mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
I feel it's easier to open a new PR rather than iterating on the previous PR (https://github.com/pytorch/pytorch/pull/105257 ) since this is more like a rewrite. In this PR, instead of changing GraphModule directly which can easily causes BC issue, I create a LazyGraphModule class as Zachary & Jason suggested in comments from the previous PR. The difference between LazyGraphModule and GraphModule is mainly about how re-compile for the graph module happens. In GraphModule the recompilation happens 'eagerly': constructing a GraphModule will cause the recompilation. While in LazyGraphModule, we just mark the module as needing recompilation. The real recompilation only happens when absolutely required (e.g. call forward method, access the code property etc.). In a lot of cases in torch.compile, the real recompilation eventually is not triggered at all. This can save a few seconds of compilation time. By default, GraphModule rather than LazyGraphModule is used. `use_lazy_graph_module(True)` context manager can be used to pick LazyGraphModule instead. This has been applied to the torch.compile stack. Pull Request resolved: https://github.com/pytorch/pytorch/pull/117911 Approved by: https://github.com/jansel
819 lines
28 KiB
Python
819 lines
28 KiB
Python
import collections
|
|
import functools
|
|
import itertools
|
|
import logging
|
|
import os
|
|
import random
|
|
import types
|
|
import typing
|
|
import weakref
|
|
from typing import Any, Callable, Dict, List, Optional, Set
|
|
|
|
from torch.fx._lazy_graph_module import ( # type: ignore[attr-defined]
|
|
_use_lazy_graph_module,
|
|
)
|
|
|
|
try:
|
|
import numpy as np
|
|
except ModuleNotFoundError:
|
|
np = None # type: ignore[assignment]
|
|
|
|
import torch
|
|
import torch._logging
|
|
from torch._guards import compile_context, CompileContext, CompileId, tracing
|
|
from torch._utils_internal import signpost_event
|
|
from torch.fx.experimental.symbolic_shapes import (
|
|
ConstraintViolationError,
|
|
GuardOnDataDependentSymNode,
|
|
)
|
|
from torch.fx.graph_module import _forward_from_src as original_forward_from_src
|
|
from torch.utils._traceback import format_traceback_short
|
|
|
|
from . import config, exc
|
|
from .backends.registry import CompilerFn
|
|
from .bytecode_analysis import remove_dead_code, remove_pointless_jumps
|
|
from .bytecode_transformation import (
|
|
check_inst_exn_tab_entries_valid,
|
|
Instruction,
|
|
is_generator,
|
|
propagate_inst_exn_table_entries,
|
|
transform_code_object,
|
|
)
|
|
from .cache_size import (
|
|
CacheSizeRelevantForFrame,
|
|
compute_cache_size,
|
|
exceeds_cache_size_limit,
|
|
is_recompilation,
|
|
)
|
|
from .eval_frame import always_optimize_code_objects, skip_code, TorchPatcher
|
|
from .exc import (
|
|
augment_exc_message,
|
|
BackendCompilerFailed,
|
|
format_error_msg,
|
|
InternalTorchDynamoError,
|
|
TorchRuntimeError,
|
|
UncapturedHigherOrderOpError,
|
|
unimplemented,
|
|
Unsupported,
|
|
)
|
|
from .guards import (
|
|
CheckFunctionManager,
|
|
get_and_maybe_log_recompilation_reason,
|
|
GuardedCode,
|
|
)
|
|
from .hooks import Hooks
|
|
from .output_graph import OutputGraph
|
|
from .replay_record import ExecutionRecord
|
|
from .symbolic_convert import InstructionTranslator, SpeculationLog
|
|
from .trace_rules import is_numpy
|
|
from .types import BytecodeHook
|
|
from .utils import (
|
|
CleanupManager,
|
|
CompilationMetrics,
|
|
counters,
|
|
cprofile_wrapper,
|
|
dynamo_timed,
|
|
format_bytecode,
|
|
frame_phase_timing,
|
|
gen_record_file_name,
|
|
increment_frame,
|
|
is_namedtuple,
