mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
reland of https://github.com/pytorch/pytorch/pull/133113 I have to create a new PR because the previous reverted PR could not either be rebased, or imported successfully :( ---- Moving DTensor to be in the public namespace, to formally add the documentation page that includes all the public APIs. This includes: * many path renames and path import fixes * a dedicated doc page without too much content yet (adding in the next PRs) * To preserve the BC for users still using the torch.distributed._tensor, I added a shim script to redirect old path calls to the new module The BC preserving is evidented by the fact that all DTensor tests are still working without changing the public imports. So it's safe to land the changes Pull Request resolved: https://github.com/pytorch/pytorch/pull/134203 Approved by: https://github.com/tianyu-l
382 lines
16 KiB
Python
382 lines
16 KiB
Python
# mypy: allow-untyped-defs
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates
|
|
import contextlib
|
|
import warnings
|
|
from typing import Dict, List, Optional
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch import Tensor
|
|
from torch.distributed.device_mesh import _get_device_handle, DeviceMesh
|
|
from torch.distributed.tensor._dtensor_spec import DTensorSpec
|
|
from torch.distributed.tensor.placement_types import Shard
|
|
|
|
|
|
__all__ = [
|
|
"is_rng_supported_mesh",
|
|
"manual_seed",
|
|
"OffsetBasedRNGTracker",
|
|
"TensorParallelRNGTracker",
|
|
]
|
|
|
|
_rng_tracker: Optional["_RNGStateTracker"] = None
|
|
|
|
|
|
def is_rng_supported_mesh(device_mesh: DeviceMesh) -> bool:
|
|
"""Checks if the current device of ``device_mesh`` supports DTensor's random APIs.
|
|
Currently DTensor Random APIs only supports cuda/cuda-like devices. We suggest
|
|
users call this API to test the availability before using our random APIs.
|
|
|
|
Args:
|
|
device_mesh (:class:`DeviceMesh`): The device mesh on which we check if the
|
|
random ops APIs are supported.
|
|
|
|
Returns:
|
|
A bool value. True if ``device_mesh`` supports DTensor Random APIs; False otherwise.
|
|
|
|
.. warning::
|
|
Currently we only support correct RNG on cuda/cuda-like devices.
|
|
"""
|
|
device_handle = _get_device_handle(device_mesh.device_type)
|
|
if device_handle and hasattr(device_handle, "set_rng_state"):
|
|
return True
|
|
else:
|
|
# TODO: Logs way too much
|
|
warnings.warn(
|
|
f"DTensor random operators may not have complete support on {device_mesh.device_type} device mesh"
|
|
)
|
|
return False
|
|
|
|
|
|
def manual_seed(seed: int, device_mesh: DeviceMesh) -> None:
|
|
"""Sets the seed for generating random numbers for the calling rank.
|
|
|
|
Args:
|
|
seed (int): The desired seed.
|
|
device_mesh (:class:`DeviceMesh`): The device mesh to set the seed.
|
|
|
|
Returns:
|
|
None
|
|
|
|
.. warning::
|
|
When calling this function, :func:`manual_seed` must be called from all ranks of the
|
|
default ``ProcessGroup`` even if some ranks may not be a part of the ``device_mesh``,
|
|
with the same ``seed`` value.
|
|
If ``device_mesh`` is a sub-mesh and the calling rank is not a part of it,
|
|
``manual_seed`` will not set its GPU device's generator seed.
|
|
Current implementation only supports a GPU device mesh.
|
|
"""
|
|
device_handle = _get_device_handle(device_mesh.device_type)
|
|
if not device_handle:
|
|
raise NotImplementedError(
|
|
f"DTensor randomness only supports cuda/cuda-like device type, but got {device_mesh.device_type}"
|
|
)
|
|
|
|
# allgather the seed over the default PG
|
|
object_list = [seed] * dist.get_world_size()
|
|
dist.all_gather_object(object_list, seed)
|
|
for rank, object in enumerate(object_list):
|
|
if seed != int(object):
|
|
raise RuntimeError(
|
|
f"calling manual_seed function over {device_mesh} but received different seed values on ranks:",
|
|
f"seed on rank {dist.get_rank()} is {seed}, and seed on rank {rank} is {object}!",
|
|
)
