mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55145
Repeating the discussion from https://github.com/pytorch/pytorch/pull/54784#issuecomment-811792089
The error messages for mismatched values are directly adapted from the old `_compare_tensors_internal`:
50cb75edce/torch/testing/__init__.py (L104-L111)
A sample error message right now looks like this
```
With rtol=1.3e-06 and atol=1e-05, found 1 different element(s) out of 12 (8.3%). The greatest difference of 4.0 (5.0 vs. 9.0) occurred at index (2, 3)
```
Using the same data with `numpy.testing.assert_equal` gives the following output:
```
Not equal to tolerance rtol=1.3e-06, atol=1e-05
Mismatched elements: 1 / 12 (8.33%)
Max absolute difference: 4.
Max relative difference: 0.44444445
x: array([[5., 5., 5., 5.],
[5., 5., 5., 5.],
[5., 5., 5., 5.]], dtype=float32)
y: array([[5., 5., 5., 5.],
[5., 5., 5., 5.],
[5., 5., 5., 9.]], dtype=float32)
```
Pros:
- The info is presented in a list instead of a sentence. IMO this makes it more readable
- The maximum relative difference is reported, which is beneficial in case a comparison fails due to the `rtol`
Cons:
- The values of the inputs are reported (this can be disabled by passing `verbose=False`, but lets face it: most users will use the default setting). In case the inputs are large, the output gets truncated with `...`. Not only is it hard to visually find the mismatching values, they could also live within the truncated part, making the output completely useless.
- Even when visually find the offending values it is hard to parse this back to the index in the inputs.
This implements a mix of both to get a short but expressive message:
```
Tensors are not close according to rtol=1.3e-6 and atol=1e-05:
Mismatched elements: 1 / 12 (8.3%)
Max. rel. diff.: 4.44e-1 at (2, 3)
Max. abs. diff.: 4.0 at (2, 3)
```
Test Plan: Imported from OSS
Reviewed By: heitorschueroff
Differential Revision: D27877157
Pulled By: mruberry
fbshipit-source-id: 6898a995f116f127e3ae8ed0bcb1ada63eadc45a
440 lines
18 KiB
Python
440 lines
18 KiB
Python
import sys
|
|
from collections import namedtuple
|
|
from typing import Any, Optional, Tuple, Type
|
|
|
|
import torch
|
|
|
|
from ._core import _unravel_index
|
|
|
|
__all__ = ["assert_tensors_equal", "assert_tensors_close"]
|
|
|
|
|
|
# The UsageError should be raised in case the test function is not used correctly. With this the user is able to
|
|
# differentiate between a test failure (there is a bug in the tested code) and a test error (there is a bug in the
|
|
# test). If pytest is the test runner, we use the built-in UsageError instead our custom one.
|
|
|
|
try:
|
|
# The module 'pytest' will be imported if the 'pytest' runner is used. This will only give false-positives in case
|
|
# a previously imported module already directly or indirectly imported 'pytest', but the test is run by another
|
|
# runner such as 'unittest'.
|
|
# 'mypy' is not able to handle this within a type annotation
|
|
# (see https://mypy.readthedocs.io/en/latest/common_issues.html#variables-vs-type-aliases for details). In case
|
|
# 'UsageError' is used in an annotation, add a 'type: ignore[valid-type]' comment.
|
|
UsageError: Type[Exception] = sys.modules["pytest"].UsageError # type: ignore[attr-defined]
|
|
except (KeyError, AttributeError):
|
|
|
|
class UsageError(Exception): # type: ignore[no-redef]