|
|
istype,
|
|
LazyString,
|
|
orig_code_map,
|
|
record_compilation_metrics,
|
|
reset_graph_break_dup_checker,
|
|
setup_compile_debug,
|
|
troubleshooting_url,
|
|
write_record_to_file,
|
|
)
|
|
|
|
log = logging.getLogger(__name__)
|
|
bytecode_log = torch._logging.getArtifactLogger(__name__, "bytecode")
|
|
GlobalStateGuard = torch._C._dynamo.guards.GlobalStateGuard
|
|
|
|
|
|
class Tracker:
|
|
def __init__(self):
|
|
self.seen = []
|
|
self.seen_ids = set()
|
|
|
|
def add(self, strong_obj):
|
|
idx = id(strong_obj)
|
|
if idx not in self.seen_ids:
|
|
obj = weakref.ref(strong_obj, lambda _: self.seen_ids.remove(idx))
|
|
self.seen.append(obj)
|
|
self.seen_ids.add(idx)
|
|
|
|
def __contains__(self, item):
|
|
return id(item) in self.seen_ids
|
|
|
|
def clear(self):
|
|
self.seen.clear()
|
|
self.seen_ids.clear()
|
|
|
|
|
|
input_codes = Tracker()
|
|
output_codes = Tracker()
|
|
|
|
initial_global_state = None
|
|
|
|
|
|
@functools.wraps(original_forward_from_src)
|
|
def fx_forward_from_src_skip_result(*args, **kwargs):
|
|
# we monkey patch FX to prevent infinite loop of trying to convert
|
|
# our generated code
|
|
result: types.FunctionType = original_forward_from_src(*args, **kwargs)
|
|
skip_code(result.__code__)
|
|
return result
|
|
|
|
|
|
def preserve_global_state(fn):
|
|
"""
|
|
Context manager to:
|
|
1) Save/restore torch.is_grad_enabled() state
|
|
2) Save/restore python random state
|
|
3) Save/restore torch random state
|
|
4) Monkey patch torch.fx.graph_module._forward_from_src
|
|
"""
|
|
|
|
@functools.wraps(fn)
|
|
def _fn(*args, **kwargs):
|
|
guards = GlobalStateGuard()
|
|
prior_grad_mode = torch.is_grad_enabled()
|
|
prior_inference_mode = torch.is_inference_mode_enabled()
|
|
prior_deterministic = torch.are_deterministic_algorithms_enabled()
|
|
prior_warn_only = torch.is_deterministic_algorithms_warn_only_enabled()
|
|
py_rng_state = random.getstate()
|
|
torch_rng_state = torch.random.get_rng_state()
|
|
if torch.cuda.is_available():
|
|
cuda_rng_state = torch.cuda.get_rng_state()
|
|
prior_fwd_from_src = torch.fx.graph_module._forward_from_src
|
|
torch.fx.graph_module._forward_from_src = fx_forward_from_src_skip_result
|
|
cleanup = setup_compile_debug()
|
|
try:
|
|
return fn(*args, **kwargs)
|
|
finally:
|
|
cleanup.close()
|
|
torch._C._set_grad_enabled(prior_grad_mode)
|
|
torch.torch.autograd.grad_mode._enter_inference_mode(prior_inference_mode)
|
|
torch.use_deterministic_algorithms(
|
|
prior_deterministic, warn_only=prior_warn_only
|
|
)
|
|
random.setstate(py_rng_state)
|
|
torch.random.set_rng_state(torch_rng_state)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.set_rng_state(cuda_rng_state)
|
|
torch.fx.graph_module._forward_from_src = prior_fwd_from_src
|
|
assert (
|
|
guards.check()
|
|
), "Global state changed while dynamo tracing, please report a bug"
|
|
|
|
_fn._torchdynamo_orig_callable = fn # type: ignore[attr-defined]
|
|
return _fn
|
|
|
|
|
|
@TorchPatcher.suppress_torch_distributed_warnings
|
|
def has_tensor_in_frame(frame):
|
|
"""Check if the frame has torch.* related bits"""
|
|
# Check if the function was decorated using torch._dynamo.optimize
|
|
if frame.f_code in always_optimize_code_objects:
|
|
return True
|
|
|
|
# Check if there is global import of torch.*
|
|
for co_name in frame.f_code.co_names:
|
|
if co_name in frame.f_globals:
|
|
obj = frame.f_globals[co_name]
|
|
if isinstance(obj, types.ModuleType) and (
|
|
obj.__name__.startswith("torch.") or obj is torch
|
|
):
|
|
return True
|
|
# ... or a global import of numpy.*
|
|
if np and config.trace_numpy and (obj is np or is_numpy(obj)):
