pytorch/torch/_dynamo/variables/ctx_manager.py
Edward Z. Yang d03173e88c Unify MYPYINDUCTOR and MYPY (#118432)
The original motivation for MYPYINDUCTOR was a faster type checking configuration that only checked a subset of files. With the removal of `follow_imports = ignore`, we are now able to use dmypy to do fast incremental typechecking, eliminating the need for this.

Perhaps erroneously, when I tee'ed up this PR I elected to delete the `follow_imports = skip` designations in the mypy-inductor.ini. This lead to a number of extra type error suppressions that I manually edited. You will need to review.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118432
Approved by: https://github.com/Skylion007
ghstack dependencies: #118414, #118418
2024-01-27 17:23:20 +00:00

713 lines
24 KiB
Python

# mypy: ignore-errors
import dataclasses
import inspect
from typing import Callable, Dict, List, Optional
import torch._C
from torch._guards import Guard
from .. import variables
from ..bytecode_transformation import create_call_function, create_instruction
from ..device_interface import get_interface_for_device
from ..exc import unimplemented, Unsupported
from ..guards import GuardBuilder, install_guard
from ..source import AttrSource, GlobalStateSource
from .base import VariableTracker
from .functions import (
NestedUserFunctionVariable,
UserFunctionVariable,
UserMethodVariable,
WrappedUserFunctionVariable,
WrappedUserMethodVariable,
)
@dataclasses.dataclass
class ContextMangerState:
"""
Mutating `self` in VariableTracker is not allowed because we copy
them. This is a mutable container pointed to by context managers
that won't get copied, so it is safe to mutate.
"""
cleanup_fn: Optional[Callable] = None
proxy: Optional[torch.fx.Proxy] = None
def cleanup(self):
if self.cleanup_fn is not None:
self.cleanup_fn()
self.cleanup_fn = None
def cleanup_assert(self):
assert self.cleanup_fn, "multiple exits?"
self.cleanup()
class ContextWrappingVariable(VariableTracker):
_nonvar_fields = {
"cm_obj",
"target_values",
"initial_values",
"state",
*VariableTracker._nonvar_fields,
}
def __init__(self, target_values, initial_values=None, *, state=None, **kwargs):
super().__init__(**kwargs)
self.target_values = target_values
self.initial_values = initial_values
self.state = ContextMangerState() if state is None else state
def enter(self, tx):
self._call_func(tx, self.target_values)
self.set_cleanup_hook(tx)
return variables.ConstantVariable.create(None)
def set_cleanup_hook(self, tx, fn=None):
if fn is None:
def fn():
self._call_func(tx, self.initial_values)
self.state.cleanup_fn = fn
tx.output.add_cleanup_hook(self.state.cleanup)
def exit(self, tx, *args):
self.state.cleanup_assert()
return variables.ConstantVariable.create(None)
def reconstruct(self, codegen):
attr_source = AttrSource(
codegen.tx.import_source(self.module_name()), self.fn_name()
)
return attr_source.reconstruct(codegen)
def module_name(self):
raise NotImplementedError("module_name called on base")
def fn_name(self):
raise NotImplementedError("fn_name called on base")
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
assert len(args) == 1
if isinstance(args[0], NestedUserFunctionVariable):
args[0] = UserFunctionVariable(args[0].get_function())
assert isinstance(args[0], (UserMethodVariable, UserFunctionVariable))
if isinstance(args[0], UserMethodVariable):
return WrappedUserMethodVariable(args[0], self)
if isinstance(args[0], UserFunctionVariable):
return WrappedUserFunctionVariable(args[0], self)
class GenericContextWrappingVariable(ContextWrappingVariable):
def __init__(self, target_values, initial_values=None, *, cm_obj=None, **kwargs):
assert cm_obj is not None
super().__init__(
target_values=target_values, initial_values=initial_values, **kwargs
)
self.cm_obj = cm_obj
def enter(self, tx):
source = None if self.source is None else AttrSource(self.source, "__enter__")
try:
return variables.UserMethodVariable(
self.cm_obj.__enter__.__func__,
variables.UserDefinedObjectVariable(self.cm_obj),
source=source,
).call_function(tx, [], {})
except Unsupported as e:
raise unimplemented(
f"Unsupported context manager {self.cm_obj}'s __enter__ function"
) from e
def exit(self, tx, *args):
source = None if self.source is None else AttrSource(self.source, "__exit__")
try:
x = variables.UserMethodVariable(
self.cm_obj.__exit__.__func__,
variables.UserDefinedObjectVariable(self.cm_obj),
source=source,
).call_function(
tx,
[
variables.ConstantVariable.create(None),
variables.ConstantVariable.create(None),
variables.ConstantVariable.create(None),
],
{},
)
except Unsupported as e:
raise unimplemented(
f"Unsupported context manager {self.cm_obj}'s __exit__ function"
) from e
tx.generic_context_manager_depth -= 1
return x
class VmapIncrementNestingCtxManagerVariable(ContextWrappingVariable):
"""represents torch VMap increment/decrement nesting"""
