pytorch/caffe2/operators/elementwise_ops_utils.h
Hao Lu f1cbd10276 [PyPer] Port c2 add to pt (#54229)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54229

Because caffe2 add uses Eigen for add with broadcasting which is not well supported by OSS PyTorch, it's easier to just keep the `c2_add_out` internal for now. Caffe2 does use mkl add when the input dims of A and B are the same and there is no broadcasting needed.

Reviewed By: bertmaher

Differential Revision: D27036279

fbshipit-source-id: 49f0ec5407ea1f641896f054cad2283faed81687
2021-03-19 12:45:11 -07:00

36 lines
1008 B
C++

#ifndef CAFFE2_OPERATORS_ELEMENTWISE_OPS_UTILS_H_
#define CAFFE2_OPERATORS_ELEMENTWISE_OPS_UTILS_H_
#include <tuple>
#include <vector>
#include "caffe2/core/context.h"
#include "caffe2/core/tensor.h"
namespace caffe2 {
namespace elementwise_ops_utils {
TORCH_API std::tuple<size_t, size_t, size_t>
ComputeLegacyBroadcastSizes(const Tensor& A, const Tensor& B, int axis);
TORCH_API std::vector<int> ComputeBinaryBroadcastForwardDims(
const c10::ArrayRef<int>& A_dims,
const c10::ArrayRef<int>& B_dims);
TORCH_API void ComputeBinaryBroadcastBackwardAxes(
const std::vector<int>& A_dims,
const std::vector<int>& B_dims,
std::vector<int>* A_axes,
std::vector<int>* B_axes);
TORCH_API void ComputeBinaryBroadcastBackwardDims(
const std::vector<int>& A_dims,
const std::vector<int>& B_dims,
std::vector<int>* A_back_dims,
std::vector<int>* B_back_dims);
} // namespace elementwise_ops_utils
} // namespace caffe2
#endif // CAFFE2_OPERATORS_ELEMENTWISE_OPS_UTILS_H_