|
|
# instantiate a RNG tracker if haven't. By default DTensor uses an
|
|
# OffsetBasedRNGTracker to perform random operators.
|
|
global _rng_tracker
|
|
if not _rng_tracker:
|
|
_rng_tracker = OffsetBasedRNGTracker(device_mesh.device_type)
|
|
|
|
# the current rank is in mesh
|
|
if device_mesh.get_coordinate() is not None:
|
|
if isinstance(_rng_tracker, TensorParallelRNGTracker):
|
|
_rng_tracker._manual_seed(device_mesh, seed)
|
|
elif isinstance(_rng_tracker, OffsetBasedRNGTracker):
|
|
_rng_tracker._manual_seed(seed)
|
|
else:
|
|
raise RuntimeError(
|
|
f"Unknown type of cuda RNG state tracker: _rng_tracker = {_rng_tracker}"
|
|
)
|
|
|
|
|
|
class _RNGStateTracker:
|
|
"""
|
|
_RNGStateTracker stores Random Number Generator (RNG) state (a ByteTensor object)
|
|
in a dict, mapping from a corresponding tag to each state tensor. It also provides
|
|
a set of convenient utility methods to help access/modify the state tensors. The most
|
|
important interface is _distribute_region which will be used when DTensor executes
|
|
a random op (an operator that calls RNG).
|
|
"""
|
|
|
|
def __init__(self, device_type: str = "cuda"):
|
|
self._device_type = device_type
|
|
self._device_handle = _get_device_handle(device_type)
|
|
if not (self._device_handle and self._device_handle.is_available()):
|
|
raise RuntimeError(
|
|
f"{self.__class__.__name__} instantiation requires the presence of CUDA/CUDA-like device"
|
|
)
|
|
|
|
self._states: Dict[str, Tensor] = {}
|
|
self._devices = [self._device_handle.current_device()]
|
|
self._use_distribute_region = True
|
|
|
|
@property
|
|
def rng_states(self) -> Dict[str, Tensor]:
|
|
return self._states
|
|
|
|
@property
|
|
def distribute_region_enabled(self) -> bool:
|
|
return self._use_distribute_region
|
|
|
|
@distribute_region_enabled.setter
|
|
def distribute_region_enabled(self, value) -> None:
|
|
self._use_distribute_region = value
|
|
|
|
def rng_state_is_sync(self, name) -> bool:
|
|
return name in self.rng_states
|
|
|
|
def get_seed(self, name: str) -> int:
|
|
if name not in self.rng_states:
|
|
raise RuntimeError(
|
|
f"{self.__class__.__name__} does not have random state for {name}"
|
|
)
|
|
|
|
seed_tensor = (self.rng_states[name])[0:8].view(dtype=torch.int64)
|
|
return int(seed_tensor.item())
|
|
|
|
def set_seed(self, name: str, seed: int) -> None:
|
|
seed_tensor = torch.tensor([seed]).view(torch.uint8)
|
|
offset_tensor = torch.tensor([0]).view(torch.uint8)
|
|
self.rng_states[name] = torch.cat([seed_tensor, offset_tensor])
|
|
|
|
def _distribute_region(self, spec: DTensorSpec):
|
|
pass
|
|
|
|
|
|
class OffsetBasedRNGTracker(_RNGStateTracker):
|
|
"""
|
|
This subclass of ``_RNGStateTracker`` defines the default policy of how RNG states
|
|
should be shared and synchronized among all ranks to respect the semantics of DTensor
|
|
random operators.
|
|
"""
|
|
|
|
def __init__(self, device_type: str = "cuda"):
|
|
super().__init__(device_type)
|
|
# synchronize RNG state using rank 0's current one
|
|
rng_state = self._device_handle.get_rng_state().to(device_type)
|
|
dist.broadcast(rng_state, 0)
|
|
self.rng_states["parallel-rng"] = rng_state.to("cpu")
|
|
|
|
def _manual_seed(self, parallel_seed: int) -> None:
|
|
self.set_seed("parallel-rng", parallel_seed)
|
|
|
|
@contextlib.contextmanager
|
|
def _distribute_region(self, spec: DTensorSpec):
|
|
# check if the parallel rng state has been synchronized or not
|
|
if not self.rng_state_is_sync("parallel-rng"):
|
|
raise RuntimeError(
|
|
"OffsetBasedRNGTracker requires the random state to be synchronized "
|
|
"before entering into a distribute region!"
