pytorch/test/cpp/api
Heitor Schueroff de Souza cf811d2fb3 retain undefined tensors in backward pass (#41490)
Summary:
Leave undefined tensors / None returned from custom backward functions as undefined/None instead of creating a tensor full of zeros. This change improves performance in some cases.

**This is BC-Breaking:** Custom backward functions that return None will now see it potentially being propagated all the way up to AccumulateGrad nodes. Potential impact is that .grad field of leaf tensors as well as the result of autograd.grad may be undefined/None where it used to be a tensor full of zeros. Also, autograd.grad may raise an error, if so, consider using allow_unused=True ([see doc](https://pytorch.org/docs/stable/autograd.html?highlight=autograd%20grad#torch.autograd.grad)) if it applies to your case.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41490

Reviewed By: albanD

Differential Revision: D22578241

Pulled By: heitorschueroff

fbshipit-source-id: f4966f4cb520069294f8c5c1691eeea799cc0abe
2020-07-17 12:42:50 -07:00
..
any.cpp [C++ API] Allow skipping default arguments in module's forward method when module is used in Sequential (#33027) 2020-02-17 20:38:02 -08:00
autograd.cpp retain undefined tensors in backward pass (#41490) 2020-07-17 12:42:50 -07:00
CMakeLists.txt Impl for ParameterList (#41259) 2020-07-12 20:50:31 -07:00
dataloader.cpp Fix typos (#30606) 2019-12-02 20:17:42 -08:00
dispatch.cpp [Codemod][GleanFbcode] Remove dead includes in caffe2/test (#39023) 2020-05-27 14:07:26 -07:00
enum.cpp [C++ API] RNN / GRU / LSTM layer refactoring (#34322) 2020-03-15 17:48:29 -07:00
expanding-array.cpp
functional.cpp Support for XNNPACK max pooling operator. (#35354) 2020-04-03 22:53:15 -07:00
init_baseline.h
init_baseline.py
init.cpp [Codemod][GleanFbcode] Remove dead includes in caffe2/test (#39023) 2020-05-27 14:07:26 -07:00
integration.cpp [C++ API] Remove deprecated torch::nn::BatchNorm / FeatureDropout / modules_ordered_dict and torch::nn::init::Nonlinearity / FanMode (#34508) 2020-03-12 10:09:58 -07:00
jit.cpp
memory.cpp
misc.cpp Add experimental deterministic flag (#38683) 2020-06-12 08:44:06 -07:00
module.cpp [pytorch] Route default warning sync to LOG(WARNING) - second try (#36984) 2020-04-23 01:08:00 -07:00
modulelist.cpp [C++ API] RNN / GRU / LSTM layer refactoring (#34322) 2020-03-15 17:48:29 -07:00
modules.cpp Add inplace tests for several torch::nn modules / functionals (#35147) 2020-03-21 10:02:56 -07:00
namespace.cpp Remove using namespace torch::autograd from header files (#34423) 2020-03-09 10:31:21 -07:00
nn_utils.cpp [WIP] Fix cpp grad accessor API (#40887) 2020-07-16 09:11:12 -07:00
optim_baseline.h Add AdamW to C++ frontend (#40009) 2020-06-18 15:28:12 -07:00
optim_baseline.py Add AdamW to C++ frontend (#40009) 2020-06-18 15:28:12 -07:00
optim.cpp [WIP] Fix cpp grad accessor API (#40887) 2020-07-16 09:11:12 -07:00
ordered_dict.cpp
parallel_benchmark.cpp [aten] Pass std::function<> to thread_pool by value, instead of const ref. (#37681) 2020-05-05 08:41:38 -07:00
parallel.cpp [PyTorch] Modify data_parallel to work with small tensors (#37704) 2020-05-04 11:06:42 -07:00
parameterdict.cpp Python/C++ API Parity: Add impl and tests for ParameterDict (#40654) 2020-06-29 08:50:44 -07:00
parameterlist.cpp Impl for ParameterList (#41259) 2020-07-12 20:50:31 -07:00
README.md
rnn.cpp [C++ API] RNN / GRU / LSTM layer refactoring (#34322) 2020-03-15 17:48:29 -07:00
sequential.cpp [C++ API] RNN / GRU / LSTM layer refactoring (#34322) 2020-03-15 17:48:29 -07:00
serialize.cpp Add AdamW to C++ frontend (#40009) 2020-06-18 15:28:12 -07:00
static.cpp
support.cpp Use default dtype for torch::tensor(floating_point_values) and torch::tensor(empty braced-init-list) when dtype is not specified (#29632) 2019-11-13 15:17:11 -08:00
support.h Changes warnings generated in cpp to show point of Python origination (#36052) 2020-04-25 21:18:58 -07:00
tensor_cuda.cpp Fix MagmaInitializesCorrectly_CUDA by using an invertible matrix (#32547) 2020-01-25 20:00:54 -08:00
tensor_indexing.cpp [pytorch] Route default warning sync to LOG(WARNING) - second try (#36984) 2020-04-23 01:08:00 -07:00
tensor_options_cuda.cpp Deprecate tensor.type() (#30281) 2019-12-05 10:55:34 -08:00
tensor_options.cpp Deprecate tensor.type() (#30281) 2019-12-05 10:55:34 -08:00
tensor.cpp Change to.dtype_layout to c10-full (#41169) 2020-07-10 16:04:34 -07:00
torch_include.cpp

C++ Frontend Tests

In this folder live the tests for PyTorch's C++ Frontend. They use the GoogleTest test framework.

CUDA Tests

To make a test runnable only on platforms with CUDA, you should suffix your test with _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_CUDA) { }

To make it runnable only on platforms with at least two CUDA machines, suffix it with _MultiCUDA instead of _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_MultiCUDA) { }

There is logic in main.cpp that detects the availability and number of CUDA devices and supplies the appropriate negative filters to GoogleTest.

Integration Tests

Integration tests use the MNIST dataset. You must download it by running the following command from the PyTorch root folder:

$ python tools/download_mnist.py -d test/cpp/api/mnist

The required paths will be referenced as test/cpp/api/mnist/... in the test code, so you must run the integration tests from the PyTorch root folder.