mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
The original motivation for MYPYINDUCTOR was a faster type checking configuration that only checked a subset of files. With the removal of `follow_imports = ignore`, we are now able to use dmypy to do fast incremental typechecking, eliminating the need for this. Perhaps erroneously, when I tee'ed up this PR I elected to delete the `follow_imports = skip` designations in the mypy-inductor.ini. This lead to a number of extra type error suppressions that I manually edited. You will need to review. Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/118432 Approved by: https://github.com/Skylion007 ghstack dependencies: #118414, #118418
76 lines
1.9 KiB
Python
76 lines
1.9 KiB
Python
# mypy: ignore-errors
|
|
|
|
import logging
|
|
import warnings
|
|
|
|
from functorch.compile import make_boxed_func
|
|
|
|
from ..backends.common import aot_autograd
|
|
from .registry import register_backend, register_experimental_backend
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
@register_experimental_backend
|
|
def torchxla_trivial(gm, fake_tensor_inputs):
|
|
return gm
|
|
|
|
|
|
@register_experimental_backend
|
|
def torchxla_trace_once(model, fake_tensor_inputs):
|
|
warnings.warn(
|
|
"This backend will be deprecated in 2.2, please use `openxla` backend instead"
|
|
)
|
|
|
|
return xla_backend_helper(model, fake_tensor_inputs)
|
|
|
|
|
|
@register_backend
|
|
def openxla_eval(model, fake_tensor_inputs):
|
|
return xla_backend_helper(model, fake_tensor_inputs, boxed=False)
|
|
|
|
|
|
def openxla_eval_boxed(model, fake_tensor_inputs):
|
|
return xla_backend_helper(model, fake_tensor_inputs, boxed=True)
|
|
|
|
|
|
def xla_backend_helper(model, fake_tensor_inputs, boxed=False):
|
|
try:
|
|
import torch_xla.core.dynamo_bridge as bridge
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Please follow the instruction in https://github.com/pytorch/xla#pytorchxla to install torch_xla"
|
|
) from e
|
|
|
|
compiled_graph = None
|
|
|
|
def fwd(*args):
|
|
nonlocal model
|
|
nonlocal compiled_graph
|
|
if compiled_graph is None:
|
|
compiled_graph = bridge.extract_compiled_graph(model, args)
|
|
del model
|
|
return compiled_graph(*args)
|
|
|
|
return make_boxed_func(fwd) if boxed else fwd
|
|
|
|
|
|
aot_torchxla_trivial = aot_autograd(
|
|
fw_compiler=torchxla_trivial,
|
|
)
|
|
register_experimental_backend(
|
|
name="aot_torchxla_trivial", compiler_fn=aot_torchxla_trivial
|
|
)
|
|
|
|
aot_torchxla_trace_once = aot_autograd(
|
|
fw_compiler=torchxla_trace_once,
|
|
)
|
|
register_experimental_backend(
|
|
name="aot_torchxla_trace_once", compiler_fn=aot_torchxla_trace_once
|
|
)
|
|
|
|
openxla = aot_autograd(
|
|
fw_compiler=openxla_eval_boxed,
|
|
)
|
|
register_backend(name="openxla", compiler_fn=openxla)
|