mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Previously, DTensor kept its own copy of the generator state after the first time a random operator was called on a DTensor. This copy would evolve independently from the generator outside of DTensor. After adding support for users to pass a specific generator into random operators (e.g. `uniform_(..., generator=)`), it was determined (in discussion on #159991) to change the semantics so that any random operations performed on DTensor would evolve the state of the publicly visible generators (either the default one or user-passed one). The upsides are (1) it is now possible to call torch.manual_seed() at any point in the program and have a consistent effect on DTensor, (2) DTensor ops have an observable effect on the generator. The downside is that users are now responsible for seeding their generator before using DTensor, ensuring all ranks use the same seed. Fixes #159991 confirmed docs rendered OK <img width="897" height="414" alt="image" src="https://github.com/user-attachments/assets/c082f0f0-5447-47aa-834f-65342eb237cd" /> Pull Request resolved: https://github.com/pytorch/pytorch/pull/160482 Approved by: https://github.com/wanchaol
665 lines
27 KiB
Python
665 lines
27 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates
|
|
# Owner(s): ["oncall: distributed"]
|
|
|
|
import itertools
|
|
|
|
import torch
|
|
import torch.distributed._functional_collectives as funcol
|
|
import torch.distributed.tensor._random as random
|
|
from torch.distributed.device_mesh import init_device_mesh
|
|
from torch.distributed.distributed_c10d import broadcast_object_list
|
|
from torch.distributed.fsdp import fully_shard
|
|
from torch.distributed.tensor import (
|
|
DeviceMesh,
|
|
distribute_tensor,
|
|
DTensor,
|
|
Replicate,
|
|
Shard,
|
|
)
|
|
from torch.distributed.tensor._random import (
|
|
is_rng_supported_mesh,
|
|
manual_seed,
|
|
OffsetBasedRNGTracker,
|
|
)
|
|
from torch.distributed.tensor._utils import compute_local_shape_and_global_offset
|
|
from torch.distributed.tensor.debug import CommDebugMode
|
|
from torch.distributed.tensor.parallel import ColwiseParallel, parallelize_module
|
|
from torch.testing._internal.common_utils import run_tests
|
|
from torch.testing._internal.distributed._tensor.common_dtensor import (
|
|
DTensorTestBase,
|
|
skip_if_lt_x_gpu,
|
|
skip_unless_torch_gpu,
|
|
with_comms,
|
|
)
|
|
|
|
|
|
def get_generator_seed_for_device_type(device_type: str) -> int:
|
|
device_module = torch.get_device_module(device_type)
|
|
return device_module.get_rng_state()[:8].view(torch.int64).item()
|
|
|
|
|
|
class DistTensorRandomInitTest(DTensorTestBase):
|
|
def _run_init_op(self, init_op, *args, **kwargs):
|
|
device_mesh = self.build_device_mesh()
|
|
shard_spec = [Shard(0)]
|
|
input_size = (8, 4)
