mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134665 Approved by: https://github.com/albanD
383 lines
13 KiB
Python
383 lines
13 KiB
Python
# Owner(s): ["oncall: distributed"]
|
|
|
|
import os
|
|
import sys
|
|
from typing import cast, List, Optional, Union
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.futures
|
|
import torch.nn
|
|
from torch.distributed._shard import sharded_tensor
|
|
from torch.distributed._shard.sharded_tensor import ShardedTensor, state_dict_hook
|
|
from torch.distributed._shard.sharding_spec import ChunkShardingSpec
|
|
from torch.distributed.checkpoint import (
|
|
CheckpointException,
|
|
load_state_dict,
|
|
save_state_dict,
|
|
StorageReader,
|
|
StorageWriter,
|
|
)
|
|
from torch.distributed.checkpoint.default_planner import _create_default_local_metadata
|
|
from torch.distributed.checkpoint.metadata import (
|
|
BytesStorageMetadata,
|
|
Metadata,
|
|
TensorStorageMetadata,
|
|
)
|
|
from torch.distributed.checkpoint.planner import (
|
|
LoadPlan,
|
|
LoadPlanner,
|
|
SavePlan,
|
|
SavePlanner,
|
|
)
|
|
from torch.distributed.checkpoint.storage import WriteResult
|
|
from torch.futures import Future
|
|
from torch.testing._internal.common_distributed import requires_nccl, skip_if_lt_x_gpu
|
|
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
|
|
from torch.testing._internal.distributed._shard.sharded_tensor import (
|
|
ShardedTensorTestBase,
|
|
with_comms,
|
|
)
|
|
|
|
|
|
if TEST_WITH_DEV_DBG_ASAN:
|
|
print(
|
|
"Skip dev-asan as torch + multiprocessing spawn have known issues",
|
|
file=sys.stderr,
|
|
)
|
|
sys.exit(0)
|
|
|
|
|
|
class TestModule(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.sharded: ShardedTensor = sharded_tensor.zeros(self.spec(), 4, 4)
|
|
self.regular = torch.nn.Parameter(torch.ones(4, 4))
|
|
self.extra_sharded: Optional[ShardedTensor] = None
|
|
self.extra_param: Optional[torch.nn.Parameter] = None
|
|
self._register_state_dict_hook(state_dict_hook)
|
|
|
|
def spec(self) -> ChunkShardingSpec:
|
|
# pyre-fixme [28]: Unexpected keyword argument `dim` to call `dist._sharding_spec.api.ChunkShardingSpec.__init__`.
|
|
return ChunkShardingSpec(
|
|
dim=0,
|
|
placements=[
|
|
"rank:0/cuda:0",
|
|
"rank:1/cuda:1",
|
|
],
|
|
)
|
|
|
|
|
|
class TestDistributedCheckpointing(ShardedTensorTestBase):
|
|
@property
|
|
def world_size(self) -> int:
|
|
return 2
|
|
|
|
@with_comms(init_rpc=False)
|
|
@skip_if_lt_x_gpu(2)
|
|
@requires_nccl()
|
|
def test_tensor_metadata_with_missing_rank_spec(self) -> None:
|
|
spec = ChunkShardingSpec(
|
|
dim=0,
|
|
placements=[
|
|
"rank:1/cuda:1",
|
|
],
|
|
)
|
|
|
|
st = sharded_tensor.zeros(spec, 4, 4, dtype=torch.float64)
|
|
md = _create_default_local_metadata({"st": st})
|
|
st_md = md.state_dict_metadata["st"]
|
|
|
|
self.assertEqual(1, len(st_md.chunks))
|
|
|
|
@with_comms(init_rpc=False)
|
|
@skip_if_lt_x_gpu(2)
|
|
@requires_nccl()
|
|
def test_default_metadata(self) -> None:
|
|
device = f"cuda:{dist.get_rank()}"
|
|
spec = ChunkShardingSpec(
|
|
dim=0,
|
|
placements=[
|
|
"rank:0/cuda:0",
|
|
"rank:1/cuda:1",
|
|
],
|
|
)
|
|
|
|
state_dict = {