|
|
pass
|
|
|
|
|
|
# This is copy-pasted from torch.testing._internal.common_utils.TestCase.dtype_precisions. With this we avoid a
|
|
# dependency on torch.testing._internal at import. See
|
|
# https://github.com/pytorch/pytorch/pull/54769#issuecomment-813174256 for details.
|
|
# {dtype: (rtol, atol)}
|
|
_DTYPE_PRECISIONS = {
|
|
torch.float16: (0.001, 1e-5),
|
|
torch.bfloat16: (0.016, 1e-5),
|
|
torch.float32: (1.3e-6, 1e-5),
|
|
torch.float64: (1e-7, 1e-7),
|
|
torch.complex32: (0.001, 1e-5),
|
|
torch.complex64: (1.3e-6, 1e-5),
|
|
torch.complex128: (1e-7, 1e-7),
|
|
}
|
|
|
|
|
|
def _get_default_rtol_and_atol(actual: torch.Tensor, expected: torch.Tensor) -> Tuple[float, float]:
|
|
dtype = actual.dtype if actual.dtype == expected.dtype else torch.promote_types(actual.dtype, expected.dtype)
|
|
return _DTYPE_PRECISIONS.get(dtype, (0.0, 0.0))
|
|
|
|
|
|
def _check_are_tensors(actual: Any, expected: Any) -> Optional[AssertionError]:
|
|
"""Checks if both inputs are tensors.
|
|
|
|
Args:
|
|
actual (Any): Actual input.
|
|
expected (Any): Actual input.
|
|
|
|
Returns:
|
|
(Optional[AssertionError]): If check did not pass.
|
|
"""
|
|
if not (isinstance(actual, torch.Tensor) and isinstance(expected, torch.Tensor)):
|
|
return AssertionError(f"Both inputs have to be tensors, but got {type(actual)} and {type(expected)} instead.")
|
|
|
|
return None
|
|
|
|
|
|
def _check_supported_tensors(
|
|
actual: torch.Tensor,
|
|
expected: torch.Tensor,
|
|
) -> Optional[UsageError]: # type: ignore[valid-type]
|
|
"""Checks if the tensors are supported by the current infrastructure.
|
|
|
|
All checks are temporary and will be relaxed in the future.
|
|
|
|
Args:
|
|
actual (torch.Tensor): Actual tensor.
|
|
expected (torch.Tensor): Expected tensor.
|
|
|
|
Returns:
|
|
(Optional[UsageError]): If check did not pass.
|
|
"""
|
|
if any(t.dtype in (torch.complex32, torch.complex64, torch.complex128) for t in (actual, expected)):
|
|
return UsageError("Comparison for complex tensors is not supported yet.")
|
|
if any(t.is_quantized for t in (actual, expected)):
|
|
return UsageError("Comparison for quantized tensors is not supported yet.")
|
|
if any(t.is_sparse for t in (actual, expected)):
|
|
return UsageError("Comparison for sparse tensors is not supported yet.")
|
|
|
|
return None
|
|
|
|
|
|
def _check_attributes_equal(
|
|
actual: torch.Tensor,
|
|
expected: torch.Tensor,
|
|
*,
|
|
check_device: bool = True,
|
|
check_dtype: bool = True,
|
|
check_stride: bool = True,
|
|
) -> Optional[AssertionError]:
|
|
"""Checks if the attributes of two tensors match.
|
|
|
|
Always checks the :attr:`~torch.Tensor.shape`. Checks for :attr:`~torch.Tensor.device`,
|
|
:attr:`~torch.Tensor.dtype`, and :meth:`~torch.Tensor.stride` are optional and can be disabled.
|
|
|
|
Args:
|
|
actual (torch.Tensor): Actual tensor.
|
|
expected (torch.Tensor): Expected tensor.
|
|
check_device (bool): If ``True`` (default), asserts that both :attr:`actual` and :attr:`expected` are on the
|
|
same :attr:`~torch.Tensor.device` memory.
|
|
check_dtype (bool): If ``True`` (default), asserts that both :attr:`actual` and :attr:`expected` have the same
|
|
:attr:`~torch.Tensor.dtype`.
|
|
check_stride (bool): If ``True`` (default), asserts that both :attr:`actual` and :attr:`expected` have the same
|
|
:meth:`~torch.Tensor.stride`.
|
|
|
|
Returns:
|
|
(Optional[AssertionError]): If check did not pass.
|
|
"""
|
|
msg_fmtstr = "The values for attribute '{}' do not match: {} != {}."
