pytorch/torch/csrc/autograd/engine.cpp
Pritam Damania d30fa4837e Unify gradient accumulation between distributed autograd and local autograd (#33214)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33214

Distributed autograd had some custom logic in terms of how we
accumulated gradients. This was mostly done early on to enable basic
functionality. Although, in the long term we should merge this logic with what
we have in the local autograd engine. A lot of work has gone into ensuring we
accumulate grads correctly and efficiently and we should reuse that as a
starting point.

We can investigate if we need further custom logic for distributed autograd
later on if we need additional optimizations.

In this PR I've merged the gradient accumulation logic and also the gradient
hooks. As a result, now gradient hooks are called in distributed autograd as
well.
ghstack-source-id: 99838019

Test Plan: waitforbuildbot

Differential Revision: D19843284

fbshipit-source-id: 7923d7e871fb6afd3e98dba7de96606264dcb5f3
2020-03-10 01:56:08 -07:00

1022 lines
37 KiB
C++

#include <torch/csrc/autograd/engine.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/functions/basic_ops.h>
#include <torch/csrc/autograd/grad_mode.h>
#include <torch/csrc/autograd/anomaly_mode.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/utils/memory.h>
#include <ATen/DeviceGuard.h>
#include <ATen/ExpandUtils.h>
#include <ATen/Parallel.h>
#include <c10/util/Exception.h>
#include <c10/core/Stream.h>
#include <c10/core/Event.h>
#include <c10/core/DeviceGuard.h>
#include <c10/util/Optional.h>
#include <c10/core/StreamGuard.h>
#include <atomic>
#include <condition_variable>
#include <cstdint>
#include <functional>
#include <iostream>
#include <memory>
#include <mutex>
#include <set>
#include <string>
#include <thread>
#include <unordered_set>
#include <typeinfo>
#include <sstream>
#include <queue>
#include <TH/TH.h>
namespace torch { namespace autograd {
namespace {
static bool in_bad_autograd_fork =
false; // True for children forked after engine's thread pool init
// Called in the forked child if engine's thread pool has already been
// initialized
static void forked_autograd_child() { in_bad_autograd_fork = true; }
// Should be called before unsafe for forks (thread pool) calls
static void track_bad_autograd_forks() {
#ifndef WIN32
static std::once_flag flag;
std::call_once(
flag, [&] { pthread_atfork(nullptr, nullptr, forked_autograd_child); });
#endif
}
}
// Threads spawned by the engine are assigned a constant 'worker_device'
// specifying what device they process work for. This variable is initialized
// at thread creation time and is constant afterwards. This is used when
// handling reentrant backwards calls; see Note [Reentrant backwards]
static thread_local int worker_device = NO_DEVICE;
// This variable is true if ALL invocations in the stack of re-entrant engine
// invocations are imperative backwards. This special variable is needed for the
// gradient checkpointing feature only.
static thread_local bool checkpoint_valid = true;
// XXX: Changes to the way multithreading works in execute should be done with
// great care. Right now the implementation guarantees that a single function's
// apply will never be entered concurrently (even if multiple graphs are
// executed at the same time). Adding multiple threads per-device or removing
// engine thread affinity to the device can break this invariant, and we depend
// on it in a few places (e.g. AccumulateGrad function).
// Number of nested reentrant backwards calls currently on this thread
static thread_local int current_depth = 0;
// Total nested reentrant backwards calls over all threads for workder_device
static thread_local int total_depth = 0;
// Returns true when t2 should be (weakly) BEFORE t1 in the queue.
// Shutdown tasks are first and then empty NodeTask are next.
struct CompareNodeTaskTime {
bool operator()(NodeTask const & t1, NodeTask const & t2) {
if (t2.isShutdownTask_) {
return true;
} else if (!t1.fn_ || t1.isShutdownTask_) {
return false;
} else if (!t2.fn_) {
return true;
} else if (t1.getReentrantDepth() == t2.getReentrantDepth()) {
return t1.fn_->sequence_nr() < t2.fn_->sequence_nr();
} else {
return t1.getReentrantDepth() < t2.getReentrantDepth();
}
}
};
struct ReadyQueue {
std::priority_queue<NodeTask, std::vector<NodeTask>, CompareNodeTaskTime> heap_;
// To notify threads waiting on the ReadyQueue of available tasks on the heap_
std::condition_variable not_empty_;
// To protect read and writes to heap_
mutable std::mutex mutex_;
// incrementOutstandingTasks indicates whether or not we should increment
// 'outstanding_tasks_' for the associated GraphTask. This should mostly
// always be true, see the doc for 'enqueue_blocked_task_on_cpu' for when we
// might set this to false.
void push(NodeTask item, bool incrementOutstandingTasks = true);
void pushShutdownTask();
NodeTask pop();
size_t size() const;
};
// Note [Reentrant backwards]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// To understand the reentrant backwards problem, we have to notice two
// aspects of how the autograd engine is implemented today:
//
// 1. When you call Engine::execute(), you want to block until
// differentiation finishes so that you can get the final result variables
// of the backwards pass.