|
|
|
|
# NOTE: currently random initialization on cuda device has different
|
|
# behavior from other devices. Unify the test once the behavior is unified.
|
|
if not is_rng_supported_mesh(device_mesh):
|
|
input_tensor = torch.randn(*input_size, device=self.device_type)
|
|
dtensor = DTensor.from_local(input_tensor, device_mesh, shard_spec)
|
|
local_tensor_clone = torch.clone(input_tensor)
|
|
torch.manual_seed(self.rank)
|
|
local_tensor_clone = init_op(local_tensor_clone, *args, **kwargs)
|
|
torch.manual_seed(self.rank)
|
|
dtensor = init_op(dtensor, *args, **kwargs)
|
|
self.assertEqual(local_tensor_clone, dtensor.to_local())
|
|
else:
|
|
# create DTensor from Tensor
|
|
_tensor = torch.empty(*input_size, device=self.device_type)
|
|
dtensor = distribute_tensor(_tensor, device_mesh, [Shard(1)])
|
|
|
|
# DTensor random init
|
|
dtensor = init_op(dtensor, *args, **kwargs)
|
|
local_tensor = dtensor.to_local()
|
|
|
|
# compare with local tensors from other ranks
|
|
for other_rank in range(self.world_size):
|
|
if self.rank != other_rank:
|
|
slice_idx = (
|
|
slice(input_size[0]),
|
|
slice(
|
|
other_rank * input_size[1], (other_rank + 1) * input_size[1]
|
|
),
|
|
)
|
|
# other rank should have a different local tensor
|
|
self.assertNotEqual(dtensor.full_tensor()[slice_idx], local_tensor)
|
|
|
|
@with_comms
|
|
def test_init_ops(self):
|
|
self._run_init_op(
|
|
torch.nn.init.kaiming_uniform_,
|
|
a=0,
|
|
mode="fan_in",
|
|
nonlinearity="leaky_relu",
|
|
)
|
|
self._run_init_op(torch.nn.init.normal_, mean=1.5, std=0.8)
|
|
self._run_init_op(torch.nn.init.uniform_, a=0, b=1.2)
|
|
|
|
for dtype in (torch.float32, torch.float16):
|
|
self._run_init_op(torch.rand_like, dtype=dtype)
|
|
self._run_init_op(torch.randn_like, dtype=dtype)
|
|
self._run_init_op(torch.randint_like, low=0, high=100, dtype=dtype)
|
|
|
|
@with_comms
|
|
@skip_if_lt_x_gpu(4)
|
|
def test_init_with_user_generator(self):
|
|
device_mesh = self.build_device_mesh()
|
|
torch.manual_seed(42)
|
|
rng = torch.Generator(device="cuda").manual_seed(42)
|
|
t1 = torch.distributed.tensor.empty(
|
|
(8, 3), device_mesh=device_mesh, placements=[Shard(0)]
|
|
)
|
|
t2 = torch.distributed.tensor.empty(
|
|
(8, 3), device_mesh=device_mesh, placements=[Shard(0)]
|
|
)
|
|
for i in range(2):
|
|
# run a second time, to make sure that `rng`'s offset-state is advancing on the second usage
|
|
torch.nn.init.uniform_(t1, 0.0, 1.0)
|
|
torch.nn.init.uniform_(t2, 0.0, 1.0, rng)
|
|
self.assertEqual(t1.full_tensor(), t2.full_tensor(), f"Failed at {i=}")
|
|
|
|
# ensure that we do not cache the 'seed' of `rng` from the first time we see it in DTensor
|
|
# TODO: we have a semantics decision to make
|
|
# There is a discontinuity between how the default RNG and a user-supplied RNG behaves with DTensor:
|
|
# (a) if the user calls `torch.manual_seed` after already using the default RNG with DTensor,
|
|
# they may be surprised that it has no effect on DTensor. They must instead call this private API
|
|
# (`torch.distributed.tensor._random._rng_tracker._manual_seed`)
|
|
# (b) If we try to match the semantics of (a) with a user-supplied RNG, they may be very surprised to find that
|
|
# their RNG object never advances its state after using it with DTensor.
|
|
torch.manual_seed(55)
|
|
rng.manual_seed(55)
|
|
torch.nn.init.uniform_(t1, 0.0, 1.0)
|
|
torch.nn.init.uniform_(t2, 0.0, 1.0, rng)
|
|
self.assertEqual(t1.full_tensor(), t2.full_tensor())
|
|
|
|
@with_comms
|
|
@skip_if_lt_x_gpu(4)
|
|
def test_meta_tensor_init(self):