|
|
|
|
if actual.shape != expected.shape:
|
|
return AssertionError(msg_fmtstr.format("shape", actual.shape, expected.shape))
|
|
|
|
if check_device and actual.device != expected.device:
|
|
return AssertionError(msg_fmtstr.format("device", actual.device, expected.device))
|
|
|
|
if check_dtype and actual.dtype != expected.dtype:
|
|
return AssertionError(msg_fmtstr.format("dtype", actual.dtype, expected.dtype))
|
|
|
|
if check_stride and actual.stride() != expected.stride():
|
|
return AssertionError(msg_fmtstr.format("stride()", actual.stride(), expected.stride()))
|
|
|
|
return None
|
|
|
|
|
|
def _equalize_attributes(actual: torch.Tensor, expected: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Equalizes some attributes of two tensors for value comparison.
|
|
|
|
If :attr:`actual` and :attr:`expected`
|
|
- are not onn the same memory :attr:`~torch.Tensor.device`, they are moved CPU memory, and
|
|
- do not have the same :attr:`~torch.Tensor.dtype`, they are copied to the :class:`~torch.dtype` returned by
|
|
:func:`torch.promote_types`.
|
|
|
|
Args:
|
|
actual (torch.Tensor): Actual tensor.
|
|
expected (torch.Tensor): Expected tensor.
|
|
|
|
Returns:
|
|
Tuple(torch.Tensor, torch.Tensor): Equalized tensors.
|
|
"""
|
|
if actual.device != expected.device:
|
|
actual = actual.cpu()
|
|
expected = expected.cpu()
|
|
|
|
if actual.dtype != expected.dtype:
|
|
dtype = torch.promote_types(actual.dtype, expected.dtype)
|
|
actual = actual.to(dtype)
|
|
expected = expected.to(dtype)
|
|
|
|
return actual, expected
|
|
|
|
|
|
_Trace = namedtuple(
|
|
"_Trace",
|
|
(
|
|
"total_elements",
|
|
"total_mismatches",
|
|
"mismatch_ratio",
|
|
"max_abs_diff",
|
|
"max_abs_diff_idx",
|
|
"max_rel_diff",
|
|
"max_rel_diff_idx",
|
|
),
|
|
)
|
|
|
|
|
|
def _trace_mismatches(actual: torch.Tensor, expected: torch.Tensor, mismatches: torch.Tensor) -> _Trace:
|
|
"""Traces mismatches.
|
|
|
|
Args:
|
|
actual (torch.Tensor): Actual tensor.
|
|
expected (torch.Tensor): Expected tensor.
|
|
mismatches (torch.Tensor): Boolean mask of the same shape as :attr:`actual` and :attr:`expected` that indicates
|
|
the location of mismatches.
|
|
|
|
Returns:
|
|
(NamedTuple): Mismatch diagnostics with the following fields:
|
|
|
|
- total_elements (int): Total number of values.
|
|
- total_mismatches (int): Total number of mismatches.
|
|
- mismatch_ratio (float): Quotient of total mismatches and total elements.
|
|
- max_abs_diff (Union[int, float]): Greatest absolute difference of :attr:`actual` and :attr:`expected`.
|
|
- max_abs_diff_idx (Union[int, Tuple[int, ...]]): Index of greatest absolute difference.
|
|
- max_rel_diff (Union[int, float]): Greatest relative difference of :attr:`actual` and :attr:`expected`.
|
|
- max_rel_diff_idx (Union[int, Tuple[int, ...]]): Index of greatest relative difference.
|
|
|
|
The returned type of ``max_abs_diff`` and ``max_rel_diff`` depends on the :attr:`~torch.Tensor.dtype` of
|
|
:attr:`actual` and :attr:`expected`.