//
// 2. The engine operates by having a single worker thread per work queue,
// and every work queue is pinned to a specific device where the
// operation is executed.
//
// The problem is, suppose that you call backward() inside of a worker
// thread. By property (1), we're supposed to block until the nested task
// finishes. However, by property (2), this worker thread is on the
// hook for processing the tasks assigned to it; we better not block,
// because then all of our backward executions (including the one we
// just started) will deadlock!
//
// We maintain a pool of threads waiting for work to do
// When a reentrant backwards call occurs, the current thread blocks
// and a thread from the pool is woken up to complete the blocking tasks and an
// any other tasks that would have been assigned to that worker. If there are no
// threads available, a new thread is spawned. The new thread will continue
// processing tasks from the same ReadyQueue as the parent worker
//
// When the GraphTask is finished, the parent worker thread that is waiting on
// the task is notified and the current thread returns to the pool.
// Note [Streaming backwards]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// On CUDA devices the autograd engine's device operations are run on the
// same stream that ran them in forward. This requires automatically
// syncing the streams so that function A finishes producing its
// output before function B consumes it.
//
// This synchronization occurs when outputs are placed into input buffers.
// The functions corresponding to input buffer positions have metadata
// recording their streams from forward, and during backward this
// data is used to sync the producer's stream with the consumer's.
//
// When a CUDA function is run either all its inputs were accumulated on the
// stream used to run the function OR the inputs are on different devices
// and the function is responsible for properly acquiring them.
//
// Historically, the autograd engine ran all CUDA operations on their
// device's DEFAULT stream. This meant that syncing (implicitly or
// explicitly) with the default streams was required before and after
// calling backward(). It also meant, however, that syncing with
// the default streams after backward() was sufficient to ensure
// that backward() had finished running. To preserve this historic
// behavior the engine records "leaf streams," the streams of the
// leaf variables, and syncs them with their device's default stream
// at the end of backward. All other streams are already synchronized
// to happen before at least one leaf stream (per the above), so syncing
// the leaf streams with the default streams is sufficient to implement
// the historic behavior.
int NodeTask::getReentrantDepth() const {
std::shared_ptr<GraphTask> graph_task = base_.lock();
if (graph_task) {
return graph_task->reentrant_depth_;
} else {
// The graph task is no longer valid indicating an error. As a result, we
// try to move this to the front of the queue to ensure the autograd
// engine threads pick up this error soon.
return std::numeric_limits<int>::max();
}
}
bool graph_task_completed(const std::shared_ptr<GraphTask>& graph_task) {
return graph_task->outstanding_tasks_.load() == 0 ||
(graph_task->exit_on_error_ && graph_task->has_error_.load());
}
auto ReadyQueue::push(NodeTask item, bool incrementOutstandingTasks) -> void {
{
// Lock mutex for writing to heap_
std::lock_guard<std::mutex> lock(mutex_);
if (incrementOutstandingTasks) {
std::shared_ptr<GraphTask> graph_task = item.base_.lock();
TORCH_INTERNAL_ASSERT(graph_task, "GraphTask is no longer valid!");
++graph_task->outstanding_tasks_;
}
heap_.push(std::move(item));
}
not_empty_.notify_one();
}
auto ReadyQueue::pushShutdownTask() -> void {
{
std::lock_guard<std::mutex> lock(mutex_);
heap_.push(NodeTask({}, nullptr, InputBuffer(0), true));
}
not_empty_.notify_one();
}
size_t ReadyQueue::size() const {
// Lock mutex for accesses to heap_
std::unique_lock<std::mutex> lock(mutex_);
return heap_.size();
}
auto ReadyQueue::pop() -> NodeTask {
// Lock mutex for accesses to heap_
std::unique_lock<std::mutex> lock(mutex_);
not_empty_.wait(lock, [this]{ return !heap_.empty(); });
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
auto task = std::move(const_cast<NodeTask&>(heap_.top())); heap_.pop();
return task;
}
// This limit is based on the default python recursion limit which is 1000
Engine::Engine() : max_recursion_depth_(100) {}
// Send shutdown tasks to all ReadyQueues if no backward tasks are running
// Even though readyQueue should be empty, shutdown tasks have the highest
// priority
Engine::~Engine() {
bool noBackward = true;
for (auto& queue: ready_queues_) {
std::lock_guard<std::mutex> lock(queue->mutex_);
noBackward = noBackward && queue->heap_.empty();
}
if (noBackward) {
for (auto& queue : ready_queues_) {
queue->pushShutdownTask();
}
}
// Othewise threads are leaked
}
void Engine::set_device(int device) {
// NB: We MUST NOT construct the guard for device -1,
// as in some settings we compile with cuda, but
// have lazy stubs for CUDA functionality (so actually
// attempting to setup a guard(-1) will cause an
// error, because it will still query cudaGetDevice).