|
|
# test suite sets each rank's seed to the same value.
|
|
# The DTensor random ops will use the same generator as the default one on the device.
|
|
|
|
# Note: this behavior changed, and now the guideline is to set the same RNG seed on all SPMD ranks.
|
|
torch.cuda.manual_seed(0)
|
|
device_mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
|
|
size = [1024, 2048]
|
|
meta_dtensor = distribute_tensor(
|
|
torch.empty(*size, device="meta"), device_mesh, [Replicate()]
|
|
)
|
|
|
|
# the tensor slice on the current rank
|
|
self_slice = slice(1024 * self.rank, 1024 * self.rank + 1024)
|
|
|
|
# Test 1: enable the distribute region for RNG (by default)
|
|
self.assertTrue(meta_dtensor.is_meta)
|
|
# Tensor meta init
|
|
dtensor = torch.empty_like(meta_dtensor, device=self.device_type)
|
|
dtensor.uniform_()
|
|
# check `distribute_region_enabled` is set to True by default
|
|
self.assertTrue(random._rng_tracker.distribute_region_enabled)
|
|
|
|
# allgather the local tensors
|
|
gathered_local_tensors = funcol.all_gather_tensor(
|
|
dtensor.to_local(), gather_dim=0, group=(device_mesh, 0)
|
|
)
|
|
|
|
# compare with local tensors from other ranks
|
|
for other_rank in range(self.world_size):
|
|
# the RNG result on each rank are the same because they're replicated
|
|
if self.rank != other_rank:
|
|
# other rank should have an identical local tensor
|
|
other_slice = slice(1024 * other_rank, 1024 * other_rank + 1024)
|
|
self.assertEqual(
|
|
gathered_local_tensors[self_slice, :],
|
|
gathered_local_tensors[other_slice, :],
|
|
)
|
|
|
|
# Test 2: disable the distribute region for RNG
|
|
self.assertTrue(meta_dtensor.is_meta)
|
|
# Tensor meta init
|
|
dtensor = torch.empty_like(meta_dtensor, device=self.device_type)
|
|
random._rng_tracker.distribute_region_enabled = False
|
|
dtensor.uniform_()
|
|
# check `distribute_region_enabled` is set to False
|
|
self.assertTrue(not random._rng_tracker.distribute_region_enabled)
|
|
|
|
# allgather the local tensors
|
|
local_tensor = funcol.all_gather_tensor(
|
|
dtensor.to_local(), gather_dim=0, group=(device_mesh, 0)
|
|
)
|
|
|
|
# compare with local tensors from other ranks
|
|
for other_rank in range(self.world_size):
|
|
# the RNG result on each rank are the same even without the help of DTensor's RNG infra,
|
|
# since the default RNG is the same across ranks.
|
|
if self.rank != other_rank:
|
|
other_slice = slice(1024 * other_rank, 1024 * other_rank + 1024)
|
|
self.assertEqual(
|
|
local_tensor[self_slice, :], local_tensor[other_slice, :]
|
|
)
|
|
|
|
@with_comms
|
|
@skip_unless_torch_gpu
|
|
def test_tp_model_meta_init(self):
|
|
# initialize the 1-d device mesh for TP
|
|
tp_mesh = init_device_mesh(self.device_type, mesh_shape=(self.world_size,))
|
|
|
|
# model meta init
|
|
with torch.device("meta"):
|
|
model = torch.nn.Linear(self.world_size, self.world_size, bias=False)
|
|
self.assertEqual(model.weight.device, torch.device("meta"))
|
|
parallelize_module(model, tp_mesh, ColwiseParallel())
|
|
if random._rng_tracker is not None:
|
|
random._rng_tracker.distribute_region_enabled = True
|
|
|
|
self.assertEqual(model.weight.device, torch.device("meta"))
|
|
|
|
# actual initialization
|
|
device = torch.device(
|
|
self.device_type, torch.get_device_module(self.device_type).current_device()
|
|
)
|
|
model.to_empty(device=device)
|
|
model.reset_parameters()
|
|
self.assertTrue(
|
|
random._rng_tracker is not None
|
|
and isinstance(random._rng_tracker, OffsetBasedRNGTracker)