# A guard is needed as the vmap level is baked into the torch FX graph
# generated. This is fine if vmap is only called from within the function
# being compiled. But the FX graph may be invalid in the case of a vmap
# call from eager that calls the compiled function, as the vmap levels
# may be different.
_guards_singleton = Guard(
GlobalStateSource(), GuardBuilder.FUNCTORCH_CURRENT_LEVEL_MATCH
)
@staticmethod
def create(tx, target_values, **kwargs):
var = VmapIncrementNestingCtxManagerVariable(
target_values=target_values,
initial_values=None,
**kwargs,
)
return var
def enter(self, tx):
install_guard(self._guards_singleton)
batch_size, randomness = self.target_values
vmap_level = torch._C._functorch._vmap_increment_nesting(batch_size, randomness)
self.set_cleanup_hook(tx, lambda: torch._C._functorch._vmap_decrement_nesting())
self.state.proxy = tx.output.create_node(
"call_function",
torch._C._functorch._vmap_increment_nesting,
(batch_size, randomness),
{},
)
return variables.ConstantVariable.create(vmap_level)
def exit(self, tx, *args):
self.state.cleanup()
tx.output.create_node(
"call_function", torch._C._functorch._vmap_decrement_nesting, (), {}
)
return variables.ConstantVariable.create(None)
class GradModeVariable(ContextWrappingVariable):
"""represents torch.{no_grad,enable_grad,set_grad_mode}()"""
_guards_singleton = Guard(GlobalStateSource(), GuardBuilder.GRAD_MODE)
@staticmethod
def create(tx, target_value, initialized=False, **kwargs):
var = GradModeVariable(
target_values=[target_value],
initial_values=[torch.is_grad_enabled()],
**kwargs,
)
if initialized:
var._call_func(tx, var.target_values)
return var
def __init__(self, target_values, initial_values=None, initialized=True, **kwargs):
super().__init__(
target_values=target_values, initial_values=initial_values, **kwargs
)
install_guard(self._guards_singleton)
def enter(self, tx):
self._call_func(tx, self.target_values)
return variables.ConstantVariable.create(None)
def exit(self, tx, *args):
self._call_func(tx, self.initial_values)
return variables.ConstantVariable.create(None)
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
):
self._call_func(tx, self.initial_values) # undo eager initialization
return super().call_function(tx, args, kwargs)
def _call_func(self, tx, values):
assert len(values) == 1
value = values[0]
# Coalesce grad mode mutations
if torch.is_grad_enabled() != value:
tx.output.create_node(
"call_function", torch._C._set_grad_enabled, (value,), {}
)
torch._C._set_grad_enabled(value)
def module_name(self):
return "torch"
def fn_name(self):
return "set_grad_enabled"
class InferenceModeVariable(ContextWrappingVariable):
@staticmethod
def create(tx, target_values, **kwargs):
var = InferenceModeVariable(
target_values, initial_values=torch.is_inference_mode_enabled(), **kwargs
)
return var
def __init__(
self,
target_values,
initial_values=None,
**kwargs,
):
if initial_values is None:
# This must be called here since function defaults are evaluated at import time
initial_values = torch.is_inference_mode_enabled()
super().__init__(
target_values=target_values, initial_values=initial_values, **kwargs
)
self.target_values = target_values
def exit(self, tx, *args):
self.state.cleanup_assert()
tx.output.create_node(
"call_function",
torch.autograd.grad_mode._exit_inference_mode,
(self.state.proxy,),
{},
)
def enter(self, tx):