|
|
)
|
|
|
|
if self.distribute_region_enabled:
|
|
old_offset = self.get_offset("parallel-rng")
|
|
self._set_pre_op_offset(spec)
|
|
with torch.random.fork_rng(self._devices, device_type=self._device_type):
|
|
self._device_handle.set_rng_state(self.rng_states["parallel-rng"])
|
|
try:
|
|
yield # execute the region code
|
|
finally:
|
|
# update offset to synchronize among ranks
|
|
self._set_post_op_offset(spec, old_offset)
|
|
else:
|
|
yield
|
|
|
|
def get_offset(self, name: str) -> int:
|
|
if name not in self.rng_states:
|
|
raise RuntimeError(
|
|
f"{self.__class__.__name__} does not have random state for {name}"
|
|
)
|
|
|
|
offset_tensor = (self.rng_states[name])[8:].view(dtype=torch.int64)
|
|
return int(offset_tensor.item())
|
|
|
|
def set_offset(self, name: str, offset: int) -> None:
|
|
if name not in self.rng_states:
|
|
raise RuntimeError(
|
|
f"{self.__class__.__name__} does not have random state for {name}"
|
|
)
|
|
|
|
seed_tensor = (self.rng_states[name])[0:8]
|
|
offset_tensor = torch.tensor([offset]).view(torch.uint8)
|
|
self.rng_states[name] = torch.cat([seed_tensor, offset_tensor])
|
|
|
|
def _set_pre_op_offset(self, spec: DTensorSpec) -> None:
|
|
"""Set the starting RNG offset for current device's local shard before actual
|
|
op execution. The pre_op_offset value should start from the current RNG offset
|
|
and increment by the size of local shard until it reaches the size of the whole
|
|
DTensor. For different ranks that hold the same DTensor shard, their pre_op_offset
|
|
will be the same.
|
|
|
|
Args:
|
|
spec (:class:`DTensorSpec`): the spec of the DTensor object on which
|
|
we prepare the offset for running random ops.
|
|
|
|
Returns:
|
|
None
|
|
|
|
.. warning::
|
|
Note that, current implementation does not consider DTensor's continguity.
|
|
|
|
Example:
|
|
take a DTensor of shape [8, 16] as an example. Assume that the DTensor
|
|
is placed on a device mesh with placements ([Shard(1), Replicate(), Shard(0)]),
|
|
and the mesh is:
|
|
[[[0, 1], [2, 3]], [[4, 5], [6, 7]]]
|
|
``spec.mesh.get_coordinate()`` provides the coordinate of the current rank
|
|
in the mesh. For example, the coordinate of rank 5 is (1, 0, 1).
|
|
|
|
Another concept to introduce besides rank coordinate is shard coordinate.
|
|
Each rank holds a local shard of the DTensor. In the example, the DTensor
|
|
is partitioned into 4 [4, 8] shards. The first shard has 2 replicas and
|
|
rank 0 (coord (0, 0, 0)) and rank 2 (coord (0, 1, 0)) have 1 replica each.
|
|
That being said, the local shard on rank 0 and rank 2 correspond to the same
|
|
shard of the DTensor. To denote each DTensor shard, we use a shard coordinate
|
|
(in the example, it will be a tuple (i, j) where shard (i, j) has the slice
|
|
DTensor[4 * i : 4 * (i + 1), 8 * j : 8 * (j + 1)], 0 <= i < 2, 0 <= j < 2).
|
|
|
|
Once we have rank coordinate and shard coordinate, we can calculate on each rank
|
|
what shard of the DTensor the rank holds, with the help of dim_map. The dim_map
|
|
of the above DTensor is [2, 0] so the shard coordinate of a rank with rank coord
|
|
(x, y, z) is simply (z, x) by taking(rank_coord[dim_map[0]],rank_coord[dim_map[1]]).
|
|
Following this calculation,
|
|
rank 0 and rank 2 holds the shard of coord (0, 0);
|
|
rank 1 and rank 3 holds the shard of coord (0, 1);
|
|
rank 4 and rank 6 holds the shard of coord (1, 0);
|
|
rank 5 and rank 7 holds the shard of coord (1, 1);
|
|
|
|
The last value to calculate before obtaining the starting offset is the shard linear index.
|
|
The starting offset for each rank will be its shard_linear_index * local_tensor_numel.