|
|
)
|
|
self.assertEqual(model.weight.device, device)
|
|
assert isinstance(model.weight, DTensor)
|
|
|
|
# gather all the shards to compare initialization results
|
|
WORLD = torch.distributed.group.WORLD
|
|
assert WORLD is not None
|
|
weight_local = model.weight.to_local()
|
|
weight_gather = funcol.all_gather_tensor(
|
|
weight_local,
|
|
gather_dim=0,
|
|
group=WORLD,
|
|
)
|
|
|
|
# verify the weights are initialized differently on all ranks
|
|
for other_rank in range(self.world_size):
|
|
if self.rank != other_rank:
|
|
self.assertNotEqual(
|
|
weight_local,
|
|
weight_gather[other_rank : other_rank + 1, :],
|
|
)
|
|
|
|
@with_comms
|
|
@skip_if_lt_x_gpu(4)
|
|
def test_fsdp_tp_model_meta_init(self):
|
|
# initialize the 2-d device mesh
|
|
global_mesh = init_device_mesh(
|
|
self.device_type,
|
|
mesh_shape=(self.world_size // 2, 2),
|
|
mesh_dim_names=("dp", "tp"),
|
|
)
|
|
dp_mesh, tp_mesh = global_mesh["dp"], global_mesh["tp"]
|
|
|
|
# model meta init
|
|
with torch.device("meta"):
|
|
model = torch.nn.Linear(self.world_size, self.world_size, bias=False)
|
|
self.assertEqual(model.weight.device, torch.device("meta"))
|
|
parallelize_module(model, tp_mesh, ColwiseParallel())
|
|
if random._rng_tracker is not None:
|
|
random._rng_tracker.distribute_region_enabled = True
|
|
|
|
fully_shard(model, mesh=dp_mesh)
|
|
self.assertEqual(model.weight.device, torch.device("meta"))
|
|
|
|
# actual initialization
|
|
device = torch.device(
|
|
self.device_type, torch.get_device_module(self.device_type).current_device()
|
|
)
|
|
model.to_empty(device=device)
|
|
model.reset_parameters()
|
|
self.assertTrue(
|
|
random._rng_tracker is not None
|
|
and isinstance(random._rng_tracker, OffsetBasedRNGTracker)
|
|
)
|
|
self.assertEqual(model.weight.device, device)
|
|
assert isinstance(model.weight, DTensor)
|
|
|
|
# gather all the shards to compare initialization results
|
|
WORLD = torch.distributed.group.WORLD
|
|
assert WORLD is not None
|
|
weight_local = model.weight.to_local()
|
|
weight_gather = funcol.all_gather_tensor(
|
|
weight_local,
|
|
gather_dim=0,
|
|
group=WORLD,
|
|
)
|
|
|
|
# verify the weights are initialized differently on all ranks
|
|
for other_rank in range(self.world_size):
|
|
if self.rank != other_rank:
|
|
self.assertNotEqual(
|
|
weight_local,
|
|
weight_gather[other_rank : other_rank + 1, :],
|
|
)
|
|
|
|
|
|
class DistTensorRandomOpTest(DTensorTestBase):
|
|
@with_comms
|
|
@skip_unless_torch_gpu
|
|
def test_rng_tracker_init(self):
|
|
torch.manual_seed(self.rank)
|
|
object_list = [torch.initial_seed()]
|
|
broadcast_object_list(object_list)
|
|
seed_from_rank_0 = int(object_list[0])
|
|
|
|
device_mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
|
|
# seed synchronization now does NOT happen after the first `distribute_tensor`
|
|
# call
|
|
dt = distribute_tensor(
|
|
torch.empty([self.world_size], device=self.device_type),
|
|
device_mesh,
|
|
[Shard(0)],
|
|
)
|
|
self.assertTrue(random._rng_tracker is None)
|
|
# seed synchronization only happens after `manual_seed` or the first DTensor
|
|
# random op call
|
|
dt.uniform_(0, 1)
|
|
|
|
# We do not maintain the copy of the seed in dtensor, but we do mutate the global rng state
|
|
# since we now always pull it fresh from the local device generator
|
|
self.assertEqual(
|
|
seed_from_rank_0, get_generator_seed_for_device_type(self.device_type)
|
|
)
|
|
|
|
@with_comms
|
|
@skip_unless_torch_gpu
|
|
def test_manual_seed(self):