ctx = torch.autograd.grad_mode._enter_inference_mode(self.target_values)
self.set_cleanup_hook(
tx, lambda: torch.autograd.grad_mode._exit_inference_mode(ctx)
)
self.state.proxy = tx.output.create_node(
"call_function",
torch.autograd.grad_mode._enter_inference_mode,
(self.target_values,),
{},
)
def module_name(self):
return "torch.inference_mode"
def fn_name(self):
return "inference_mode"
class TorchFunctionDisableVariable(ContextWrappingVariable):
"""represents whether torch function overrides are enabled or not"""
_guards_singleton = Guard(GlobalStateSource(), GuardBuilder.TORCH_FUNCTION_STATE)
@staticmethod
def create(tx, **kwargs):
var = TorchFunctionDisableVariable(
target_values=[False],
initial_values=[tx.output.torch_function_enabled],
**kwargs,
)
# mlazos: I think this is here to make sure we don't reinvoke on clone()
var._call_func(tx, [False])
var.set_cleanup_hook(tx)
return var
def __init__(self, target_values, initial_values=None, **kwargs):
super().__init__(
target_values=target_values, initial_values=initial_values, **kwargs
)
install_guard(self._guards_singleton)
def enter(self, tx):
return variables.ConstantVariable.create(None)
def _call_func(self, tx, values):
assert len(values) == 1
tx.output.set_torch_function_state(values[0])
class DeterministicAlgorithmsVariable(ContextWrappingVariable):
"""represents torch.{are_deterministic_algorithms_enabled,use_deterministic_algorithms}()"""
_guards_singleton = Guard(
GlobalStateSource(), GuardBuilder.DETERMINISTIC_ALGORITHMS
)
@staticmethod
def create(tx, target_value, **kwargs):
var = DeterministicAlgorithmsVariable(
target_values=[target_value],
initial_values=[torch.are_deterministic_algorithms_enabled()],
**kwargs,
)
var._call_func(tx, [target_value])
var.set_cleanup_hook(tx)
return var
def __init__(self, target_values, initial_values=None, **kwargs):
super().__init__(
target_values=target_values, initial_values=initial_values, **kwargs
)
install_guard(self._guards_singleton)
def enter(self, tx):
return variables.ConstantVariable.create(None)
def _call_func(self, tx, values):
assert len(values) == 1
value = values[0]
tx.output.create_node(
"call_function", torch._C._set_deterministic_algorithms, (value,), {}
),
torch._C._set_deterministic_algorithms(value)
def module_name(self):
return "torch"
def fn_name(self):
return "use_deterministic_algorithms"
class DisabledSavedTensorsHooksVariable(ContextWrappingVariable):
"""represents torch.autograd.graph.disable_saved_tensors_hook."""
@staticmethod
def create(tx, target_value, **kwargs):
var = DisabledSavedTensorsHooksVariable(
target_values=[target_value],
initial_values=[
torch._C._autograd._saved_tensors_hooks_get_disabled_error_message()
],
**kwargs,
)
var._call_func(tx, [target_value])
var.set_cleanup_hook(tx)
return var
def __init__(self, target_values, initial_values=None, **kwargs):
super().__init__(
target_values=target_values, initial_values=initial_values, **kwargs
)
def enter(self, tx):
return variables.ConstantVariable.create(None)
def _call_func(self, tx, values):
assert len(values) == 1
value = values[0]
if value is not None:
# Disable `saved_tensors_hooks` with message (`value`)
# OR
# we are exiting this context and restoring the previous message.
tx.output.create_node(
"call_function",
torch._C._autograd._saved_tensors_hooks_disable,
(value,),
{},
)
torch._C._autograd._saved_tensors_hooks_disable(value)
else:
# We are exiting this context and if prev_message was None, we re-enable `saved_tensors_hooks`.
tx.output.create_node(
"call_function", torch._C._autograd._saved_tensors_hooks_enable, (), {}
)
torch._C._autograd._saved_tensors_hooks_enable()
def module_name(self):
return "torch.autograd.graph"
def fn_name(self):
return "disable_saved_tensors_hooks"
class AutocastModeVariable(ContextWrappingVariable):
@staticmethod
def create(func, args, kwargs):
assert func in [
torch.amp.autocast_mode.autocast,
torch.cuda.amp.autocast,
torch.cpu.amp.autocast,
]
# device_type : str,
# dtype : Optional[_dtype] = None,
# enabled : bool = True,
# cache_enabled : Optional[bool] = None):cache_enabled
bound_args = inspect.signature(func).bind(*args, **kwargs)
bound_args.apply_defaults()
target_values = []
kwargs.clear()
for key in ["device_type", "dtype", "enabled", "cache_enabled"]:
if key == "device_type" and func in [
torch.cuda.amp.autocast,
torch.cpu.amp.autocast,
]:
arg = "cuda" if func is torch.cuda.amp.autocast else "cpu"
else:
arg = bound_args.arguments[key]
if isinstance(arg, VariableTracker):
target_values.append(arg.as_python_constant())
else:
target_values.append(arg)
var = AutocastModeVariable(target_values, initial_values=None, **kwargs)
return var
def __init__(self, target_values, initial_values=None, **kwargs):
super().__init__(
target_values=target_values, initial_values=initial_values, **kwargs
)
self.target_values = target_values
def exit(self, tx, *args):
self.state.cleanup_assert()
tx.output.create_node(
"call_function", torch.amp._exit_autocast, (self.state.proxy,), {}
)
def enter(self, tx):
ctx = torch.amp._enter_autocast(*self.target_values)
self.set_cleanup_hook(tx, lambda: torch.amp._exit_autocast(ctx))
self.state.proxy = tx.output.create_node(
"call_function", torch.amp._enter_autocast, (*self.target_values,), {}
)
def module_name(self):
return "torch.amp.autocast_mode"
def fn_name(self):
return "autocast"
class NullContextVariable(ContextWrappingVariable):
"""
This class represents Python contextlib.nullcontext.
It's used as a placeholder for other context managers that Dynamo doesn't
support yet, e.g, torch.autograd.profiler.record_function.
"""
def __init__(self, target_values=None, **kwargs):
super().__init__(target_values=target_values, **kwargs)
def enter(self, tx):
return variables.ConstantVariable.create(None)
def exit(self, tx, *args):
return variables.ConstantVariable.create(None)
def module_name(self):
return "contextlib"
def fn_name(self):
return "nullcontext"
class StreamContextVariable(ContextWrappingVariable):
@staticmethod
def create(tx, target_value, **kwargs):
from .builder import wrap_fx_proxy_cls
current_stream_method = get_interface_for_device(
target_value.device
).current_stream
current_stream = wrap_fx_proxy_cls(
StreamVariable,
tx,
tx.output.create_proxy(
"call_function",
current_stream_method,
(None,),
{},
),
)
return StreamContextVariable(
target_values=[target_value],
initial_values=[current_stream],
device=target_value.device,
**kwargs,
)
def __init__(self, target_values, device, initial_values=None, **kwargs):
super().__init__(
target_values=target_values, initial_values=initial_values, **kwargs
)
self.device = device
self.set_stream = get_interface_for_device(self.device).set_stream
self.set_stream_id = get_interface_for_device(self.device)._set_stream_by_id
def enter(self, tx):
# stream generated inside the traced function
if self.target_values[0].as_proxy() is not None:
tx.output.create_proxy(
"call_function",
self.set_stream,
(self.target_values[0].as_proxy(),),
{},
)
# stream passed from outside the traced function
else:
stream = self.target_values[0].value
tx.output.create_proxy(
"call_function",
self.set_stream_id,
(stream.stream_id, stream.device_index, stream.device_type),
{},
)
self.set_stream(self.target_values[0].value)
self.set_cleanup_hook(tx, lambda: self.set_stream(self.initial_values[0].value))
def exit(self, tx, *args):
tx.output.create_proxy(
"call_function",
self.set_stream,
(self.initial_values[0].as_proxy(),),
{},
)
self.state.cleanup_assert()
class StreamVariable(VariableTracker):