|
|
return True
|
|
|
|
seen_ids: Dict[int, bool] = dict()
|
|
|
|
def has_tensor(obj):
|
|
"""Recursively check if the obj has a tensor"""
|
|
obj_id = id(obj)
|
|
if obj_id in seen_ids:
|
|
return seen_ids[obj_id]
|
|
seen_ids[obj_id] = False
|
|
|
|
if isinstance(obj, (torch.Tensor, torch.nn.Module)) or (
|
|
istype(obj, type) and issubclass(obj, torch.nn.Module)
|
|
):
|
|
seen_ids[obj_id] = True
|
|
return seen_ids[obj_id]
|
|
elif (
|
|
config.trace_numpy
|
|
and np
|
|
and (istype(obj, np.ndarray) or isinstance(obj, np.generic))
|
|
):
|
|
seen_ids[obj_id] = True
|
|
return seen_ids[obj_id]
|
|
elif istype(obj, (list, tuple)):
|
|
seen_ids[obj_id] = any(has_tensor(v) for v in obj)
|
|
return seen_ids[obj_id]
|
|
elif istype(obj, dict):
|
|
# Some packages like pytest can be updated during runtime. So, make a
|
|
# copy of values to avoid issues like "RuntimeError: dictionary
|
|
# changed size during iteration"
|
|
values = list(obj.values())
|
|
seen_ids[obj_id] = any(has_tensor(v) for v in values)
|
|
return seen_ids[obj_id]
|
|
elif istype(obj, (str, int, float, type(None), bool)):
|
|
seen_ids[obj_id] = False
|
|
return seen_ids[obj_id]
|
|
elif is_namedtuple(obj) and hasattr(obj, "_fields"):
|
|
seen_ids[obj_id] = any(has_tensor(getattr(obj, v)) for v in obj._fields)
|
|
return seen_ids[obj_id]
|
|
else:
|
|
# if config.debug:
|
|
# print(
|
|
# f"Assuming that object of type {type(obj)} does not have a tensor"
|
|
# )
|
|
return False
|
|
|
|
# Check if the passed arguments are of type Tensor
|
|
for value in frame.f_locals.values():
|
|
if has_tensor(value):
|
|
return True
|
|
|
|
log.debug(
|
|
"skipping because no torch.* %s \
|
|
%s %s",
|
|
frame.f_code.co_name,
|
|
frame.f_code.co_filename,
|
|
frame.f_code.co_firstlineno,
|
|
)
|
|
|
|
return False
|
|
|
|
|
|
def exception_handler(e, code, frame=None, export=False):
|
|
record_filename = None
|
|
if hasattr(e, "exec_record"):
|
|
record_filename = gen_record_file_name(e, code)
|
|
write_record_to_file(record_filename, e.exec_record)
|
|
e.record_filename = record_filename
|
|
|
|
augment_exc_message(e, export=export)
|
|
|
|
|
|
FRAME_COUNTER = 0
|
|
FRAME_COMPILE_COUNTER: typing.Counter[int] = collections.Counter()
|
|
|
|
|
|
def convert_frame_assert(
|
|
compiler_fn: CompilerFn,
|
|
one_graph: bool = True,
|
|
export: bool = False,
|
|
export_constraints=None,
|
|
):
|
|
"""Fully convert a frame into an FX graph"""
|
|
reset_graph_break_dup_checker()
|
|
|
|
def _convert_frame_assert(
|
|
frame: types.FrameType, cache_entry, hooks: Hooks, frame_state
|
|
):
|
|
increment_frame()
|
|
|
|
code = frame.f_code
|
|
|
|
cache_size = compute_cache_size(frame, cache_entry)
|
|
recompile_reasons = None
|
|
if is_recompilation(cache_size):
|
|
recompile_reasons = get_and_maybe_log_recompilation_reason(
|
|
cache_entry, frame
|
|
)
|
|
|
|
input_codes.add(code)
|
|
if code in output_codes:
|
|
return None
|
|
if (
|
|
os.environ.get("TORCHDYNAMO_DEBUG_FUNCTION")
|
|
and os.environ.get("TORCHDYNAMO_DEBUG_FUNCTION") != code.co_name
|
|
):
|
|
return None
|
|
if code.co_name == "<genexpr>" and code.co_filename.endswith(
|
|
(
|
|
"transformers/file_utils.py",
|
|
"transformers/utils/generic.py",
|
|
"diffusers/utils/outputs.py",
|
|
)
|
|
):
|
|
# not needed, but cleans up torchbench error stats
|
|
return None
|
|
if code.co_name == "__setattr__":
|
|
# setattr could be tricky to handle generally,
|
|
# but also not likely useful to compile- skip the whole frame
|
|
return None
|
|
if code.co_name == "__init__" and code.co_filename.startswith(
|
|
os.path.dirname(torch.optim.__file__)
|
|
):