|
|
device_mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
|
|
|
|
# in the case of calling ``torch.distributed.tensor._random.manual_seed``,
|
|
# no seed synchronization should happen since we fully trust the users' input
|
|
# and will not override the value.
|
|
comm_mode = CommDebugMode()
|
|
with comm_mode:
|
|
# Test 1: set different seed on different ranks
|
|
# RNG tracker should not be initialized until DTensor ``manual_seed``
|
|
# is called.
|
|
self.assertTrue(random._rng_tracker is None)
|
|
manual_seed(self.rank, device_mesh)
|
|
# RNG tracker should already be initialized
|
|
self.assertTrue(random._rng_tracker is not None)
|
|
self.assertEqual(
|
|
self.rank, get_generator_seed_for_device_type(self.device_type)
|
|
)
|
|
|
|
# Test 2: set same seed on different ranks
|
|
manual_seed(1234, device_mesh)
|
|
self.assertEqual(1234, get_generator_seed_for_device_type(self.device_type))
|
|
|
|
self.assertEqual(comm_mode.get_total_counts(), 0)
|
|
|
|
@with_comms
|
|
@skip_unless_torch_gpu
|
|
def test_manual_seed_submesh(self):
|
|
# the current rank is not a part of the mesh
|
|
single_rank_device_mesh = DeviceMesh(
|
|
self.device_type, [(self.rank + 1) % self.world_size]
|
|
)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"manual_seed requires the current rank to be a part of the device mesh",
|
|
):
|
|
manual_seed(self.rank, single_rank_device_mesh)
|
|
|
|
@with_comms
|
|
@skip_unless_torch_gpu
|
|
def test_pipeline_parallel_manual_seed(self):
|
|
# This test is to verify the `manual_seed` API works as expected in the
|
|
# pipeline parallel setting.
|
|
world_mesh = init_device_mesh(
|
|
self.device_type,
|
|
(self.world_size // 2, 2),
|
|
mesh_dim_names=("pp", "spmd"),
|
|
)
|
|
pp_mesh = world_mesh["pp"]
|
|
pp_rank = pp_mesh.get_local_rank() # rank 0,1 = 0; rank 2,3 = 1
|
|
spmd_mesh = world_mesh["spmd"]
|
|
|
|
# set the seed for each pipeline stage to 123 + pp_rank
|
|
manual_seed(123 + pp_rank, spmd_mesh)
|
|
# dtensor no longer stores a copy of the seed, but it mutates the device's generator so we can check that
|
|
self.assertEqual(
|
|
123 + pp_rank, get_generator_seed_for_device_type(self.device_type)
|
|
)
|
|
|
|
# mimic initializing a model weight sharded on the SPMD mesh
|
|
spmd_dtensor = torch.distributed.tensor.ones(
|
|
2 * spmd_mesh.size(), 2, device_mesh=spmd_mesh, placements=[Shard(0)]
|
|
)
|
|
torch.nn.init.normal_(spmd_dtensor)
|
|
|
|
# gather all the shards to compare initialization results
|
|
WORLD = torch.distributed.group.WORLD
|
|
assert WORLD is not None
|
|
tensor_gather = funcol.all_gather_tensor(
|
|
spmd_dtensor.to_local(),
|
|
gather_dim=0,
|
|
group=WORLD,
|
|
)
|
|
|
|
# verify the weights are initialized differently on all ranks
|
|
for other_rank in range(self.world_size):
|
|
if self.rank != other_rank:
|
|
self.assertNotEqual(
|
|
spmd_dtensor.to_local(),
|
|
tensor_gather[2 * other_rank : 2 * (other_rank + 1), :],
|
|
)
|
|
|
|
@with_comms
|
|
@skip_unless_torch_gpu
|
|
def test_deterministic_dropout_1d(self):
