pytorch/caffe2/python/operator_test/lars_test.py
2018-03-02 18:06:19 -08:00

50 lines
1.6 KiB
Python
Executable File

# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core
from hypothesis import given
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
class TestLars(hu.HypothesisTestCase):
@given(offset=st.floats(min_value=0, max_value=100), **hu.gcs)
def test_lars(self, offset, dc, gc):
X = np.random.rand(6, 7, 8, 9).astype(np.float32)
dX = np.random.rand(6, 7, 8, 9).astype(np.float32)
def ref_lars(X, dX):
return [1. / (np.linalg.norm(dX) / np.linalg.norm(X) + offset)]
op = core.CreateOperator(
"Lars",
["X", "dX"],
["rescale_factor"],
offset=offset
)
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[X, dX],
reference=ref_lars
)