|
|
"sharded": sharded_tensor.rand(
|
|
spec,
|
|
(
|
|
10,
|
|
10,
|
|
),
|
|
),
|
|
"replicated": torch.rand(4, device=device),
|
|
"bytes": [1, 2, 3, 4],
|
|
}
|
|
|
|
metadata = _create_default_local_metadata(state_dict)
|
|
self.assertTrue("bytes" in metadata.state_dict_metadata)
|
|
self.assertIsInstance(
|
|
metadata.state_dict_metadata["bytes"], BytesStorageMetadata
|
|
)
|
|
|
|
self.assertTrue("replicated" in metadata.state_dict_metadata)
|
|
self.assertIsInstance(
|
|
metadata.state_dict_metadata["replicated"], TensorStorageMetadata
|
|
)
|
|
md = metadata.state_dict_metadata["replicated"]
|
|
self.assertEqual(md.size, state_dict["replicated"].size())
|
|
self.assertEqual(md.properties.dtype, torch.float32)
|
|
self.assertEqual(1, len(md.chunks))
|
|
|
|
self.assertTrue("sharded" in metadata.state_dict_metadata)
|
|
self.assertIsInstance(
|
|
metadata.state_dict_metadata["sharded"], TensorStorageMetadata
|
|
)
|
|
md = metadata.state_dict_metadata["sharded"]
|
|
self.assertEqual(md.properties.dtype, torch.float32)
|
|
self.assertEqual(md.size, state_dict["sharded"].size())
|
|
self.assertEqual(2, len(md.chunks))
|
|
|
|
|
|
class TestStorageBase:
|
|
def __init__(self, fail_conf):
|
|
self.fail_conf = fail_conf
|
|
self.rank = 0 if not dist.is_initialized() else dist.get_rank()
|
|
|
|
def _get_ranks(self, name):
|
|
return self.fail_conf[name] if name in self.fail_conf else None
|
|
|
|
def _fail_rank(self, name):
|
|
ranks = self._get_ranks(name)
|
|
if ranks is not None and self.rank in ranks:
|
|
raise ValueError(f"rank fail {self.rank} for {name}")
|
|
|
|
def _fail_rank_async(self, name, result=None):
|
|
ranks = self._get_ranks(name)
|
|
fut = Future()
|
|
if ranks is not None and self.rank in ranks:
|
|
fut.set_exception(ValueError(f"async rank fail {self.rank} for {name}"))
|
|
else:
|
|
fut.set_result(result)
|
|
return fut
|
|
|
|
|
|
class FaultyStorageWriter(TestStorageBase, StorageWriter):
|
|
def __init__(self, fail_conf):
|
|
super().__init__(fail_conf)
|
|
|
|
def reset(self, checkpoint_id: Union[str, os.PathLike, None] = None) -> None:
|
|
return
|
|
|
|
def set_up_storage_writer(self, is_coordinator: bool) -> None:
|
|
self._fail_rank("fail_set_up_storage_writer")
|
|
|
|
def prepare_local_plan(self, plan: SavePlan) -> SavePlan:
|
|
self._fail_rank("fail_prepare_local_plan")
|
|
return plan
|
|
|
|
def prepare_global_plan(self, plans: List[SavePlan]) -> List[SavePlan]:
|
|
self._fail_rank("fail_prepare_global_plan")
|
|
return plans
|
|
|
|
def write_data(
|
|
self, plan: SavePlan, planner: SavePlanner
|
|
) -> Future[List[WriteResult]]:
|
|
self._fail_rank("fail_write_data")
|
|
return self._fail_rank_async("fail_write_data_async", [])
|
|
|
|
def finish(self, metadata: Metadata, results: List[List[WriteResult]]) -> None:
|
|
self._fail_rank("fail_finish")
|
|
|
|
@classmethod
|
|
def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool:
|
|
return True
|
|
|
|
|
|
class FaultyStorageReader(TestStorageBase, StorageReader):
|
|
def __init__(self, metadata, fail_conf):
|
|
super().__init__(fail_conf)
|
|
self.metadata = metadata
|
|
|
|