|
|
# test suite sets each rank's seed to the same value but in actual
|
|
# execution the default random seed will be different (a random value).
|
|
# The DTensor random ops will use the same random seed even though the
|
|
# torch random generator keeps different seeds on ranks.
|
|
torch.manual_seed(self.rank)
|
|
# TODO: add test before/after enabling distribute region
|
|
device_mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
|
|
size = [4, 4]
|
|
|
|
dtensor = distribute_tensor(
|
|
torch.empty(*size, device=self.device_type), device_mesh, [Shard(1)]
|
|
)
|
|
|
|
# a random op call shifts the offset
|
|
dtensor.uniform_(0, 1)
|
|
|
|
# the dtensor is now replicate on all ranks
|
|
dtensor = dtensor.redistribute(device_mesh, [Replicate()])
|
|
|
|
dropout = torch.nn.Dropout(p=0.2)
|
|
dtensor = dropout(dtensor)
|
|
|
|
# allgather the local tensors
|
|
local_tensor = funcol.all_gather_tensor(
|
|
dtensor.to_local(), gather_dim=0, group=(device_mesh, 0)
|
|
)
|
|
|
|
# compare with local tensors from other ranks
|
|
self_slice = slice(4 * self.rank, 4 * self.rank + 4)
|
|
for other_rank in range(self.world_size):
|
|
if self.rank != other_rank:
|
|
# other rank should have an identical local tensor
|
|
other_slice = slice(4 * other_rank, 4 * other_rank + 4)
|
|
self.assertEqual(
|
|
local_tensor[self_slice, :],
|
|
local_tensor[other_slice, :],
|
|
)
|
|
|
|
@with_comms
|
|
@skip_unless_torch_gpu
|
|
def test_deterministic_rand_1d(self):
|
|
device_mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
|
|
size = [4, 4 * self.world_size]
|
|
|
|
for fn in [
|
|
torch.distributed.tensor.rand,
|
|
torch.distributed.tensor.randn,
|
|
]:
|
|
dtensor = fn(size, device_mesh=device_mesh, placements=[Shard(1)])
|
|
local_tensor = funcol.all_gather_tensor(
|
|
dtensor.to_local(), gather_dim=0, group=(device_mesh, 0)
|
|
)
|
|
|
|
# compare with local tensors from other ranks
|
|
self_slice = slice(4 * self.rank, 4 * self.rank + 4)
|
|
for other_rank in range(self.world_size):
|
|
if self.rank != other_rank:
|
|
# other rank should have a different local tensor for shard placement
|
|
other_slice = slice(4 * other_rank, 4 * other_rank + 4)
|
|
self.assertNotEqual(
|
|
local_tensor[self_slice, :],
|
|
local_tensor[other_slice, :],
|
|
)
|
|
|
|
# we should set manual seed to the same value on all SPMD ranks
|
|
torch.manual_seed(0)
|
|
dtensor = fn(size, device_mesh=device_mesh, placements=[Replicate()])
|
|
local_tensor = funcol.all_gather_tensor(
|
|
dtensor.to_local(), gather_dim=0, group=(device_mesh, 0)
|
|
)
|
|
|
|
# compare with local tensors from other ranks
|
|
self_slice = slice(4 * self.rank, 4 * self.rank + 4)
|
|
for other_rank in range(self.world_size):
|
|
if self.rank != other_rank:
|
|
# other rank should have an identical local tensor for replicate placement
|
|