|
|
# optimizer support is still incomplete see
|
|
# test_state_dict in test/dynamo/test_optimizers.py
|
|
return None
|
|
|
|
# Check if the frame is generated by an exec builtin call
|
|
# TODO - Running exec generated frame seems propagates f_globals to the
|
|
# next frames.
|
|
if code.co_name == "<module>" and code.co_filename == "<string>":
|
|
return None
|
|
|
|
if (
|
|
code.co_name == "<lambda>"
|
|
and code.co_filename == "<string>"
|
|
and not bool(frame.f_builtins)
|
|
):
|
|
# namedtuple subclass constructor. Empty builtins cause issue with
|
|
# len keyword in LIST_LEN guard.
|
|
return None
|
|
|
|
if is_generator(code):
|
|
unimplemented("generator")
|
|
exceeded, limit_type = exceeds_cache_size_limit(cache_size)
|
|
if exceeded:
|
|
|
|
def format_func_info(code):
|
|
return f"'{code.co_name}' ({code.co_filename}:{code.co_firstlineno})"
|
|
|
|
def format_guard_failures():
|
|
assert recompile_reasons, "TODO(whc) any other recompile reasons?"
|
|
return recompile_reasons[-1]
|
|
|
|
log.warning(
|
|
"torch._dynamo hit config.%s (%s)\n"
|
|
" function: %s\n"
|
|
" last reason: %s\n"
|
|
'To log all recompilation reasons, use TORCH_LOGS="recompiles".\n'
|
|
"To diagnose recompilation issues, see %s.",
|
|
limit_type,
|
|
getattr(config, limit_type),
|
|
format_func_info(code),
|
|
format_guard_failures(),
|
|
troubleshooting_url,
|
|
)
|
|
unimplemented(f"{limit_type} reached")
|
|
|
|
if not has_tensor_in_frame(frame):
|
|
return None
|
|
|
|
global initial_global_state
|
|
initial_global_state = GlobalStateGuard()
|
|
|
|
global FRAME_COUNTER
|
|
if "_id" not in frame_state:
|
|
frame_state["_id"] = FRAME_COUNTER
|
|
FRAME_COUNTER += 1
|
|
frame_id = frame_state["_id"]
|
|
|
|
frame_compile_id = FRAME_COMPILE_COUNTER[frame_id]
|
|
FRAME_COMPILE_COUNTER[frame_id] += 1
|
|
|
|
compile_id = CompileId(frame_id, frame_compile_id)
|
|
|
|
signpost_event(
|
|
"dynamo",
|
|
"_convert_frame_assert._compile",
|
|
{
|
|
"co_name": code.co_name,
|
|
"co_filename": code.co_filename,
|
|
"co_firstlineno": code.co_firstlineno,
|
|
"cache_size": cache_size.num_cache_entries_with_same_id_matched_objs,
|
|
"accumulated_cache_size": cache_size.num_cache_entries,
|
|
},
|
|
)
|
|
|
|
return _compile(
|
|
frame.f_code,
|
|
frame.f_globals,
|
|
frame.f_locals,
|
|
frame.f_builtins,
|
|
compiler_fn,
|
|
one_graph,
|
|
export,
|
|
export_constraints,
|
|
hooks,
|
|
cache_size,
|
|
frame,
|
|
frame_state=frame_state,
|
|
compile_id=compile_id,
|
|
)
|
|
|
|
_convert_frame_assert._torchdynamo_orig_callable = compiler_fn # type: ignore[attr-defined]
|
|
|
|
def _clone_with_backend(backend):
|
|
return convert_frame_assert(backend, one_graph, export, export_constraints)
|
|
|
|
_convert_frame_assert._clone_with_backend = _clone_with_backend # type: ignore[attr-defined]
|
|
return _convert_frame_assert
|
|
|
|
|
|
def maybe_cprofile(func):
|
|
if config.cprofile:
|
|
return cprofile_wrapper(func)
