pytorch/test/cpp/api/optim.cpp
Will Feng 60745b3380 Revert #7750 and #7762 to fix Windows CI on master (#7772)
* Revert "Add missing brace (#7762)"

This reverts commit ea27c5af50.

* Revert "[C++ API] Add backward() to Tensor and Variable  (#7750)"

This reverts commit 1e2762796f.
2018-05-22 15:42:52 -07:00

94 lines
2.5 KiB
C++

#include <catch.hpp>
#include <torch/torch.h>
using namespace torch;
using namespace torch::nn;
bool test_optimizer_xor(Optimizer optim, std::shared_ptr<ContainerList> model) {
float running_loss = 1;
int epoch = 0;
while (running_loss > 0.1) {
int64_t bs = 4;
auto inp = at::CPU(at::kFloat).tensor({bs, 2});
auto lab = at::CPU(at::kFloat).tensor({bs});
for (size_t i = 0; i < bs; i++) {
const int64_t a = std::rand() % 2;
const int64_t b = std::rand() % 2;
const int64_t c = static_cast<uint64_t>(a) ^ static_cast<uint64_t>(b);
inp[i][0] = a;
inp[i][1] = b;
lab[i] = c;
}
// forward
auto input = Var(inp);
auto target = Var(lab, false);
std::function<at::Scalar()> closure = [&]() -> at::Scalar {
optim->zero_grad();
auto x = input;
for (auto& layer : *model)
x = layer->forward({x})[0].sigmoid_();
Variable loss = at::binary_cross_entropy(x, target);
backward(loss);
return at::Scalar(loss.data());
};
at::Scalar loss = optim->step(closure);
running_loss = running_loss * 0.99 + loss.toFloat() * 0.01;
if (epoch > 3000) {
return false;
}
epoch++;
}
return true;
}
TEST_CASE("optim") {
std::srand(0);
setSeed(0);
auto model = std::make_shared<ContainerList>();
model->append(Linear(2, 8).build());
model->append(Linear(8, 1).build());
SECTION("lbfgs") {
auto optim = LBFGS(model, 5e-2).max_iter(5).make();
REQUIRE(test_optimizer_xor(optim, model));
}
SECTION("sgd") {
auto optim =
SGD(model, 1e-1).momentum(0.9).nesterov().weight_decay(1e-6).make();
REQUIRE(test_optimizer_xor(optim, model));
}
SECTION("adagrad") {
auto optim = Adagrad(model, 1.0).weight_decay(1e-6).lr_decay(1e-3).make();
REQUIRE(test_optimizer_xor(optim, model));
}
SECTION("rmsprop_simple") {
auto optim = RMSprop(model, 1e-1).centered().make();
REQUIRE(test_optimizer_xor(optim, model));
}
SECTION("rmsprop") {
auto optim = RMSprop(model, 1e-1).momentum(0.9).weight_decay(1e-6).make();
REQUIRE(test_optimizer_xor(optim, model));
}
/*
// This test appears to be flaky, see
https://github.com/pytorch/pytorch/issues/7288 SECTION("adam") { auto optim =
Adam(model, 1.0).weight_decay(1e-6).make(); REQUIRE(test_optimizer_xor(optim,
model));
}
*/
SECTION("amsgrad") {
auto optim = Adam(model, 0.1).weight_decay(1e-6).amsgrad().make();
REQUIRE(test_optimizer_xor(optim, model));
}
}