pytorch/caffe2/python/helpers/elementwise_linear.py
Bugra Akyildiz 27c7158166 Remove __future__ imports for legacy Python2 supports (#45033)
Summary:
There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports:

```2to3 -f future -w caffe2```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033

Reviewed By: seemethere

Differential Revision: D23808648

Pulled By: bugra

fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
2020-09-23 17:57:02 -07:00

47 lines
1.4 KiB
Python

## @package elementwise_linear
# Module caffe2.python.helpers.elementwise_linear
from caffe2.python import core
from caffe2.python.modeling.parameter_info import ParameterTags
def _elementwise_linear(
model, op_call, blob_in, blob_out, dim,
weight_init=None, bias_init=None, **kwargs
):
"""Elementwise_Linear"""
weight_init = weight_init or ('ConstantFill', {'value': 1.0})
bias_init = bias_init or ('ConstantFill', {'value': 0.0})
blob_out = blob_out or model.net.NextName()
if model.init_params:
weight = model.param_init_net.__getattr__(weight_init[0])(
[],
blob_out + '_w',
shape=[dim],
**weight_init[1]
)
bias = model.param_init_net.__getattr__(bias_init[0])(
[],
blob_out + '_b',
shape=[dim],
**bias_init[1]
)
else:
weight = core.ScopedBlobReference(
blob_out + '_w', model.param_init_net)
bias = core.ScopedBlobReference(
blob_out + '_b', model.param_init_net)
model.AddParameter(weight, ParameterTags.WEIGHT)
model.AddParameter(bias, ParameterTags.BIAS)
return op_call([blob_in, weight, bias], blob_out, **kwargs)
def elementwise_linear(model, *args, **kwargs):
return _elementwise_linear(
model, model.net.ElementwiseLinear, *args, **kwargs)