|
|
return func
|
|
|
|
|
|
from collections import OrderedDict
|
|
|
|
from torch.utils.hooks import RemovableHandle
|
|
|
|
# we have to use `OrderedDict` to make `RemovableHandle` work.
|
|
_bytecode_hooks: Dict[int, BytecodeHook] = OrderedDict()
|
|
|
|
|
|
def register_bytecode_hook(hook: BytecodeHook) -> RemovableHandle:
|
|
"""Register hooks for bytecode generated by Dynamo. The hook can do some
|
|
logging, as well as return a new code object to be used. Please refer
|
|
to `BytecodeHook` for the hook signature.
|
|
"""
|
|
handle = RemovableHandle(_bytecode_hooks)
|
|
_bytecode_hooks[handle.id] = hook
|
|
return handle
|
|
|
|
|
|
@_use_lazy_graph_module(config.use_lazy_graph_module)
|
|
@maybe_cprofile
|
|
def _compile(
|
|
code: types.CodeType,
|
|
globals: Dict[str, object],
|
|
locals: Dict[str, object],
|
|
builtins: Dict[str, object],
|
|
compiler_fn: CompilerFn,
|
|
one_graph: bool,
|
|
export: bool,
|
|
export_constraints,
|
|
hooks: Hooks,
|
|
cache_size: CacheSizeRelevantForFrame,
|
|
frame: Optional[types.FrameType] = None,
|
|
frame_state=None,
|
|
compile_id=None,
|
|
) -> Optional[GuardedCode]:
|
|
from torch.fx.experimental.validator import (
|
|
bisect,
|
|
BisectValidationException,
|
|
translation_validation_enabled,
|
|
ValidationException,
|
|
)
|
|
|
|
output: Optional[OutputGraph] = None
|
|
tracer: Optional[InstructionTranslator] = None
|
|
# This is shared across restarts
|
|
mutated_closure_cell_contents: Set[str] = set()
|
|
fail_type: Optional[str] = None
|
|
fail_reason: Optional[str] = None
|
|
fail_user_frame_filename: Optional[str] = None
|
|
fail_user_frame_lineno: Optional[int] = None
|
|
speculation_log = SpeculationLog()
|
|
|
|
@preserve_global_state
|
|
def transform(instructions, code_options):
|
|
nonlocal output
|
|
nonlocal tracer
|
|
speculation_log.restart()
|
|
tracer = InstructionTranslator(
|
|
instructions,
|
|
code,
|
|
locals,
|
|
globals,
|
|
builtins,
|
|
code_options,
|
|
compiler_fn,
|
|
one_graph,
|
|
export,
|
|
export_constraints,
|
|
mutated_closure_cell_contents,
|
|
frame_state=frame_state,
|
|
speculation_log=speculation_log,
|
|
)
|
|
|
|
try:
|
|
with tracing(tracer.output.tracing_context), tracer.set_current_tx():
|
|
tracer.run()
|
|
except exc.UnspecializeRestartAnalysis:
|
|
speculation_log.clear()
|
|
raise
|
|
except (exc.SpeculationRestartAnalysis, exc.SkipFrame):
|
|
raise
|
|
except Exception:
|
|
if translation_validation_enabled():
|
|
bisect(tracer.output.shape_env)
|
|
raise
|
|
finally:
|
|
tracer.output.call_cleanup_hooks()
|
|
|
|
output = tracer.output
|
|
assert output is not None
|
|
assert output.output_instructions
|
|
instructions[:] = output.output_instructions
|
|
code_options.update(output.code_options)
|
|
|
|
if config.dead_code_elimination:
|
|
propagate_inst_exn_table_entries(instructions)
|
|
check_inst_exn_tab_entries_valid(instructions)
|
|