def reset(self, checkpoint_id: Union[str, os.PathLike, None] = None) -> None:
|
|
return
|
|
|
|
def set_up_storage_reader(self, metadata: Metadata, is_coordinator: bool) -> None:
|
|
self._fail_rank("fail_set_up_storage_reader")
|
|
|
|
def prepare_local_plan(self, plan: LoadPlan) -> LoadPlan:
|
|
self._fail_rank("fail_prepare_local_plan")
|
|
return plan
|
|
|
|
def prepare_global_plan(self, plans: List[LoadPlan]) -> List[LoadPlan]:
|
|
self._fail_rank("fail_prepare_global_plan")
|
|
return plans
|
|
|
|
def read_data(self, plan: LoadPlan, planner: LoadPlanner) -> Future[None]:
|
|
self._fail_rank("fail_read_data")
|
|
return self._fail_rank_async("fail_read_data_async")
|
|
|
|
def read_metadata(self) -> Metadata:
|
|
self._fail_rank("fail_read_metadata")
|
|
return self.metadata
|
|
|
|
@classmethod
|
|
def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool:
|
|
return True
|
|
|
|
|
|
class TestDistributedFailure(ShardedTensorTestBase):
|
|
def get_spec(self):
|
|
return ChunkShardingSpec(
|
|
dim=0,
|
|
placements=[f"rank:{r}/cuda:{r}" for r in range(dist.get_world_size())],
|
|
)
|
|
|
|
@with_comms(init_rpc=False)
|
|
@skip_if_lt_x_gpu(2)
|
|
@requires_nccl()
|
|
def test_dummy_writer_works(self) -> None:
|
|
state_dict = {
|
|
"sharded": sharded_tensor.rand(self.get_spec(), 20, 20),
|
|
"replicated": torch.rand(10, 10),
|
|
"bytes": [1, 2, 3, 4],
|
|
}
|
|
|
|
save_state_dict(state_dict, FaultyStorageWriter({}))
|
|
|
|
@with_comms(init_rpc=False)
|
|
@skip_if_lt_x_gpu(2)
|
|
@requires_nccl()
|
|
def test_dummy_reader_works(self) -> None:
|
|
state_dict = {
|
|
"sharded": sharded_tensor.rand(self.get_spec(), 20, 20),
|
|
"replicated": torch.rand(10, 10),
|
|
"bytes": [1, 2, 3, 4],
|
|
}
|
|
metadata = _create_default_local_metadata(state_dict)
|
|
|
|
load_state_dict(state_dict, FaultyStorageReader(metadata, {}))
|
|
|
|
def _test_dist_failure(self, callback, kwargs):
|
|
bad_ranks = next(iter(kwargs.values())) if len(kwargs) > 0 else []
|
|
|
|
# Empty bad_ranks means it must work
|
|
if len(bad_ranks) == 0:
|
|
callback()
|
|
else:
|
|
with self.assertRaises(CheckpointException) as cm:
|
|
callback()
|
|
e = cast(CheckpointException, cm.exception)
|
|
for rank, wrapped_ex in e.failures.items():
|
|
ex = wrapped_ex[0]
|
|
self.assertTrue(rank in bad_ranks, msg=f"{rank} did not fail")
|
|
if not kwargs.get("ignore_exception_type", False):
|
|
self.assertEqual(ValueError, type(ex), str(ex))
|
|
|
|
failed_ranks = e.failures.keys()
|
|
for rank in bad_ranks:
|
|
self.assertTrue(
|
|
rank in failed_ranks,
|
|
msg=f"{rank} was supposed to fail was fine",
|
|
)
|
|
|
|
def _test_save(self, state_dict, coordinator=0, **kwargs):
|
|
no_dist = not dist.is_initialized()
|
|
|
|
def _save():
|
|
save_state_dict(
|
|
state_dict,
|
|
storage_writer=FaultyStorageWriter(kwargs),
|
|
coordinator_rank=coordinator,
|
|
no_dist=no_dist,
|
|
)
|
|
|
|
self._test_dist_failure(_save, kwargs)
|
|
|
|
def _test_load(self, state_dict, coordinator=0, **kwargs):
|
|
no_dist = not dist.is_initialized()
|
|
|
|
def _load():
|
|
metadata = _create_default_local_metadata(state_dict)
|
|