//
// Don't use DeviceGuard here because its destructor may be called before the
// device is reset. This is fine because the device is thread local.
if (device != -1) {
for (size_t i = 0; i < static_cast<size_t>(c10::DeviceType::COMPILE_TIME_MAX_DEVICE_TYPES); i++) {
auto* impl = c10::impl::device_guard_impl_registry[i].load();
if (impl && device < impl->deviceCount()) {
impl->setDevice(at::Device(static_cast<c10::DeviceType>(i), device));
}
}
}
worker_device = device;
}
auto Engine::thread_init(int device) -> void {
at::init_num_threads();
// Note [Allocating GPUs to autograd threads]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// What's our strategy here? Originally, the autograd engine was written
// with only CUDA in mind. We allocate one thread to handle all CPU
// operations, and a thread per CUDA device.
//
// But what if we have OTHER devices? There are two plausible
// strategies:
//
// - We can allocate threads equal to max(num_cuda_devices, num_xla_devices,
// ...) and colocate cuda device 0 with xla device 0
// - We can allocate threads equal to sum(num_cuda_devices, num_xla_devices,
// ...) keeping everyone separate.
//
// We don't have any good reason to prefer one or the other, so we've
// arbitrarily picked to colocate devices. Maybe the other approach is
// better.
set_device(device);
std::shared_ptr<GraphTask> graph_task = nullptr;
thread_main(graph_task, /* reentrant_thread */ false);
}
// NOTE: graph_tasks do not necessarily form a stack. Imagine this
// case:
//
// +----> Eval1
// Root
// +----> Eval2
//
// Once Root is executed, both Eval1 and Eval2 are added to the ready queue.
// Next, Eval1 is run and this causes the worker to enter thread_main again.
// Then, it pops the next task from the queue, but at this point it is Eval2.
// It enters thread_main once again, but now with graph_task of Eval2, which is
// completely unrelated to that of Eval1 (it's not a recursive call).
// It's all ok and is handled right now, but it should be accounted for
// in case this code is to be changed.
auto Engine::thread_main(
const std::shared_ptr<GraphTask>& graph_task,
bool reentrant_thread) -> void {
// Either reentrant_thread should be false or we should pass in a non-null
// graph_task.
TORCH_INTERNAL_ASSERT(reentrant_thread != (graph_task == nullptr));
auto queue = ready_queues_[worker_device + 1];
// Why the test on graph_task->outstanding_tasks_? See
// Note [Reentrant backwards]
while (!reentrant_thread || graph_task->outstanding_tasks_ > 0) {
// local_graph_task represents the graph_task we retrieve from the queue.
// The outer graph_task represents the overall graph_task we need to execute
// for reentrant execution.
std::shared_ptr<GraphTask> local_graph_task;
{
// Scope this block of execution since NodeTask is not needed after this
// block and can be deallocated (release any references to grad tensors
// as part of inputs_).
NodeTask task = queue->pop();
// This will only work if the worker is running a non backward task
// TODO Needs to be fixed this to work in all cases
if (task.isShutdownTask_) {
C10_LOG_API_USAGE_ONCE("torch.autograd.thread_shutdown");
break;
}
if (!(local_graph_task = task.base_.lock())) {
// GraphTask for function is no longer valid, skipping further
// execution.
continue;
}
if (task.fn_ && !local_graph_task->has_error_.load()) {
AutoGradMode grad_mode(local_graph_task->grad_mode_);
try {
evaluate_function(local_graph_task, task.fn_.get(), task.inputs_);
} catch (std::exception& e) {
thread_on_exception(local_graph_task, task.fn_, e);
}
}
}
// Decrement the outstanding tasks.
--local_graph_task->outstanding_tasks_;
// Check if we've completed execution.
bool gt_completed = graph_task_completed(local_graph_task);
if (gt_completed) {
// We don't need to explicitly notify the owner thread, since
// 'mark_graph_task_completed' would mark the Future as completed and this
// would notify the owner thread that the task has been completed.
mark_graph_task_completed(local_graph_task);
}
auto base_owner = local_graph_task->owner_;
// Send a dummy function task to the owning thread just to
// ensure that it's not sleeping. If it has work, it might see that
// graph_task->outstanding_tasks_ == 0 before it gets to the task, but
// it's a no-op anyway.
