse()
|
|
csr_sparse = coo_sparse.to_sparse_csr()
|
|
|
|
self.assertEqual(csr_sparse.to_dense(), dense)
|
|
|
|
|
|
# e.g., TestSparseCSRCPU and TestSparseCSRCUDA
|
|
instantiate_device_type_tests(TestSparseCSR, globals())
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|