|
|
"""
|
|
total_elements = mismatches.numel()
|
|
total_mismatches = torch.sum(mismatches).item()
|
|
mismatch_ratio = total_mismatches / total_elements
|
|
|
|
dtype = torch.float64 if actual.dtype.is_floating_point else torch.int64
|
|
a_flat = actual.flatten().to(dtype)
|
|
b_flat = expected.flatten().to(dtype)
|
|
|
|
abs_diff = torch.abs(a_flat - b_flat)
|
|
max_abs_diff, max_abs_diff_flat_idx = torch.max(abs_diff, 0)
|
|
|
|
rel_diff = abs_diff / torch.abs(b_flat)
|
|
max_rel_diff, max_rel_diff_flat_idx = torch.max(rel_diff, 0)
|
|
|
|
return _Trace(
|
|
total_elements=total_elements,
|
|
total_mismatches=total_mismatches,
|
|
mismatch_ratio=mismatch_ratio,
|
|
max_abs_diff=max_abs_diff.item(),
|
|
max_abs_diff_idx=_unravel_index(max_abs_diff_flat_idx.item(), mismatches.shape),
|
|
max_rel_diff=max_rel_diff.item(),
|
|
max_rel_diff_idx=_unravel_index(max_rel_diff_flat_idx.item(), mismatches.shape),
|
|
)
|
|
|
|
|
|
def _check_values_equal(actual: torch.Tensor, expected: torch.Tensor) -> Optional[AssertionError]:
|
|
"""Checks if the values of two tensors are bitwise equal.
|
|
|
|
Args:
|
|
actual (torch.Tensor): Actual tensor.
|
|
expected (torch.Tensor): Expected tensor.
|
|
|
|
Returns:
|
|
(Optional[AssertionError]): If check did not pass.
|
|
"""
|
|
mismatches = torch.ne(actual, expected)
|
|
if not torch.any(mismatches):
|
|
return None
|
|
|
|
trace = _trace_mismatches(actual, expected, mismatches)
|
|
return AssertionError(
|
|
f"Tensors are not equal!\n\n"
|
|
f"Mismatched elements: {trace.total_mismatches} / {trace.total_elements} ({trace.mismatch_ratio:.1%})\n"
|
|
f"Greatest absolute difference: {trace.max_abs_diff} at {trace.max_abs_diff_idx}\n"
|
|
f"Greatest relative difference: {trace.max_rel_diff} at {trace.max_rel_diff_idx}"
|
|
)
|
|
|
|
|
|
def _check_values_close(
|
|
actual: torch.Tensor,
|
|
expected: torch.Tensor,
|
|
*,
|
|
rtol,
|
|
atol,
|
|
) -> Optional[AssertionError]:
|
|
"""Checks if the values of two tensors are close up to a desired tolerance.
|
|
|
|
Args:
|
|
actual (torch.Tensor): Actual tensor.
|
|
expected (torch.Tensor): Expected tensor.
|
|
rtol (float): Relative tolerance.
|
|
atol (float): Absolute tolerance.
|
|
|
|
Returns:
|
|
(Optional[AssertionError]): If check did not pass.
|
|
"""
|
|
mismatches = ~torch.isclose(actual, expected, rtol=rtol, atol=atol)
|
|
if not torch.any(mismatches):
|
|
return None
|
|
|
|
trace = _trace_mismatches(actual, expected, mismatches)
|
|
return AssertionError(
|
|
f"Tensors are not close!\n\n"
|
|
f"Mismatched elements: {trace.total_mismatches} / {trace.total_elements} ({trace.mismatch_ratio:.1%})\n"
|
|
f"Greatest absolute difference: {trace.max_abs_diff} at {trace.max_abs_diff_idx} (up to {atol} allowed)\n"
|
|
f"Greatest relative difference: {trace.max_rel_diff} at {trace.max_rel_diff_idx} (up to {rtol} allowed)"
|
|
)
|
|
|
|
|
|
def assert_tensors_equal(
|
|
actual: torch.Tensor,
|
|
expected: torch.Tensor,
|
|
*,
|
|
check_device: bool = True,
|
|
check_dtype: bool = True,
|
|
check_stride: bool = True,
|
|
) -> None:
|
|
"""Asserts that the values of two tensors are bitwise equal.
|
|
|
|
Optionally, checks that some attributes of both tensors are equal.
|
|
|
|
Args:
|
|
actual (torch.Tensor): Actual tensor.
|
|
expected (torch.Tensor): Expected tensor.
|
|
check_device (bool): If ``True`` (default), asserts that both :attr:`actual` and :attr:`expected` are on the
|
|
same :attr:`~torch.Tensor.device` memory. If this check is disabled **and** :attr:`actual` and
|
|
:attr:`expected` are not on the same memory :attr:`~torch.Tensor.device`, they are moved CPU memory before
|
|
their values are compared.