// This is not necessary if the owning thread is not a device thread or the
// current thread is the owning thread.
if (base_owner != NO_DEVICE && base_owner != worker_device &&
gt_completed) {
// Synchronize outstanding_tasks_ with queue mutex
std::atomic_thread_fence(std::memory_order_release);
ready_queue_by_index(base_owner)
.push(NodeTask(local_graph_task, nullptr, InputBuffer(0)));
}
}
}
void Engine::reentrant_thread_init() {
at::init_num_threads();
auto tp_shared= thread_pool_shared_;
while(true) {
std::unique_lock<std::mutex> lk(tp_shared->mutex_);
++thread_pool_shared_->num_workers_;
tp_shared->work_.wait(lk, [&tp_shared]{ return !tp_shared->graphtasks_queue_.empty();});
--thread_pool_shared_->num_workers_;
auto task = tp_shared->graphtasks_queue_.front();
tp_shared->graphtasks_queue_.pop();
lk.unlock();
std::shared_ptr<GraphTask> graph_task;
if (!(graph_task = task.lock())) {
LOG(INFO) << "GraphTask has expired, skipping reentrant execution";
continue;
}
set_device(graph_task->owner_);
total_depth = graph_task->reentrant_depth_;
thread_main(graph_task, /* reentrant thread*/ true);
}
}
void Engine::thread_on_exception(
std::shared_ptr<GraphTask> graph_task,
const std::shared_ptr<Node>& fn,
std::exception& e) {
graph_task->set_exception(e, fn);
}
void GraphTask::set_exception_without_signal(const std::shared_ptr<Node>& fn) {
std::unique_lock<std::mutex> lock(mutex_);
if (!has_error_.load()) {
if (AnomalyMode::is_enabled() && fn) {
fn->metadata()->print_stack();
}
has_error_ = true;
}
}
void GraphTask::set_exception(
std::exception& e,
const std::shared_ptr<Node>& fn) {
set_exception_without_signal(fn);
future_result_->setErrorIfNeeded(e.what());
}
static variable_list call_pre_hooks(Node& fn, variable_list inputs) {
for (const auto& hook : fn.pre_hooks()) {
inputs = (*hook)(inputs);
}
return inputs;
}
static variable_list call_post_hooks(Node& fn, variable_list outputs, const variable_list& inputs) {
for (const auto& hook : fn.post_hooks()) {
outputs = (*hook)(outputs, inputs);
}
return outputs;
}
static bool is_compatible_type(const at::TensorOptions& expected, const at::TensorOptions& actual) {
// Types are compatible if they exactly match or if the gradient is a sparse
// version of the expected type.
return expected.type_equal(actual) || (actual.is_sparse() && expected.device().type() == actual.device().type());
}
void validate_outputs(
const edge_list& edges,
variable_list& grads,
const std::function<std::string(const std::string&)>& format_error) {
if (grads.size() != edges.size()) {
std::stringstream ss;
ss << "invalid number of gradients - expected ";
ss << edges.size() << ", but got " << grads.size();
AT_ERROR(format_error(ss.str()));
}
for (size_t i = 0; i < grads.size(); i++) {
const auto& edge = edges[i];
if (!edge.is_valid()) continue;
const auto& metadata = edge.function->input_metadata(edge.input_nr);
const auto& output = grads[i];
if (!output.defined()) {
// FIXME: TestJit.test_ge_optimized fails this assertion.