def __init__(self, proxy, value, device, **kwargs):
if proxy is not None and "example_value" in proxy.node.meta:
assert proxy.node.meta["example_value"] == value
assert (
value.device.type == device.type
), "stream value is not equal to the passed device"
super().__init__(**kwargs)
self.proxy = proxy
self.value = value
self.device = device
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
assert hasattr(self.value, name), f"no stream method found named {name}"
assert name in [
"wait_stream",
"synchronize",
"query",
"record_event",
"wait_event",
], f" unsupported stream method {name}"
from ..utils import proxy_args_kwargs
from .builder import wrap_fx_proxy_cls
if name in ("wait_stream", "synchronize", "wait_event"):
tx.output.create_proxy(
"call_method", name, *proxy_args_kwargs([self] + args, kwargs)
)
return variables.ConstantVariable(None)
elif name == "query":
return wrap_fx_proxy_cls(
target_cls=variables.ConstantVariable,
tx=tx,
proxy=tx.output.create_proxy(
"call_method", name, *proxy_args_kwargs([self] + args, kwargs)
),
)
elif name == "record_event":
return wrap_fx_proxy_cls(
target_cls=EventVariable,
tx=tx,
proxy=tx.output.create_proxy(
"call_method", name, *proxy_args_kwargs([self] + args, kwargs)
),
)
else:
unimplemented(self.device + " stream method " + name + " unsupported")
def as_proxy(self):
return self.proxy
def reconstruct(self, codegen):
# If we got here, this stream is fully subsumed by the graph - this means it is
# not an input or global
assert not self.source
# Since we just proved that - for other such structures, like lists and dicts, reconstruction
# is fine and sound according to dynamo principles of treating collectives. However,
# streams are special in that we want to preserve the identity of the stream as the same as in the graph
# Normally, we would do this via codegen for the proxy mapping to an output - we cannot do this yet, as we do not
# yet have a plan for how we want to handle the case where the stream is used as an input or an output. Pending
# design, to unblock current work, we lift the stream into a global and then codegen bytecode to load it from there.
prefix = f"_stream_{self.device}"
name = codegen.tx.output.install_global_by_id(prefix, self.value)
return [codegen.create_load_global(name, push_null=False, add=True)]
class EventVariable(VariableTracker):
def __init__(self, proxy, value, **kwargs):
if proxy is not None and "example_value" in proxy.node.meta:
assert proxy.node.meta["example_value"] == value
super().__init__(**kwargs)
self.proxy = proxy
self.value = value
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
from ..utils import proxy_args_kwargs
from .builder import wrap_fx_proxy_cls
if name in ("wait", "record", "synchronize"):
tx.output.create_proxy(
"call_method", name, *proxy_args_kwargs([self] + args, kwargs)
)
return variables.ConstantVariable(None)
elif name == "query":
return wrap_fx_proxy_cls(
target_cls=variables.ConstantVariable,
tx=tx,
proxy=tx.output.create_proxy(
"call_method", name, *proxy_args_kwargs([self] + args, kwargs)
),
)
else:
unimplemented(f"event method {name} unsupported")
def as_proxy(self):
return self.proxy
class WithExitFunctionVariable(VariableTracker):
def __init__(self, ctx: ContextWrappingVariable, target, **kwargs):
super().__init__(**kwargs)
assert isinstance(ctx, ContextWrappingVariable)
self.ctx = ctx
self.target = target
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
assert not kwargs
return self.ctx.exit(tx, *args)
def reconstruct(self, codegen):
# Note here we reconstruct the context manager rather than the
# exit function. The handler generated by BlockStackEntry
# will re-enter the context in the resume function.
output = AttrSource(
codegen.tx.import_source(self.ctx.module_name()), self.ctx.fn_name()
).reconstruct(codegen)
if codegen.tx.output.partial_convert:
loads = [codegen.create_load_const(val) for val in self.ctx.target_values]
output.extend(loads)
output.extend(
[
*create_call_function(len(loads), True),
create_instruction("SETUP_WITH", target=self.target),
create_instruction("POP_TOP"),
]
)
return output