|
|
check_dtype (bool): If ``True`` (default), asserts that both :attr:`actual` and :attr:`expected` have the same
|
|
:attr:`~torch.Tensor.dtype`. If this check is disabled **and** :attr:`actual` and :attr:`expected` do not
|
|
have the same :attr:`~torch.Tensor.dtype`, they are copied to the :class:`~torch.dtype` returned by
|
|
:func:`torch.promote_types` before their values are compared.
|
|
check_stride (bool): If ``True`` (default), asserts that both :attr:`actual` and :attr:`expected` have the same
|
|
stride.
|
|
|
|
Raises:
|
|
UsageError: If :attr:`actual` or :attr:`expected` is complex, quantized, or sparse. This is a temporary
|
|
restriction and will be relaxed in the future.
|
|
AssertionError: If :attr:`actual` and :attr:`expected` do not have the same :attr:`~torch.Tensor.shape`.
|
|
AssertionError: If :attr:`check_device`, but :attr:`actual` and :attr:`expected` are not on the same
|
|
:attr:`~torch.Tensor.device` memory.
|
|
AssertionError: If :attr:`check_dtype`, but :attr:`actual` and :attr:`expected` do not have the same
|
|
:attr:`~torch.Tensor.dtype`.
|
|
AssertionError: If :attr:`check_stride`, but :attr:`actual` and :attr:`expected` do not have the same stride.
|
|
AssertionError: If the values of :attr:`actual` and :attr:`expected` are not bitwise equal.
|
|
|
|
.. seealso::
|
|
|
|
To assert that the values in two tensors are are close but are not required to be bitwise equal, use
|
|
:func:`assert_tensors_close` instead.
|
|
"""
|
|
exc: Optional[Exception] = _check_are_tensors(actual, expected)
|
|
if exc:
|
|
raise exc
|
|
|
|
exc = _check_supported_tensors(actual, expected)
|
|
if exc:
|
|
raise exc
|
|
|
|
exc = _check_attributes_equal(
|
|
actual, expected, check_device=check_device, check_dtype=check_dtype, check_stride=check_stride
|
|
)
|
|
if exc:
|
|
raise exc
|
|
actual, expected = _equalize_attributes(actual, expected)
|
|
|
|
exc = _check_values_equal(actual, expected)
|
|
if exc:
|
|
raise exc
|
|
|
|
|
|
def assert_tensors_close(
|
|
actual: torch.Tensor,
|
|
expected: torch.Tensor,
|
|
*,
|
|
rtol: Optional[float] = None,
|
|
atol: Optional[float] = None,
|
|
check_device: bool = True,
|
|
check_dtype: bool = True,
|
|
check_stride: bool = True,
|
|
) -> None:
|
|
"""Asserts that the values of two tensors are close up to a desired tolerance.
|
|
|
|
If both tolerances, :attr:`rtol` and :attr:`rtol`, are ``0``, asserts that :attr:`actual` and :attr:`expected` are bitwise
|
|
equal. Optionally, checks that some attributes of both tensors are equal.
|
|
|
|
Args:
|
|
actual (torch.Tensor): Actual tensor.
|
|
expected (torch.Tensor): Expected tensor.
|
|
rtol (Optional[float]): Relative tolerance. If specified :attr:`atol` must also be specified. If omitted,
|
|
default values based on the :attr:`~torch.Tensor.dtype` are selected with the below table.
|
|
atol (Optional[float]): Absolute tolerance. If specified :attr:`rtol` must also be specified. If omitted,
|
|
default values based on the :attr:`~torch.Tensor.dtype` are selected with the below table.
|
|
check_device (bool): If ``True`` (default), asserts that both :attr:`actual` and :attr:`expected` are on the
|
|
same :attr:`~torch.Tensor.device` memory. If this check is disabled **and** :attr:`actual` and
|
|
:attr:`expected` are not on the same memory :attr:`~torch.Tensor.device`, they are moved CPU memory before
|
|
their values are compared.
|
|
check_dtype (bool): If ``True`` (default), asserts that both :attr:`actual` and :attr:`expected` have the same
|
|
:attr:`~torch.Tensor.dtype`. If this check is disabled **and** :attr:`actual` and :attr:`expected` do not
|
|
have the same :attr:`~torch.Tensor.dtype`, they are copied to the :class:`~torch.dtype` returned by
|
|
:func:`torch.promote_types` before their values are compared.
