pytorch/torch/_dynamo/backends/torchxla.py
Edward Z. Yang d03173e88c Unify MYPYINDUCTOR and MYPY (#118432)
The original motivation for MYPYINDUCTOR was a faster type checking configuration that only checked a subset of files. With the removal of `follow_imports = ignore`, we are now able to use dmypy to do fast incremental typechecking, eliminating the need for this.

Perhaps erroneously, when I tee'ed up this PR I elected to delete the `follow_imports = skip` designations in the mypy-inductor.ini. This lead to a number of extra type error suppressions that I manually edited. You will need to review.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118432
Approved by: https://github.com/Skylion007
ghstack dependencies: #118414, #118418
2024-01-27 17:23:20 +00:00

76 lines
1.9 KiB
Python

# mypy: ignore-errors
import logging
import warnings
from functorch.compile import make_boxed_func
from ..backends.common import aot_autograd
from .registry import register_backend, register_experimental_backend
log = logging.getLogger(__name__)
@register_experimental_backend
def torchxla_trivial(gm, fake_tensor_inputs):
return gm
@register_experimental_backend
def torchxla_trace_once(model, fake_tensor_inputs):
warnings.warn(
"This backend will be deprecated in 2.2, please use `openxla` backend instead"
)
return xla_backend_helper(model, fake_tensor_inputs)
@register_backend
def openxla_eval(model, fake_tensor_inputs):
return xla_backend_helper(model, fake_tensor_inputs, boxed=False)
def openxla_eval_boxed(model, fake_tensor_inputs):
return xla_backend_helper(model, fake_tensor_inputs, boxed=True)
def xla_backend_helper(model, fake_tensor_inputs, boxed=False):
try:
import torch_xla.core.dynamo_bridge as bridge
except ImportError as e:
raise ImportError(
"Please follow the instruction in https://github.com/pytorch/xla#pytorchxla to install torch_xla"
) from e
compiled_graph = None
def fwd(*args):
nonlocal model
nonlocal compiled_graph
if compiled_graph is None:
compiled_graph = bridge.extract_compiled_graph(model, args)
del model
return compiled_graph(*args)
return make_boxed_func(fwd) if boxed else fwd
aot_torchxla_trivial = aot_autograd(
fw_compiler=torchxla_trivial,
)
register_experimental_backend(
name="aot_torchxla_trivial", compiler_fn=aot_torchxla_trivial
)
aot_torchxla_trace_once = aot_autograd(
fw_compiler=torchxla_trace_once,
)
register_experimental_backend(
name="aot_torchxla_trace_once", compiler_fn=aot_torchxla_trace_once
)
openxla = aot_autograd(
fw_compiler=openxla_eval_boxed,
)
register_backend(name="openxla", compiler_fn=openxla)