// std::stringstream ss;
// ss << "undefined gradient at index " << i;
// AT_ERROR(format_error(ss.str()));
continue;
}
if (!grads[i].sizes().equals(metadata.shape())) {
if (!at::is_expandable_to(metadata.shape(), grads[i].sizes())) {
std::stringstream ss;
ss << "invalid gradient at index " << i << " - got ";
ss << grads[i].sizes() << " but expected shape compatible with ";
ss << metadata.shape();
AT_ERROR(format_error(ss.str()));
}
grads[i] = at::sum_to(std::move(grads[i]), metadata.shape());
}
TORCH_CHECK(isFloatingType(grads[i].scalar_type()));
if (c10::typeMetaToScalarType(metadata.options().dtype()) != grads[i].scalar_type()) {
grads[i] = grads[i].to(c10::typeMetaToScalarType(metadata.options().dtype()));
}
if (!is_compatible_type(metadata.options(), grads[i].options())) {
std::stringstream ss;
ss << "invalid gradient at index " << i << " - expected type ";
ss << metadata.options() << " but got " << grads[i].options();
AT_ERROR(format_error(ss.str()));
}
auto output_device = output.device();
if (output_device != metadata.device()) {
std::stringstream ss;
ss << "invalid gradient at index " << i << " - expected device ";
ss << metadata.device() << " but got " << output_device;
AT_ERROR(format_error(ss.str()));
}
}
}
static variable_list call_function(
std::shared_ptr<GraphTask>& graph_task,
Node* func,
InputBuffer& inputBuffer) {
bool prev_checkpoint_valid_state = checkpoint_valid;
checkpoint_valid =
graph_task->can_checkpoint() && prev_checkpoint_valid_state;
auto& fn = *func;
auto inputs =
call_pre_hooks(fn, InputBuffer::variables(std::move(inputBuffer)));
if (!graph_task->keep_graph_) {
fn.will_release_variables();
}
const auto has_post_hooks = !fn.post_hooks().empty();
variable_list outputs;
{
at::DebugInfoGuard guard(graph_task->debug_info_);
if (has_post_hooks) {
// In functions/accumulate_grad.cpp, there is some logic to check the
// conditions under which the incoming gradient can be stolen directly
// (which elides a deep copy) instead of cloned. One of these conditions
// is that the incoming gradient's refcount must be 1 (nothing else is
// referencing the same data). Stashing inputs_copy here bumps the
// refcount, so if post hooks are employed, it's actually still ok for
// accumulate_grad.cpp to steal the gradient if the refcount is 2.
//
// "new_grad.use_count() <= 1 + !post_hooks().empty()" in
// accumulate_grad.cpp accounts for this, but also creates a silent
// dependency between engine.cpp (ie, this particular engine
// implementation) and accumulate_grad.cpp.
//
// If you change the logic here, make sure it's compatible with
// accumulate_grad.cpp.
auto inputs_copy = inputs;
outputs = fn(std::move(inputs_copy));
} else {
outputs = fn(std::move(inputs));
}
}
validate_outputs(fn.next_edges(), outputs, [&](const std::string& msg) {
std::ostringstream ss;
ss << "Function " << fn.name() << " returned an " << msg;
return ss.str();
});
checkpoint_valid = prev_checkpoint_valid_state;
if(has_post_hooks){
// NOLINTNEXTLINE(bugprone-use-after-move)
return call_post_hooks(fn, std::move(outputs), inputs);
}
return outputs;
}
void Engine::evaluate_function(
std::shared_ptr<GraphTask>& graph_task,
Node* func,
InputBuffer& inputs) {
// If exec_info_ is not empty, we have to instrument the execution
auto& exec_info_ = graph_task->exec_info_;
if (!exec_info_.empty()) {
auto& fn_info = exec_info_.at(func);
if (auto* capture_vec = fn_info.captures_.get()) {
// Lock mutex for writing to graph_task->captured_vars_.
std::lock_guard<std::mutex> lock(graph_task->mutex_);
for (auto capture : *capture_vec) {
graph_task->captured_vars_[capture.output_idx_] =
inputs[capture.input_idx_];
}
}
if (!fn_info.needed_) {
// Skip execution if we don't need to execute the function.