instructions[:] = remove_pointless_jumps(remove_dead_code(instructions))
|
|
|
|
@dynamo_timed(phase_name="entire_frame_compile")
|
|
def compile_inner(
|
|
code: types.CodeType,
|
|
one_graph: bool,
|
|
hooks: Hooks,
|
|
transform: Callable[[List[Instruction], Dict[str, Any]], Any],
|
|
) -> Optional[GuardedCode]:
|
|
nonlocal output
|
|
for attempt in itertools.count():
|
|
CompileContext.get().attempt = attempt
|
|
try:
|
|
out_code = transform_code_object(code, transform)
|
|
break
|
|
except exc.RestartAnalysis as e:
|
|
log.info(
|
|
"Restarting analysis due to %s",
|
|
LazyString(format_traceback_short, e.__traceback__),
|
|
)
|
|
if attempt > 100:
|
|
unimplemented("100+ RestartAnalysis() calls")
|
|
except exc.SkipFrame as e:
|
|
log.debug(
|
|
"Skipping frame %s %s \
|
|
%s %s",
|
|
e,
|
|
code.co_name,
|
|
code.co_filename,
|
|
code.co_firstlineno,
|
|
)
|
|
if one_graph:
|
|
log.debug("No graph captured with one_graph=True")
|
|
return None
|
|
|
|
def log_bytecode(prefix, name, filename, line_no, code):
|
|
if bytecode_log.isEnabledFor(logging.DEBUG):
|
|
bytecode_log.debug(
|
|
format_bytecode(prefix, name, filename, line_no, code)
|
|
)
|
|
|
|
log_bytecode(
|
|
"ORIGINAL BYTECODE",
|
|
code.co_name,
|
|
code.co_filename,
|
|
code.co_firstlineno,
|
|
code,
|
|
)
|
|
log_bytecode(
|
|
"MODIFIED BYTECODE",
|
|
code.co_name,
|
|
code.co_filename,
|
|
code.co_firstlineno,
|
|
out_code,
|
|
)
|
|
|
|
for hook in _bytecode_hooks.values():
|
|
hook_output = hook(code, out_code)
|
|
if hook_output is not None:
|
|
out_code = hook_output
|
|
|
|
orig_code_map[out_code] = code
|
|
output_codes.add(out_code)
|
|
|
|
assert output is not None
|
|
|
|
# Tests for new code objects.
|
|
# The rationale for these tests can be found in torch/csrc/dynamo/eval_frame.c
|
|
# Only test once the code object is created.
|
|
# They are not tested during runtime.
|
|
|
|
def count_args(code):
|
|
import inspect
|
|
|
|
return (
|
|
code.co_argcount
|
|
+ code.co_kwonlyargcount
|
|
+ bool(code.co_flags & inspect.CO_VARARGS)
|
|
+ bool(code.co_flags & inspect.CO_VARKEYWORDS)
|
|
)
|
|
|
|
total_argcount_old = count_args(code)
|
|
total_argcount_new = count_args(out_code)
|
|
msg = "arg mismatch: "
|
|
msg += f"old code object has args {code.co_varnames[:total_argcount_old]}, "
|
|
msg += f"new code object has args {out_code.co_varnames[:total_argcount_new]}"
|
|
assert (
|
|
code.co_varnames[:total_argcount_old]
|
|
== out_code.co_varnames[:total_argcount_new]
|
|
), msg
|
|
|
|
msg = "free var mismatch: "
|
|
msg += f"old code object has free var {code.co_freevars}, "
|
|
msg += f"new code object has free var {out_code.co_freevars}"
|
|
assert code.co_freevars == out_code.co_freevars, msg
|
|
|
|
msg = "cell var mismatch: "
|
|
msg += f"old code object has cell var {code.co_cellvars}, "
|
|
msg += f"new code object has cell var {out_code.co_cellvars}"
