pytorch/torch/_inductor/fx_utils.py
Edward Z. Yang d03173e88c Unify MYPYINDUCTOR and MYPY (#118432)
The original motivation for MYPYINDUCTOR was a faster type checking configuration that only checked a subset of files. With the removal of `follow_imports = ignore`, we are now able to use dmypy to do fast incremental typechecking, eliminating the need for this.

Perhaps erroneously, when I tee'ed up this PR I elected to delete the `follow_imports = skip` designations in the mypy-inductor.ini. This lead to a number of extra type error suppressions that I manually edited. You will need to review.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118432
Approved by: https://github.com/Skylion007
ghstack dependencies: #118414, #118418
2024-01-27 17:23:20 +00:00

221 lines
7.8 KiB
Python

import operator
from collections import defaultdict
from typing import Any, Callable, DefaultDict, Dict, Optional, Tuple, Type
import torch
import torch.fx
from torch.fx.experimental.symbolic_shapes import statically_known_true, sym_eq
from torch.utils import _pytree as pytree
from torch.utils._pytree import tree_map
from .virtualized import V
# Check the pattern: (nn.module, F.function/torch.Tensor.method) matched.
# Works for length 2 patterns with 1 module and 1 function/method.
def matches_module_function_pattern(
pattern: Tuple[Type[torch.nn.modules.Module], Callable[..., Any]],
node: torch.fx.node.Node,
modules: Dict[str, torch.nn.modules.Module],
) -> bool:
if len(node.args) == 0:
return False
if not isinstance(node.args[0], torch.fx.Node) or not isinstance(
node, torch.fx.Node
):
return False
# the first node is call_module
if node.args[0].op != "call_module":
return False
if not isinstance(node.args[0].target, str):
return False
if node.args[0].target not in modules:
return False
if type(modules[node.args[0].target]) is not pattern[0]:
return False
# the second node is call_function or call_method
if node.op != "call_function" and node.op != "call_method":
return False
if node.target != pattern[1]:
return False
# make sure node.args[0] output is only used by current node.
if len(node.args[0].users) > 1:
return False
return True
class FakeTensorUpdater:
"""
The main idea here is that it's difficult to maintain accurate fake
tensors (our primary form of metadata) for each node in our graph as we
transform it.
The most reliable way to obtain this information is by rerunning
faketensor propagation. However, in general, faketensor propagation is
fairly expensive. So, instead we'd like to only rerun faketensor
propagation on nodes that have changed.
In order to detect which nodes have changed, we first hash its node,
target, and argument lists (which are immutable in FX).
Then, whenever we call incremental_update, we check which FX nodes have a
new hash, and recompute the faketensor metadata for that node. Then, we
continue to recursively compute the faketensors for all users until the
fake tensors stop changing.
"""
def __init__(self, graph: torch.fx.Graph):
self.processed_hashes = set()
self.graph = graph
for node in self.graph.nodes:
self.processed_hashes.add(self.hash_node(node))
def hash_node(self, node: torch.fx.Node):
# todo(chilli): Not a great hash function
return (node, node.target, id(node.args), id(node.kwargs))
def incremental_update(self):
processed = set()
existing_storages: DefaultDict[Optional[int], int] = defaultdict(int)
for node in self.graph.nodes:
existing_storages[get_node_storage(node)] += 1
def is_intlist_same(new, old):
return statically_known_true(sym_eq(new, old))
def is_fake_tensor_same(new, old):
if type(new) != type(old):
return False
if isinstance(new, (list, tuple)):
if len(new) != len(old):
return False
return all(
is_fake_tensor_same(new_i, old_i) for new_i, old_i in zip(new, old)
)
assert isinstance(new, torch.Tensor)
if not is_intlist_same(new.shape, old.shape) or new.layout != old.layout:
return False
if new.layout == torch.strided and (
not is_intlist_same(new.stride(), old.stride())
or not statically_known_true(
new.storage_offset() == old.storage_offset()
)
):
return False
if get_storage(new) == get_storage(old):
return True
# This is the case where it returns a completely fresh storage that's used nowhere else.
if (
existing_storages[get_storage(old)] == 1
and get_storage(new) not in existing_storages
):
return True
return False
for node in self.graph.nodes:
if self.hash_node(node) in self.processed_hashes:
continue
def is_aten_node(node):
return node.op == "call_function" and isinstance(
node.target, torch._ops.OpOverload
)
if not is_aten_node(node):
continue
processing = [node]
while len(processing) > 0:
updating_node = processing.pop()
if updating_node in processed:
continue
if is_aten_node(updating_node):
continue
is_valid, args, kwargs = get_fake_args_kwargs(updating_node)
if not is_valid:
continue
with V.fake_mode:
new_fake_tensor = updating_node.target(*args, **kwargs)
if "val" in updating_node.meta and is_fake_tensor_same(
new_fake_tensor, updating_node.meta["val"]
):
continue
updating_node.meta["val"] = new_fake_tensor
# todo(chilli): This code path is not exercised by our existing
# tests - add a test
existing_storages[get_node_storage(new_fake_tensor)] += 1
processed.add(updating_node)
processing.extend(updating_node.users)
self.processed_hashes.add(self.hash_node(updating_node))
def get_storage(t: torch.Tensor) -> int:
return t.untyped_storage()._cdata
def get_node_storage(node: torch.fx.Node) -> Optional[int]:
if "val" not in node.meta:
return None
if not isinstance(node.meta["val"], torch.Tensor):
return None
if not torch._C._has_storage(node.meta["val"]):
return None
return get_storage(node.meta["val"])
def get_fake(x):
if isinstance(x, torch.fx.Node):
if "val" not in x.meta:
return x
return x.meta["val"]
return x
def get_fake_args_kwargs(x: torch.fx.Node) -> Tuple[bool, Tuple[Any], Dict[str, Any]]:
"""
First value returns a boolean if any of the input nodes don't have a faketensor.
"""
args, kwargs = tree_map(get_fake, (x.args, x.kwargs))
if any(
isinstance(a, torch.fx.Node) for a in pytree.arg_tree_leaves(*args, **kwargs)
):
return False, args, kwargs
return True, args, kwargs
def is_node_realized(node: torch.fx.Node) -> bool:
"""Returns true if a node is always realized when lowered to inductor IR.
NOTE: This may return some false negatives. e.g. it doesn't
handle buffers realized heuristically during lowering, or
buffers realized indirectly through view ops.
"""
from torch._inductor.lowering import fallbacks, needs_realized_inputs
def is_buffer(node: torch.fx.Node) -> bool:
if node.op == "call_function" and node.target is operator.getitem:
# For nodes with multiple outputs, we get the fx graph:
# foo = torch.ops.aten.foo(...)
# getitem = foo[0]
# getitem_1 = foo[1]
# where we need to check if foo is a fallback kernel
return is_buffer(node.args[0]) # type: ignore[arg-type]
return node.op in ("placeholder", "output") or node.target in fallbacks
if is_buffer(node):
return True
def realizes_inputs(node: torch.fx.Node) -> bool:
return node.op == "output" or node.target in needs_realized_inputs
if any(realizes_inputs(user) for user in node.users):
return True
# Otherwise, assume node isn't realized
return False