return;
}
}
// Switches to a function's CUDA stream (if applicable) before calling it
const auto opt_parent_stream = (*func).stream(c10::DeviceType::CUDA);
c10::OptionalStreamGuard parent_stream_guard{opt_parent_stream};
auto outputs = call_function(graph_task, func, inputs);
auto& fn = *func;
if (!graph_task->keep_graph_) {
fn.release_variables();
}
int num_outputs = outputs.size();
if (num_outputs == 0) { // Note: doesn't acquire the mutex
// Records leaf stream (if applicable)
// See note "Streaming backwards"
if (opt_parent_stream) {
std::lock_guard<std::mutex> lock(graph_task->mutex_);
graph_task->leaf_streams.emplace(*opt_parent_stream);
}
return;
}
if (AnomalyMode::is_enabled()) {
AutoGradMode grad_mode(false);
for (int i = 0; i < num_outputs; ++i) {
auto& output = outputs[i];
at::OptionalDeviceGuard guard(device_of(output));
if (output.defined() && isnan(output).any().item<uint8_t>()) {
std::stringstream ss;
ss << "Function '" << fn.name() << "' returned nan values in its " << i << "th output.";
throw std::runtime_error(ss.str());
}
}
}
// Lock mutex for the accesses to GraphTask dependencies_ and not_ready_ below
std::lock_guard<std::mutex> lock(graph_task->mutex_);
for (int i = 0; i < num_outputs; ++i) {
auto& output = outputs[i];
const auto& next = fn.next_edge(i);
if (!next.is_valid()) continue;
// Check if the next function is ready to be computed
bool is_ready = false;
auto& dependencies = graph_task->dependencies_;
auto it = dependencies.find(next.function.get());
if (it == dependencies.end()) {
auto name = next.function->name();
throw std::runtime_error(std::string("dependency not found for ") + name);
} else if (--it->second == 0) {
dependencies.erase(it);
is_ready = true;
}
auto& not_ready = graph_task->not_ready_;
auto not_ready_it = not_ready.find(next.function.get());
if (not_ready_it == not_ready.end()) {
// Skip functions that aren't supposed to be executed
if (!exec_info_.empty()) {
auto it = exec_info_.find(next.function.get());
if (it == exec_info_.end() || !it->second.should_execute()) {
continue;
}
}
// No buffers have been allocated for the function
InputBuffer input_buffer(next.function->num_inputs());
// Accumulates into buffer
const auto opt_next_stream = next.function->stream(c10::DeviceType::CUDA);
input_buffer.add(next.input_nr,
std::move(output),
opt_parent_stream,
opt_next_stream);
if (is_ready) {
auto& queue = ready_queue(input_buffer.device());
queue.push(
NodeTask(graph_task, next.function, std::move(input_buffer)));
} else {
not_ready.emplace(next.function.get(), std::move(input_buffer));
}
} else {
// The function already has a buffer
auto &input_buffer = not_ready_it->second;
// Accumulates into buffer
const auto opt_next_stream = next.function->stream(c10::DeviceType::CUDA);
input_buffer.add(next.input_nr,
std::move(output),
opt_parent_stream,
opt_next_stream);
if (is_ready) {
auto& queue = ready_queue(input_buffer.device());
queue.push(
NodeTask(graph_task, next.function, std::move(input_buffer)));
not_ready.erase(not_ready_it);
}
}
}
}
/* Computes the number of dependencies for each function which requires grad */
auto Engine::compute_dependencies(Node* root, GraphTask& task) -> void {
// Just to make sure that they will never be added to the queue again
std::unordered_set<Node*> seen;
std::vector<Node*> queue { root };
// Queue contains all nodes that will start propagating gradients.
// We no longer have to expand functions that don't require grad.
auto& dependencies = task.dependencies_;
while (!queue.empty()) {
auto fn = queue.back(); queue.pop_back();
for (const auto& edge : fn->next_edges()) {
if (auto next_ptr = edge.function.get()) {
dependencies[next_ptr] += 1;
const bool was_inserted = seen.insert(next_ptr).second;
if (was_inserted) queue.push_back(next_ptr);
}
}
}
}
struct ClearCallbacks {
ClearCallbacks(std::vector<std::function<void()>>& callbacks,
std::mutex &callbacks_lock)
: callbacks_(callbacks)
, callbacks_lock_(callbacks_lock) { clear(); }
~ClearCallbacks() { clear(); }
void clear() {
std::lock_guard<std::mutex> lock(callbacks_lock_);
callbacks_.clear();
}
std::vector<std::function<void()>>& callbacks_;
std::mutex& callbacks_lock_;
};
auto Engine::execute(const edge_list& roots,
const variable_list& inputs,
bool keep_graph,
bool create_graph,
const edge_list& outputs) -> variable_list {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
validate_outputs(roots, const_cast<variable_list&>(inputs), [](const std::string& msg) {
return msg;
});
// Callbacks are only valid for the duration of this run and should always be cleared
// Lock post_callbacks_lock_ before clearing final_callbacks_
ClearCallbacks _cb_guard(final_callbacks_, post_callbacks_lock_);
auto graph_task = std::make_shared<GraphTask>(
keep_graph,
create_graph,
worker_device == NO_DEVICE ? 0 : total_depth + 1);
// Now compute the dependencies for all executable functions and queue the root
auto graph_root = std::make_shared<GraphRoot>(roots, inputs);
compute_dependencies(graph_root.get(), *graph_task);
if (!outputs.empty()) {
graph_task->init_to_execute(*graph_root, outputs);
}
return execute_with_graph_task(graph_task, graph_root)->wait();
}
void Engine::initialize_threads_pool() {
track_bad_autograd_forks();
TORCH_CHECK(!in_bad_autograd_fork,
"Unable to handle autograd's threading in combination with fork-based multiprocessing. "
"See https://github.com/pytorch/pytorch/wiki/Autograd-and-Fork");
std::call_once(start_threads_flag_, &Engine::start_threads, this);
}
void Engine::enqueue_blocked_task_on_cpu(NodeTask task) {
initialize_threads_pool();
ready_queue(at::kCPU).push(
std::move(task), /* incrementOutstandingTasks */ false);
}
std::shared_ptr<FutureVariableList> Engine::execute_with_graph_task(
const std::shared_ptr<GraphTask>& graph_task,
std::shared_ptr<Node> graph_root) {
initialize_threads_pool();
// Lock mutex for GraphTask.