|
|
"""
|
|
dtensor_shape = spec.shape
|
|
mesh = spec.mesh
|
|
dim_map = spec.dim_map
|
|
|
|
# Compute shard coordinate:
|
|
# The coordinate on each tensor dim is a tuple (idx, range)
|
|
# If a DTensor is partitioned on its dim i into n shards, and the current rank
|
|
# holds the j-th, then its shard coordinate will be (idx=j, range=n) on dim i
|
|
coordinate = mesh.get_coordinate()
|
|
assert coordinate is not None
|
|
shard_coord = [
|
|
coordinate[mesh_dim] if mesh_dim >= 0 else 0 for mesh_dim in dim_map
|
|
]
|
|
shard_size = [
|
|
mesh.size(mesh_dim) if mesh_dim >= 0 else 1 for mesh_dim in dim_map
|
|
]
|
|
|
|
# compute shard linear index
|
|
shard_linear_idx = self._calc_shard_linear_idx(shard_coord, shard_size)
|
|
|
|
# compute starting offset using the first shard's size
|
|
local_size_on_rank_0 = list(dtensor_shape)
|
|
for idx, placement in enumerate(spec.placements):
|
|
if isinstance(placement, Shard):
|
|
mesh_dim_size = mesh.size(idx)
|
|
shard_dim = placement.dim
|
|
local_size_on_rank_0[shard_dim] = placement._local_shard_size_on_dim(
|
|
dtensor_shape[shard_dim],
|
|
mesh_dim_size,
|
|
0,
|
|
return_offset=False,
|
|
)[0]
|
|
|
|
from torch.distributed.tensor._ops.utils import prod
|
|
|
|
local_size = prod(local_size_on_rank_0)
|
|
|
|
# get current RNG offset
|
|
current_offset = self.get_offset("parallel-rng")
|
|
|
|
# pytorch: offset must be multiple of 4
|
|
# source: aten/src/ATen/cuda/CUDAGeneratorImpl.cpp
|
|
offset_incr = (shard_linear_idx * local_size + 3) // 4 * 4
|
|
self.set_offset("parallel-rng", current_offset + offset_incr)
|
|
|
|
def _set_post_op_offset(self, spec: DTensorSpec, old_offset: int) -> None:
|
|
"""Sets the RNG to a synchronized state after running the local random op. Every
|
|
rank should set its RNG offset to `old_offset + DTensor.numel()` where old_offset is
|
|
the offset before calling `set_pre_op_offset` i.e. the offset before running DTensor
|
|
random ops.
|
|
|
|
Args:
|
|
spec (:class:`DTensorSpec`): the spec of the DTensor object on which
|
|
we post-process the offset for running random ops.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
dtensor_shape = spec.shape
|
|
|
|
from torch.distributed.tensor._ops.utils import prod
|
|
|
|
numel = prod(dtensor_shape)
|
|
# pytorch: offset must be multiple of 4
|
|
# source: aten/src/ATen/cuda/CUDAGeneratorImpl.cpp
|
|
numel = (numel + 3) // 4 * 4
|
|
self.set_offset("parallel-rng", old_offset + numel)
|
|
|
|
def _calc_shard_linear_idx(
|
|
self, shard_coord: List[int], shard_size: List[int]
|
|
) -> int:
|
|
# compute shard linear index
|
|
shard_linear_idx = 0
|
|
shard_coord_stride = 1
|
|
for idx, size in zip(reversed(shard_coord), reversed(shard_size)):
|
|
shard_linear_idx += idx * shard_coord_stride
|
|
shard_coord_stride *= size
|
|
|
|
return shard_linear_idx
|
|
|
|
|
|
class TensorParallelRNGTracker(_RNGStateTracker):
|
|
def __init__(self, device_type: str = "cuda"):
|
|
super().__init__(device_type)
|
|
# copy the default RNG state
|
|
self.rng_states["tensor-parallel-rng"] = self._device_handle.get_rng_state()
|
|
|
|
def _manual_seed(
|
|
self,
|
|
tp_mesh: DeviceMesh,
|
|
base_seed: int = 1234,
|
|
):
|
|
tensor_parallel_rank = tp_mesh.get_local_rank()
|
|
# this magic number 2718 comes from Megatron's code
|
|
# (https://github.com/NVIDIA/Megatron-LM/blob/060415572f4365a2e895f8036c4e37dad0efbdf5/megatron/core/tensor_parallel/random.py#L162-L163)
|
|
MegatronMagicNum = 2718
|
|
tensor_parallel_seed = base_seed + MegatronMagicNum + tensor_parallel_rank
|
|
self.set_seed("tensor-parallel-rng", tensor_parallel_seed)
|
|
|
|
@contextlib.contextmanager
|
|
def _distribute_region(self, spec: DTensorSpec):
|
|
# check if the tensor parallel rng state has been synchronized or not
|
|
if not self.rng_state_is_sync("tensor-parallel-rng"):
|
|
raise RuntimeError(
|
|
"TensorParallelRNGTracker requires the random state to be synchronized "
|
|
"before entering into a distribute region!"
|
|
)
|
|
|
|
if self.distribute_region_enabled:
|
|
with torch.random.fork_rng(self._devices, device_type=self._device_type):
|
|
self._device_handle.set_rng_state(
|
|
self.rng_states["tensor-parallel-rng"]
|
|
)
|
|
try:
|
|
yield
|
|
finally:
|
|
self.rng_states[
|
|
"tensor-parallel-rng"
|
|
] = self._device_handle.get_rng_state()
|
|
else:
|
|
yield
|