load_state_dict(
|
|
state_dict,
|
|
storage_reader=FaultyStorageReader(metadata, kwargs),
|
|
coordinator_rank=coordinator,
|
|
no_dist=no_dist,
|
|
)
|
|
|
|
self._test_dist_failure(_load, kwargs)
|
|
|
|
@with_comms(init_rpc=False)
|
|
@skip_if_lt_x_gpu(4)
|
|
@requires_nccl()
|
|
def test_save_error_handling(self) -> None:
|
|
state_dict = {
|
|
"sharded": sharded_tensor.rand(self.get_spec(), 20, 20),
|
|
"replicated": torch.rand(10, 10),
|
|
"bytes": [1, 2, 3, 4],
|
|
}
|
|
|
|
self._test_save(state_dict, fail_set_up_storage_writer=[0])
|
|
self._test_save(state_dict, fail_finish=[0])
|
|
self._test_save(state_dict, fail_prepare_global_plan=[0])
|
|
|
|
self._test_save(state_dict, fail_prepare_local_plan=[0])
|
|
self._test_save(state_dict, fail_write_data=[2])
|
|
self._test_save(state_dict, fail_write_data_async=[3])
|
|
|
|
self._test_save(state_dict, coordinator=1, fail_set_up_storage_writer=[1])
|
|
self._test_save(state_dict, coordinator=1, fail_finish=[1])
|
|
|
|
def test_save_error_handling_no_dist(self) -> None:
|
|
state_dict = {"replicated": torch.rand(10, 10), "bytes": [1, 2, 3, 4]}
|
|
|
|
self.assertFalse(dist.is_initialized())
|
|
|
|
self._test_save(state_dict, fail_set_up_storage_writer=[0])
|
|
self._test_save(state_dict, fail_finish=[0])
|
|
self._test_save(state_dict, fail_prepare_global_plan=[0])
|
|
|
|
self._test_save(state_dict, fail_prepare_local_plan=[0])
|
|
self._test_save(state_dict, fail_write_data=[0])
|
|
self._test_save(state_dict, fail_write_data_async=[0])
|
|
|
|
@with_comms(init_rpc=False)
|
|
@skip_if_lt_x_gpu(4)
|
|
@requires_nccl()
|
|
def test_load_error_handling(self) -> None:
|
|
state_dict = {
|
|
"sharded": sharded_tensor.rand(self.get_spec(), 20, 20),
|
|
"replicated": torch.rand(10, 10),
|
|
"bytes": [1, 2, 3, 4],
|
|
}
|
|
|
|
self._test_load(state_dict)
|
|
self._test_load(state_dict, fail_set_up_storage_reader=[0])
|
|
self._test_load(state_dict, fail_prepare_global_plan=[0])
|
|
self._test_load(state_dict, fail_read_metadata=[0])
|
|
self._test_load(state_dict, fail_prepare_local_plan=[1])
|
|
self._test_load(state_dict, fail_read_data=[3])
|
|
self._test_load(state_dict, fail_read_data_async=[1])
|
|
|
|
self._test_load(state_dict, coordinator=3, fail_set_up_storage_reader=[0])
|
|
self._test_load(state_dict, coordinator=1, fail_read_metadata=[3])
|
|
self._test_load(state_dict, coordinator=2, fail_read_data=[0])
|
|
self._test_load(state_dict, coordinator=3, fail_read_data_async=[2])
|
|
self._test_load(state_dict, coordinator=1, fail_prepare_global_plan=[1])
|
|
|
|
def test_load_error_handling_no_dist(self) -> None:
|
|
state_dict = {"replicated": torch.rand(10, 10), "bytes": [1, 2, 3, 4]}
|
|
self._test_load(state_dict)
|
|
self._test_load(state_dict, fail_set_up_storage_reader=[0])
|
|
self._test_load(state_dict, fail_read_metadata=[0])
|
|
self._test_load(state_dict, fail_prepare_local_plan=[0])
|
|
self._test_load(state_dict, fail_prepare_global_plan=[0])
|
|
self._test_load(state_dict, fail_read_data=[0])
|
|
self._test_load(state_dict, fail_read_data_async=[0])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|