|
|
assert code.co_cellvars == out_code.co_cellvars, msg
|
|
|
|
# Skipping Dynamo on a frame without any extracted graph.
|
|
# This does not affect eager functionality. But this is necessary
|
|
# for export for cases where Dynamo-reconstructed bytecode can create
|
|
# new function frames, confusing export in thinking that there
|
|
# are extra graphs now.
|
|
|
|
if output.export and output.is_empty_graph():
|
|
return None
|
|
|
|
assert output.guards is not None
|
|
CleanupManager.instance[out_code] = output.cleanups
|
|
check_fn = CheckFunctionManager(
|
|
output,
|
|
hooks.guard_fail_fn if hooks else None,
|
|
)
|
|
|
|
guarded_code = GuardedCode(out_code, check_fn.check_fn)
|
|
|
|
if not output.is_empty_graph() and hooks.guard_export_fn is not None:
|
|
# We should not run the guard_export_fn when Dynamo does not
|
|
# generate any graph. This can happen in export when TorchDynamo
|
|
# generated bytecode has some reconstruction logic for mutated
|
|
# variables which can trigger TorchDynamo on the children frames but
|
|
# they are benign and do not generate any new graphs.
|
|
hooks.guard_export_fn(output.guards)
|
|
|
|
output.local_scope.clear()
|
|
return guarded_code
|
|
|
|
with compile_context(CompileContext(compile_id)):
|
|
try:
|
|
guarded_code = compile_inner(code, one_graph, hooks, transform)
|
|
return guarded_code
|
|
except (
|
|
Unsupported,
|
|
TorchRuntimeError,
|
|
BackendCompilerFailed,
|
|
AssertionError,
|
|
ConstraintViolationError,
|
|
GuardOnDataDependentSymNode,
|
|
ValidationException,
|
|
UncapturedHigherOrderOpError,
|
|
BisectValidationException,
|
|
) as e:
|
|
fail_type = str(type(e))
|
|
fail_reason = str(e)
|
|
exception_handler(e, code, frame, export=export)
|
|
if e.innermost_user_frame_summary is not None: # type: ignore[union-attr]
|
|
fail_user_frame_filename = e.innermost_user_frame_summary.filename # type: ignore[union-attr]
|
|
fail_user_frame_lineno = e.innermost_user_frame_summary.lineno # type: ignore[union-attr]
|
|
raise
|
|
except Exception as e:
|
|
fail_type = str(type(e))
|
|
fail_reason = str(e)
|
|
exception_handler(e, code, frame, export=export)
|
|
if e.innermost_user_frame_summary is not None: # type: ignore[attr-defined]
|
|
fail_user_frame_filename = e.innermost_user_frame_summary.filename # type: ignore[attr-defined]
|
|
fail_user_frame_lineno = e.innermost_user_frame_summary.lineno # type: ignore[attr-defined]
|
|
raise InternalTorchDynamoError(str(e)).with_traceback(
|
|
e.__traceback__
|
|
) from None
|
|
finally:
|
|
if tracer:
|
|
tracer.output.local_scope = {}
|
|
|
|
from .utils import curr_frame
|
|
|
|
frame_key = str(curr_frame)
|
|
if (
|
|
fail_reason is None
|
|
and output is not None
|
|
and frame_key in frame_phase_timing
|
|
):
|
|
guard_count = len(output.guards)
|
|
shape_env_guard_count = len(output.shape_env.guards)
|
|
graph_op_count = output.count_calls()
|
|
graph_node_count = len(output.graph.nodes)
|
|
graph_input_count = len(output.placeholders)
|
|
entire_frame_compile_time = frame_phase_timing[frame_key].get(
|
|
"entire_frame_compile", None
|
|
)
|
|
backend_compile_time = frame_phase_timing[frame_key].get(
|
|
"backend_compile", None
|
|
)
|
|
non_compliant_ops = {op.__qualname__ for op in output.non_compliant_ops}
|
|
compliant_custom_ops = {
|
|
op.__qualname__ for op in output.compliant_custom_ops
|
|
}
|
|
else:
|
|
guard_count = None
|
|
shape_env_guard_count = None
|
|
graph_op_count = None
|
|
graph_node_count = None
|
|
graph_input_count = None
|
|
entire_frame_compile_time = None
|
|
backend_compile_time = None
|
|