other_slice = slice(4 * other_rank, 4 * other_rank + 4)
|
|
self.assertEqual(
|
|
local_tensor[self_slice, :],
|
|
local_tensor[other_slice, :],
|
|
)
|
|
|
|
@with_comms
|
|
@skip_if_lt_x_gpu(4)
|
|
def test_deterministic_uniform_2d(self):
|
|
mesh = torch.arange(self.world_size).reshape(2, 2)
|
|
device_mesh = DeviceMesh(self.device_type, mesh)
|
|
dtensor = distribute_tensor(
|
|
torch.empty(
|
|
*[self.world_size for _ in mesh.size()], device=self.device_type
|
|
),
|
|
device_mesh,
|
|
[Replicate(), Replicate()],
|
|
)
|
|
|
|
placements_list = [ # this list of placements should be enough to cover
|
|
[Shard(0), Shard(1)],
|
|
[Shard(1), Shard(0)],
|
|
[Shard(0), Replicate()],
|
|
[Replicate(), Shard(0)],
|
|
[Shard(1), Replicate()],
|
|
[Replicate(), Shard(1)],
|
|
[Replicate(), Replicate()],
|
|
]
|
|
|
|
shard_index_list = [
|
|
{0: 0, 1: 1, 2: 2, 3: 3},
|
|
{0: 0, 1: 2, 2: 1, 3: 3},
|
|
{0: 0, 1: 0, 2: 1, 3: 1},
|
|
{0: 0, 1: 1, 2: 0, 3: 1},
|
|
{0: 0, 1: 0, 2: 1, 3: 1},
|
|
{0: 0, 1: 1, 2: 0, 3: 1},
|
|
{0: 0, 1: 0, 2: 0, 3: 0},
|
|
]
|
|
|
|
coordinate = device_mesh.get_coordinate()
|
|
assert coordinate is not None
|
|
|
|
for placements, shard_index in zip(placements_list, shard_index_list):
|
|
dtensor = dtensor.redistribute(device_mesh, placements)
|
|
|
|
# random op call
|
|
dtensor.uniform_(0, 1)
|
|
|
|
# check shard information is correct
|
|
shard_coord = [
|
|
coordinate[mesh_dim] if mesh_dim >= 0 else 0
|
|
for mesh_dim in dtensor._spec.dim_map
|
|
]
|
|
|
|
shard_size = [
|
|
device_mesh.size(mesh_dim) if mesh_dim >= 0 else 1
|
|
for mesh_dim in dtensor._spec.dim_map
|
|
]
|
|
|
|
shard_linear_idx = random._rng_tracker._calc_shard_linear_idx(
|
|
shard_coord, shard_size
|
|
)
|
|
self.assertEqual(shard_linear_idx, shard_index[self.rank])
|
|
|
|
# compute local size and offset
|
|
_, local_shard_offset = compute_local_shape_and_global_offset(
|
|
dtensor.shape, device_mesh, placements
|
|
)
|
|
|
|
# get the local shard size and local shard offset for each shard
|
|
# local_shard_list_on_dim[i] has the list of all shards on that dim
|
|
# as a tuple (local_shard_offset, local_shard_size)
|
|
dtensor_shape = dtensor.shape
|
|
local_shard_list_on_dim = [[(0, l)] for l in dtensor_shape]
|
|
for idx, placement in enumerate(placements):
|
|
if isinstance(placement, Shard):
|
|
mesh_dim_size = device_mesh.size(idx)
|
|
shard_dim = placement.dim
|
|
local_shard_list_on_dim[shard_dim] = []
|
|
for shard_idx_on_dim in range(mesh_dim_size):
|
|
(
|
|
shard_size,
|
|
shard_offset,
|
|
) = placement._local_shard_size_and_offset(
|
|
dtensor_shape[shard_dim],
|
|
mesh_dim_size,
|
|
shard_idx_on_dim,
|
|
)
|
|
local_shard_list_on_dim[shard_dim].append(
|
|
(shard_offset, shard_size)
|
|
)
|
|
|
|
local_shard_comb = itertools.product(*local_shard_list_on_dim)
|
|
|
|
# the local shard
|
