pytorch/test/inductor/test_mps_basic.py

185 lines
4.8 KiB
Python

# Owner(s): ["module: mps"]
import importlib
import os
import sys
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_dtype import get_all_dtypes
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
MACOS_VERSION,
parametrize,
)
MPS_UNSUPPORTED_TYPES = [torch.double, torch.cdouble] + (
[torch.bfloat16] if MACOS_VERSION < 14.0 else []
)
MPS_DTYPES = [t for t in get_all_dtypes() if t not in MPS_UNSUPPORTED_TYPES]
importlib.import_module("filelock")
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from inductor.test_torchinductor import ( # @manual=fbcode//caffe2/test/inductor:test_inductor-library
check_model_gpu,
CommonTemplate,
TestCase,
)
# TODO: Remove this file.
# This tests basic MPS compile functionality
class MPSBasicTests(TestCase):
is_dtype_supported = CommonTemplate.is_dtype_supported
common = check_model_gpu
device = "mps"
@parametrize("dtype", MPS_DTYPES)
def test_add(self, dtype):
self.common(
lambda a, b: a + b,
(
make_tensor(1024, dtype=dtype, device=self.device),
make_tensor(1024, dtype=dtype, device=self.device),
),
check_lowp=False,
)
def test_log(self):
self.common(lambda x: x.log(), (torch.rand(1024),))
def test_acos(self):
self.common(lambda x: x.acos(), (torch.rand(1024),))
def test_atanh(self):
self.common(lambda x: x.atanh(), (torch.rand(1024),))
def test_floor(self):
self.common(lambda x: x.floor(), (torch.rand(1024),))
def test_sign(self):
self.common(lambda x: x.sign(), (torch.rand(1024),))
def test_sliced_input(self):
self.common(
lambda x: x[:, ::2].sin() + x[:, 1::2].cos(), (torch.rand(32, 1024),)
)
def test_where(self):
def foo(x):
rc = x.abs().sqrt()
rc[x < 0] = -5
return rc
self.common(foo, (torch.rand(1024),))
@parametrize("dtype", MPS_DTYPES)
def test_cast(self, dtype):
self.common(lambda a: a.to(dtype), (torch.rand(1024),))
def test_pointwise_i0(self):
self.common(torch.special.i0, (torch.rand(128, 128),), check_lowp=False)
def test_pointwise_i1(self):
self.common(torch.special.i1, (torch.rand(128, 128),), check_lowp=False)
def test_pointwise_erf(self):
self.common(torch.special.erf, (torch.rand(128, 128),), check_lowp=False)
def test_pointwise_polygamma(self):
self.common(
torch.special.polygamma,
(
1,
torch.rand(128, 128),
),
check_lowp=False,
)
def test_pointwise_digamma(self):
self.common(torch.special.digamma, (torch.rand(128, 128),), check_lowp=False)
def test_broadcast(self):
self.common(torch.add, (torch.rand(32, 1024), torch.rand(1024)))
def test_inplace(self):
def inc_(x):
x += 1
return x
self.common(inc_, (torch.rand(1024),))
# Copy tests
for test_name in [
"test_add_const_int",
"test_add_inplace_permuted",
"test_addmm",
"test_arange5",
"test_argmax_min_int32",
"test_avg_pool2d5",
"test_avg_pool2d8",
"test_builtins_round",
"test_builtins_round_float_ndigits_neg",
"test_cat_empty",
"test_cat_unbacked_empty_1d",
"test_consecutive_split_cumprod",
"test_consecutive_split_cumsum",
"test_constant_pad_float64",
"test_cumsum_inf",
"test_custom_op_2",
"test_div1",
"test_div3",
"test_erfinv",
"test_floordiv",
"test_full_truncation",
"test_fmod",
"test_fmod_zero_dim",
"test_index_dynamic_shapes",
"test_inf",
"test_isinf",
"test_isinf2",
"test_lgamma",
"test_linear_float64",
"test_log_fp64",
"test_low_memory_max_pool",
"test_max_min",
"test_max_pool2d2",
"test_nan_to_num",
"test_pow2",
"test_randint_int64_mod",
"test_randn_generator",
"test_remainder",
"test_remove_no_ops",
"test_reflection_pad2d",
"test_rsqrt",
"test_scalar_cpu_tensor_arg",
"test_scalar_output",
"test_setitem_with_int_parameter",
"test_signbit",
"test_silu",
"test_slice_scatter4",
"test_sort",
"test_tanh",
"test_view_as_complex",
"test_view_on_aliased",
"test_views3",
"test_views6",
"test_views7",
"test_zero_dim_reductions",
]:
setattr(MPSBasicTests, test_name, getattr(CommonTemplate, test_name))
instantiate_parametrized_tests(MPSBasicTests)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
if torch.backends.mps.is_available():
run_tests(needs="filelock")