pytorch/caffe2/python/layers/sparse_lookup.py
Xianjie Chen d0621a2449 NextScopedBlob with well-defined behavior and respect namescope
Summary:
Remove the use of `NextName` in layer model helper, so that the same function return `model_helper` that should construct identical `Net`, when under the same NameScope.

The `NextScopedBlob` should only take effect when there is real name conflicting, otherwise it returns ScopedBlobReference.

This is critical for parameter blobs. In long run, we need to be able to specify parameter blobs more explicitly. (kennyhorror is working on this). This solution works in short term for e.g., two tower sparse nn models.

Reviewed By: kennyhorror

Differential Revision: D4555423

fbshipit-source-id: 2c4b99a61392e5d51aa878f7346466a8f14be187
2017-02-16 17:16:36 -08:00

148 lines
5.6 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core, schema
from caffe2.python.layers.layers import (
IdList,
IdScoreList,
LayerParameter,
ModelLayer,
)
import functools
import math
import numpy as np
import operator
class SparseLookup(ModelLayer):
_supported_reducers = ['PositionWeighted', 'LogMeanExp', 'LogSumExp', 'Max',
'Mean', 'Sum']
def __init__(self, model, input_record, inner_shape, reducer,
weight_init=None, weight_optim=None,
name='sparse_lookup', **kwargs):
super(SparseLookup, self).__init__(model, name, input_record, **kwargs)
if isinstance(inner_shape, int):
inner_shape = [inner_shape]
assert isinstance(inner_shape, list) or isinstance(inner_shape, tuple),\
"Unexpected type for inner_shape, expected list or tuple, got {0}".\
format(type(inner_shape))
# TODO Add some asserts about input type
assert reducer in self._supported_reducers, "Unsupported reducer: {}".\
format(reducer)
self.reducer = reducer
assert input_record.items.metadata is not None,\
"Features without metadata are not supported"
input_dim = input_record.items.metadata.categorical_limit
assert input_dim is not None, "Unbounded features are not supported"
self.output_schema = schema.Scalar(
(np.float32, inner_shape),
model.net.NextScopedBlob(name + '_output'),
)
if self.request_only:
schema.attach_metadata_to_scalars(
self.output_schema,
schema.Metadata(
categorical_limit=None,
expected_value=None,
feature_specs=schema.FeatureSpec(
feature_is_request_only=True
)
)
)
scale = math.sqrt(1.0 / input_dim)
self.shape = [input_dim] + inner_shape
self.weight_init = weight_init if weight_init else (
'UniformFill', {'min': -scale, 'max': scale})
self.w = model.net.NextScopedBlob(name + "_w")
self.params.append(
LayerParameter(
parameter=self.w,
initializer=core.CreateOperator(self.weight_init[0],
[],
self.w,
shape=self.shape,
**self.weight_init[1]
),
optimizer=weight_optim
))
if reducer == 'PositionWeighted':
self.pos_w = model.net.NextScopedBlob(name + "_pos_w")
self.params.append(
LayerParameter(
parameter=self.pos_w,
initializer=core.CreateOperator('ConstantFill',
[],
self.pos_w,
shape=[input_dim, ],
value=1.0
),
optimizer=weight_optim
))
def get_memory_usage(self):
return functools.reduce(operator.mul, self.shape) * 4
def add_ops(self, net):
if schema.equal_schemas(self.input_record, IdList):
if self.reducer == 'Sum':
net.SparseLengthsSum(
[
self.w,
self.input_record.items(),
self.input_record.lengths()
],
self.output_schema.field_blobs()
)
elif self.reducer == 'PositionWeighted':
inc_seq = net.LengthsRangeFill(
[self.input_record.lengths()],
self.input_record.lengths() + '_seq'
)
gather_pos_w = net.Gather(
[self.pos_w, inc_seq], self.pos_w + '_gather')
net.SparseLengthsWeightedSum(
[
self.w,
gather_pos_w,
self.input_record.items(),
self.input_record.lengths()
],
self.output_schema.field_blobs(),
grad_on_weights=1
)
else:
table_rows = net.Gather([self.w, self.input_record.keys()])
segment_ids = net.LengthsToSegmentIds(
self.input_record.lengths())
net.__getattr__('SortedSegmentRange' + self.reducer)(
[table_rows, segment_ids],
self.output_schema.field_blobs()
)
elif schema.equal_schemas(self.input_record, IdScoreList):
if self.reducer == 'Sum':
net.SparseLengthsWeightedSum(
[
self.w,
self.input_record.values(),
self.input_record.keys(),
self.input_record.lengths()
],
self.output_schema.field_blobs()
)
else:
raise "Only Sum is supported for IdScoreList input." +\
"Trying to create with {}".format(self.reducer)
else:
raise "Unsupported input type {0}".format(self.input_record)