|
|
check_stride (bool): If ``True`` (default), asserts that both :attr:`actual` and :attr:`expected` have the same
|
|
stride.
|
|
|
|
Raises:
|
|
UsageError: If :attr:`actual` or :attr:`expected` is complex, quantized, or sparse. This is a temporary
|
|
restriction and will be relaxed in the future.
|
|
AssertionError: If :attr:`actual` and :attr:`expected` do not have the same :attr:`~torch.Tensor.shape`.
|
|
AssertionError: If :attr:`check_device`, but :attr:`actual` and :attr:`expected` are not on the same
|
|
:attr:`~torch.Tensor.device` memory.
|
|
AssertionError: If :attr:`check_dtype`, but :attr:`actual` and :attr:`expected` do not have the same
|
|
:attr:`~torch.Tensor.dtype`.
|
|
AssertionError: If :attr:`check_stride`, but :attr:`actual` and :attr:`expected` do not have the same stride.
|
|
AssertionError: If the values of :attr:`actual` and :attr:`expected` are close up to a desired tolerance.
|
|
|
|
|
|
|
|
The following table displays the default ``rtol`` and ``atol`` for floating point :attr:`~torch.Tensor.dtype`'s.
|
|
For integer :attr:`~torch.Tensor.dtype`'s, ``rtol = atol = 0.0`` is used.
|
|
|
|
+===========================+============+==========+
|
|
| :class:`~torch.dtype` | ``rtol`` | ``atol`` |
|
|
+===========================+============+==========+
|
|
| :attr:`~torch.float16` | ``1e-3`` | ``1e-5`` |
|
|
+---------------------------+------------+----------+
|
|
| :attr:`~torch.bfloat16` | ``1.6e-2`` | ``1e-5`` |
|
|
+---------------------------+------------+----------+
|
|
| :attr:`~torch.float32` | ``1.3e-6`` | ``1e-5`` |
|
|
+---------------------------+------------+----------+
|
|
| :attr:`~torch.float64` | ``1e-7`` | ``1e-7`` |
|
|
+---------------------------+------------+----------+
|
|
| :attr:`~torch.complex32` | ``1e-3`` | ``1e-5`` |
|
|
+---------------------------+------------+----------+
|
|
| :attr:`~torch.complex64` | ``1.3e-6`` | ``1e-5`` |
|
|
+---------------------------+------------+----------+
|
|
| :attr:`~torch.complex128` | ``1e-7`` | ``1e-7`` |
|
|
+---------------------------+------------+----------+
|
|
|
|
.. seealso::
|
|
|
|
To assert that the values in two tensors are bitwise equal, use :func:`assert_tensors_equal` instead.
|
|
"""
|
|
exc: Optional[Exception] = _check_are_tensors(actual, expected)
|
|
if exc:
|
|
raise exc
|
|
|
|
exc = _check_supported_tensors(actual, expected)
|
|
if exc:
|
|
raise exc
|
|
|
|
if (rtol is None) ^ (atol is None):
|
|
# We require both tolerance to be omitted or specified, because specifying only one might lead to surprising
|
|
# results. Imagine setting atol=0.0 and the tensors still match because rtol>0.0.
|
|
raise UsageError(
|
|
f"Both 'rtol' and 'atol' must be omitted or specified, " f"but got rtol={rtol} and atol={atol} instead."
|
|
)
|
|
elif rtol is None:
|
|
rtol, atol = _get_default_rtol_and_atol(actual, expected)
|
|
|
|
exc = _check_attributes_equal(
|
|
actual, expected, check_device=check_device, check_dtype=check_dtype, check_stride=check_stride
|
|
)
|
|
if exc:
|
|
raise exc
|
|
actual, expected = _equalize_attributes(actual, expected)
|
|
|
|
if (rtol == 0.0) and (atol == 0.0):
|
|
exc = _check_values_equal(actual, expected)
|
|
else:
|
|
exc = _check_values_close(actual, expected, rtol=rtol, atol=atol)
|
|
if exc:
|
|
raise exc
|