|
local_tensor = dtensor.to_local()
|
|
# allgather the local tensors
|
|
full_tensor = dtensor.full_tensor()
|
|
|
|
# compare local tensor with each other shard
|
|
for other_local_shard in local_shard_comb:
|
|
other_local_shard_offset, _ = zip(*other_local_shard)
|
|
slice_idx = [
|
|
slice(offset, offset + size) for offset, size in other_local_shard
|
|
]
|
|
if local_shard_offset == other_local_shard_offset:
|
|
self.assertEqual(full_tensor[tuple(slice_idx)], local_tensor)
|
|
else:
|
|
self.assertNotEqual(full_tensor[tuple(slice_idx)], local_tensor)
|
|
|
|
|
|
class DistTensorRandomOpsTest3D(DTensorTestBase):
|
|
@property
|
|
def world_size(self):
|
|
return 8
|
|
|
|
@with_comms
|
|
@skip_if_lt_x_gpu(8)
|
|
def test_hsdp_tp_model_meta_init(self):
|
|
# initialize the 3-d device mesh
|
|
global_mesh = init_device_mesh(
|
|
self.device_type,
|
|
mesh_shape=(self.world_size // 4, 2, 2),
|
|
mesh_dim_names=("dp_replicate", "dp_shard", "tp"),
|
|
)
|
|
tp_mesh = global_mesh["tp"]
|
|
dp_mesh = global_mesh["dp_replicate", "dp_shard"]
|
|
|
|
# model meta init
|
|
with torch.device("meta"):
|
|
model = torch.nn.Linear(self.world_size, self.world_size, bias=False)
|
|
self.assertEqual(model.weight.device, torch.device("meta"))
|
|
parallelize_module(model, tp_mesh, ColwiseParallel())
|
|
if random._rng_tracker is not None:
|
|
random._rng_tracker.distribute_region_enabled = True
|
|
|
|
fully_shard(model, mesh=dp_mesh)
|
|
self.assertEqual(model.weight.device, torch.device("meta"))
|
|
|
|
# actual initialization
|
|
device = torch.device(
|
|
self.device_type, torch.get_device_module(self.device_type).current_device()
|
|
)
|
|
model.to_empty(device=device)
|
|
model.reset_parameters()
|
|
self.assertTrue(
|
|
random._rng_tracker is not None
|
|
and isinstance(random._rng_tracker, OffsetBasedRNGTracker)
|
|
)
|
|
self.assertEqual(model.weight.device, device)
|
|
assert isinstance(model.weight, DTensor)
|
|
|
|
# gather all the shards to compare initialization results
|
|
WORLD = torch.distributed.group.WORLD
|
|
assert WORLD is not None
|
|
weight_local = model.weight.to_local()
|
|
weight_gather = funcol.all_gather_tensor(
|
|
weight_local,
|
|
gather_dim=0,
|
|
group=WORLD,
|
|
)
|
|
|
|
# verify the weights are initialized differently on all ranks
|
|
shard_dim_0_len = self.world_size // 4
|
|
for other_rank in range(self.world_size):
|
|
other_rank_dim_0_start = other_rank * shard_dim_0_len
|
|
other_rank_dim_0_end = other_rank_dim_0_start + shard_dim_0_len
|
|
if self.rank % 4 != other_rank % 4:
|
|
self.assertNotEqual(
|
|
weight_local,
|
|
weight_gather[other_rank_dim_0_start:other_rank_dim_0_end, :],
|
|
)
|
|
else:
|
|
self.assertEqual(
|
|
weight_local,
|
|
weight_gather[other_rank_dim_0_start:other_rank_dim_0_end, :],
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|