std::unique_lock<std::mutex> lock(graph_task->mutex_);
ready_queue(at::kCPU).push(
NodeTask(graph_task, std::move(graph_root), InputBuffer(0)));
// Not a worker
if (worker_device == NO_DEVICE) {
// graph_task_exec_post_processing is done when the Future is marked as
// completed in mark_graph_task_completed.
return graph_task->future_result_;
} else {
graph_task->owner_ = worker_device;
if (current_depth >= max_recursion_depth_) {
// See Note [Reentrant backwards]
// If reached the max depth, switch to a different thread
add_thread_pool_task(graph_task);
// graph_task_exec_post_processing is done when the Future is marked as
// completed in mark_graph_task_completed.
return graph_task->future_result_;
} else {
// Total depth needs to be updated only in this codepath, since it is
// not used in the block above (when we call add_thread_pool_task).
// In the codepath above, GraphTask.reentrant_depth_ is used to
// bootstrap total_depth in the other thread.
++total_depth;
// Get back to work while we wait for our new graph_task to
// complete!
++current_depth;
lock.unlock();
thread_main(graph_task, /* reentrant_thread */ true);
--current_depth;
--total_depth;
// The graph task should have completed and the associated future should
// be marked completed as well.
TORCH_INTERNAL_ASSERT(graph_task->future_result_->completed());
// We return a completed future here since 'thread_main' above is a call
// blocking an autograd engine thread and not the thread the user called
// 'execute_with_graph_task' from.
return graph_task->future_result_;
}
}
}
void Engine::mark_graph_task_completed(std::shared_ptr<GraphTask>& graph_task) {
std::unique_lock<std::mutex> lock(graph_task->mutex_);
if (graph_task->future_result_->completed()) {
// Future is already marked as completed.
return;
}
try {
// Run post processing, before marking the future as complete.
graph_task_exec_post_processing(graph_task);
graph_task->future_result_->markCompleted(
std::move(graph_task->captured_vars_));
} catch (std::exception& e) {
graph_task->future_result_->setError(e.what());
}
}
void Engine::graph_task_exec_post_processing(
const std::shared_ptr<GraphTask>& graph_task) {
if (!graph_task->not_ready_.empty()) {
throw std::runtime_error("could not compute gradients for some functions");
}
// Lock mutex during each iteration for accessing final_callbacks.size()
// Unlocking is necessary, because the callback can register
// more callbacks (or they can be registered from other threads
// while it's waiting.
std::unique_lock<std::mutex> cb_lock(post_callbacks_lock_);
// WARNING: Don't use a range-for loop here because more callbacks may be
// added in between callback calls, so iterators may become invalidated.
// NOLINTNEXTLINE(modernize-loop-convert)
for (size_t i = 0; i < final_callbacks_.size(); ++i) {
cb_lock.unlock();
final_callbacks_[i]();
cb_lock.lock();
}
// Syncs leaf streams with default streams (if necessary)
// See note "Streaming backwards"
for (const auto& leaf_stream : graph_task->leaf_streams) {
const auto guard = c10::impl::VirtualGuardImpl{c10::DeviceType::CUDA};
const auto default_stream = guard.getDefaultStream(leaf_stream.device());
if (leaf_stream != default_stream) {
auto event = c10::Event{c10::DeviceType::CUDA};
event.record(leaf_stream);
default_stream.wait(event);
}
}
}
// note that when python is present, this base engine will be overriden
// with a PythonEngine. Because this typically happens before get_default_engine
// is called, this base engine will never be created.
static Engine& get_base_engine() {
static Engine engine;
return engine;
}
std::atomic<EngineStub> engine_stub(get_base_engine);
void set_default_engine_stub(EngineStub stub) {
engine_stub.store(stub);
}
Engine& Engine::get_default_engine() {
return engine_stub.load()();
}
void Engine::queue_callback(std::function<void()> callback) {
std::lock_guard<std::mutex> lock(post_callbacks_lock_);
final_callbacks_.emplace_back(std::move(callback));
}
bool Engine::is_checkpoint_valid() {
return checkpoint_valid;
}
size_t Engine::ready_queue_size(at::Device device) {
if (ready_queues_.empty()) {
// The vector ready_queues_ is initialized in start_threads, but this method
// can be called before start_threads. Adding this check to avoid index
// out of bound error.