non_compliant_ops = set({})
|
|
compliant_custom_ops = set({})
|
|
metrics = CompilationMetrics(
|
|
frame_key,
|
|
code.co_name,
|
|
code.co_filename,
|
|
code.co_firstlineno,
|
|
cache_size.num_cache_entries_with_same_id_matched_objs,
|
|
cache_size.num_cache_entries,
|
|
guard_count,
|
|
shape_env_guard_count,
|
|
graph_op_count,
|
|
graph_node_count,
|
|
graph_input_count,
|
|
entire_frame_compile_time,
|
|
backend_compile_time,
|
|
fail_type,
|
|
fail_reason,
|
|
fail_user_frame_filename,
|
|
fail_user_frame_lineno,
|
|
non_compliant_ops,
|
|
compliant_custom_ops,
|
|
)
|
|
record_compilation_metrics(metrics)
|
|
|
|
|
|
def convert_frame(compiler_fn: CompilerFn, hooks: Hooks):
|
|
"""Try to convert a frame into an FX graph, if error leave frame unmodified"""
|
|
inner_convert = convert_frame_assert(compiler_fn, one_graph=False)
|
|
|
|
def _convert_frame(frame: types.FrameType, cache_entry, hooks: Hooks, frame_state):
|
|
counters["frames"]["total"] += 1
|
|
try:
|
|
result = inner_convert(frame, cache_entry, hooks, frame_state)
|
|
counters["frames"]["ok"] += 1
|
|
return result
|
|
except Exception as e:
|
|
# These two exception types are "soft" failure, in the sense that
|
|
# we know this is due to something we didn't implement all the
|
|
# way, scare the user less about it. That being said, if you
|
|
# are trying to understand why a graph break happened, it's still
|
|
# important to have this information, so offer it.
|
|
#
|
|
# NB: NotImplementedError used to be on this list, but actually
|
|
# it is impossible for it to reach here, as it is converted into
|
|
# InternalTorchDynamoError. This behavior seemed reasonable
|
|
# to me (ezyang, Aug 2023) so I kept it, but maybe at some point
|
|
# someone wanted these to also get suppressed. If so, you'll
|
|
# need to make these exceptions not get wrapped
|
|
|
|
# We intentionally don't want to suppress error here.
|
|
if isinstance(e, UncapturedHigherOrderOpError):
|
|
raise
|
|
|
|
soft_fail = isinstance(e, Unsupported)
|
|
if not config.suppress_errors and not soft_fail:
|
|
raise
|
|
|
|
# Suppress the error. NB: It's very important to do the
|
|
# suppression logging HERE, where the actual suppression
|
|
# happens. Previously it was somewhere else and so it was
|
|
# possible to accidentally not log at all.
|
|
record_filename = getattr(e, "record_filename", None)
|
|
code = frame.f_code
|
|
error_msg = format_error_msg(e, code, record_filename, frame)
|
|
|
|
if soft_fail:
|
|
log.info(error_msg, exc_info=True)
|
|
else:
|
|
log.warning(error_msg, exc_info=True)
|
|
return None
|
|
|
|
_convert_frame._torchdynamo_orig_callable = compiler_fn # type: ignore[attr-defined]
|
|
_convert_frame._clone_with_backend = lambda backend: convert_frame(backend, hooks) # type: ignore[attr-defined]
|
|
return _convert_frame
|
|
|
|
|
|
# TODO mlazos: add support for same args, or record them
|
|
def replay(filename):
|
|
from .backends.debugging import eager
|
|
|
|
original_replay_val = config.replay_record_enabled
|
|
config.replay_record_enabled = False
|
|
with open(filename, "rb") as in_file:
|
|
record = ExecutionRecord.load(in_file)
|
|
record.globals = dict(itertools.chain(record.globals.items(), globals().items()))
|
|
|
|
try:
|
|
_compile(
|
|
record.code,
|
|
record.globals,
|
|
record.locals,
|
|
record.builtins,
|
|
compiler_fn=eager,
|
|
one_graph=False,
|
|
export=False,
|
|
export_constraints=None,
|
|
hooks=Hooks(),
|
|
cache_size=CacheSizeRelevantForFrame(0, 0),
|
|
frame=None,
|
|
frame_state={},
|
|
)
|
|
finally:
|
|
config.replay_record_enabled = original_replay_val
|