return 0;
}
return ready_queue(device).size();
}
auto Engine::ready_queue(at::Device device) -> ReadyQueue& {
// See Note [Allocating GPUs to autograd threads]
if (device.type() == at::kCPU) {
return *ready_queues_.at(0);
} else {
return *ready_queues_.at(device.index() + 1);
}
}
// See Note [Allocating GPUs to autograd threads]
// NB: This would become obsolete if we truly allocated a CPU thread
// per device, rather than colocate.
auto Engine::ready_queue_by_index(int device_index) -> ReadyQueue& {
return *ready_queues_.at(device_index + 1);
}
auto Engine::start_threads() -> void {
// See Note [Allocating GPUs to autograd threads]
c10::DeviceIndex num_devices = 0;
for (const auto& impl_atomic : c10::impl::device_guard_impl_registry) {
auto* impl = impl_atomic.load();
if (impl) {
num_devices = std::max(num_devices, impl->deviceCount());
}
}
// One for CPU, plus one for every GPU device (but colocate GPUs of different
// types)
int num_threads = num_devices + 1;
ready_queues_ = std::vector<std::shared_ptr<ReadyQueue>>(num_threads);
for (auto& queue : ready_queues_)
queue.reset(new ReadyQueue());
thread_pool_shared_ = std::make_shared<ThreadPoolShared>();
for (int i = 0; i < num_threads; ++i) {
std::thread t(&Engine::thread_init, this, i - 1);
t.detach();
}
}
void Engine::add_thread_pool_task(const std::weak_ptr<GraphTask>& graph_task) {
std::unique_lock<std::mutex> lck(thread_pool_shared_->mutex_);
// There may already be some items on the graphtasks_queue_ added by other
// threads but not enough workers to get to the the new task that will be
// added
bool create_thread = (thread_pool_shared_->num_workers_ <= thread_pool_shared_->graphtasks_queue_.size());
thread_pool_shared_->graphtasks_queue_.push(graph_task);
// Don't need to be holding the lock while actually creating the thread
lck.unlock();
if (create_thread) {
std::thread t(&Engine::reentrant_thread_init, this);
t.detach();
}
// This works even if new thread is created because wait() will test the
// predicate before waiting
thread_pool_shared_->work_.notify_one();
}
void GraphTask::init_to_execute(Node& graph_root, const edge_list& outputs) {
exec_info_[&graph_root].needed_ = true;
int output_idx = 0;
for (auto & output_edge : outputs) {
Node *output = output_edge.function.get();
auto & info = exec_info_[output];
if (!info.captures_)
info.captures_ = make_unique<std::vector<ExecInfo::Capture>>();
info.captures_->emplace_back(output_edge.input_nr, output_idx++);
}
captured_vars_.resize(output_idx);
// NB: this is an uglier version (recursion replaced with iteration) of the following code:
// is_needed = {}
// def compute_is_needed(fn):
// if fn not in is_needed:
// is_needed[fn] = any(compute_is_needed(next_edge)
// for next_edge in fn.next_edges)
// return is_needed[fn]
struct Frame {
Frame (Node *fn) : fn_(fn), next_next_fn_(0) {}
Node *fn_;
size_t next_next_fn_;
Node* get_next_fn() {
const auto & next = fn_->next_edges();
auto num_next = next.size();
while (next_next_fn_ < num_next) {
auto fn = next[next_next_fn_++].function.get();
if (fn) return fn;
}
return nullptr;
}
};
std::vector<Frame> stack;
std::unordered_set<Node*> seen;
for (const auto & input : graph_root.next_edges()) {
if (seen.count(input.function.get()) > 0) continue;
stack.emplace_back(input.function.get());
while (!stack.empty()) {
auto &frame = stack.back();
if (Node *next_fn = frame.get_next_fn()) {
if (/* bool unseen = */ seen.emplace(next_fn).second) {
stack.emplace_back(next_fn);
continue; // recurse
}
} else {
// NB: if we were using real recursion we could have saved some lookups
// using a return value from recursive call. It would make this manually unrolled
// version a lot more complicated, so I skipped that.
const auto & next_edges = frame.fn_->next_edges();
const bool needed = std::any_of(
next_edges.begin(), next_edges.end(), [&](const Edge& edge) {
auto it = exec_info_.find(edge.function.get());
return it != exec_info_.end() && it->second.should_execute();
});
exec_info_[frame.fn_].needed_ = needed;
stack.pop_back();
}
}
}
}
}} // namespace torch::autograd