mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary:
This commit is a minimial initial pass at adding inplace and _out variants to the JIT.
It changes gen_jit_dispatch.py to add bindings for these operators, and it also
supplements the FunctionSchema with alias information for these operators and for
viewing operators.
Tests are very minimal and will need to be improved in future commits.
Notes:
* Custom operator tests needed to be changed since _out variants add overloads, which
the custom operator pipeline does not handle when called from python. This commit
registers special test ops in the _test namespace for this purpose.
* Extends the schema parser to parse alias annotations more robustly.
* Extends FunctionSchema with `writes()` a set of alias set names that the op will write to,
and `annotatedType()` which will return AnnotatedType objects which contain the alias_set
information that was parsed from the schema.
* Disables all optimizations in graph executor when a mutable operator is found. This
is something that will be improved in the future but is necessary for correctness now.
* Adds annotate_ops to gen_jit_dispatch which adds aliasing information to all of the
aten ops.
* Adds AnnotatedType to the type hierarchy which is used to mark List and Tensor types
with their alias_set. These types only appear in schema when you call annotatedType
and are erased from types in normal use.
* Extends jit::Type with .containedTypes() and .withContained(new_types). The first returns all types contained
within the type (e.g. T for T[], or {T,L} for a tuple (T, L)). The second constructs a new
version of the same type, replacing the contained types with new_types. This simplifies
a lot of logic for recursively cleaning up types.
* Refactor List[T] into a common part that is shared with Annotated[T] and can be shared
with Optional[T] and Future[T] when they are merged.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13093
Differential Revision: D10848176
Pulled By: zdevito
fbshipit-source-id: d057f23eeb99cde8881129b42d3f151ed5e7655d
2175 lines
76 KiB
C++
2175 lines
76 KiB
C++
#include "torch/csrc/jit/script/compiler.h"
|
|
#include "torch/csrc/jit/passes/lower_tuples.h"
|
|
#include "torch/csrc/jit/passes/annotate_effects.h"
|
|
#include "torch/csrc/jit/passes/constant_pooling.h"
|
|
#include "torch/csrc/jit/operator.h"
|
|
#include "torch/csrc/jit/interpreter.h"
|
|
#include "torch/csrc/jit/ir.h"
|
|
#include "torch/csrc/jit/script/parser.h"
|
|
#include "torch/csrc/jit/assertions.h"
|
|
#include "torch/csrc/utils/object_ptr.h"
|
|
#include "torch/csrc/jit/operator.h"
|
|
#include "torch/csrc/jit/script/builtin_functions.h"
|
|
|
|
#include "torch/csrc/jit/constants.h"
|
|
|
|
#include "c10/util/Optional.h"
|
|
|
|
#include <climits>
|
|
#include <set>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
namespace script {
|
|
|
|
using SugaredValuePtr = std::shared_ptr<SugaredValue>;
|
|
using FunctionTable = std::unordered_map<std::string, Method&>;
|
|
using ValueTable = std::unordered_map<std::string, SugaredValuePtr>;
|
|
using AttributeMap = std::unordered_map<std::string, Const>;
|
|
using ListAttributeMap = std::unordered_map<std::string, std::vector<Const>>;
|
|
|
|
struct NoneValue : SugaredValue {
|
|
NoneValue() {}
|
|
virtual std::string kind() const override {
|
|
return "None";
|
|
}
|
|
};
|
|
|
|
struct PrintValue : public SugaredValue {
|
|
std::string kind() const override {
|
|
return "print";
|
|
}
|
|
std::shared_ptr<SugaredValue> call(
|
|
SourceRange loc,
|
|
Method & m,
|
|
at::ArrayRef<NamedValue> inputs,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
size_t n_binders) override {
|
|
auto& g = *m.graph();
|
|
if (!attributes.empty())
|
|
throw ErrorReport(loc) << "print doesn't accept any keyword arguments";
|
|
|
|
//temporary hack to allow print statements to work in python 2, where
|
|
//print(a, b) is treated as a (a, b) tuple input.
|
|
|
|
std::vector<Value*> lowered_inputs = toValues(*m.graph(), inputs);
|
|
if(lowered_inputs.size() == 1 && lowered_inputs.at(0)->node()->kind() == prim::TupleConstruct) {
|
|
auto input = lowered_inputs[0];
|
|
for(size_t j = 0; j < input->node()->inputs().size(); ++j) {
|
|
lowered_inputs.insert(lowered_inputs.begin() + 1 + j, input->node()->inputs().at(j));
|
|
}
|
|
lowered_inputs.erase(lowered_inputs.begin());
|
|
}
|
|
g.insertNode(g.create(prim::Print, lowered_inputs, 0)
|
|
->setSourceLocation(std::make_shared<SourceRange>(loc)));
|
|
return std::make_shared<NoneValue>();
|
|
}
|
|
};
|
|
|
|
static Value* typeCast(const SourceRange& loc, Value* value, TypePtr dst) {
|
|
auto& graph = *value->owningGraph();
|
|
const TypePtr orig = value->type();
|
|
Node* n = nullptr;
|
|
|
|
if(dst->isSubtypeOf(DynamicType::get()) && orig->isSubtypeOf(NumberType::get())) {
|
|
n = graph.createNumToTensor(value);
|
|
} else if (dst->isSubtypeOf(NumberType::get()) && orig->isSubtypeOf(DynamicType::get())) {
|
|
n = graph.createTensorToNum(dst, value);
|
|
} else if (dst->isSubtypeOf(BoolType::get()) && orig->isSubtypeOf(DynamicType::get())) {
|
|
n = graph.createTensorToBool(value);
|
|
} else if(dst->isSubtypeOf(IntType::get()) && orig->isSubtypeOf(FloatType::get())) {
|
|
n = graph.createFloatToInt(value);
|
|
} else if(dst->isSubtypeOf(FloatType::get()) && orig->isSubtypeOf(IntType::get())) {
|
|
n = graph.createIntToFloat(value);
|
|
} else if(dst->isSubtypeOf(FloatType::get()) && orig->isSubtypeOf(StringType::get())) {
|
|
n = graph.createStringToFloat(value);
|
|
} else {
|
|
throw ErrorReport(loc) << "Cannot cast type '" << orig->str() << "' to type '"
|
|
<< dst->str() << "'.";
|
|
}
|
|
|
|
auto* result = graph.insertNode(n)
|
|
->setSourceLocation(std::make_shared<SourceRange>(loc))
|
|
->output();
|
|
return result;
|
|
}
|
|
|
|
// expressions like int(x)
|
|
struct CastValue : public SugaredValue {
|
|
CastValue(TypePtr type)
|
|
: type(type) {}
|
|
std::string kind() const override {
|
|
std::stringstream ss;
|
|
ss << "<" << type->str() << " cast primitive>";
|
|
return ss.str();
|
|
}
|
|
std::shared_ptr<SugaredValue> call(
|
|
SourceRange loc,
|
|
Method & m,
|
|
at::ArrayRef<NamedValue> inputs,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
size_t n_binders) override {
|
|
if (!attributes.empty())
|
|
throw ErrorReport(loc) << "casts do not accept any keyword arguments";
|
|
if (inputs.size() != 1)
|
|
throw ErrorReport(loc) << "expected a single argument for cast";
|
|
auto values = toValues(*m.graph(), inputs);
|
|
Value* input = values.at(0);
|
|
if(!input->type()->isSubtypeOf(type)) {
|
|
input = typeCast(loc, input, type);
|
|
}
|
|
return std::make_shared<SimpleValue>(input);
|
|
}
|
|
private:
|
|
TypePtr type;
|
|
};
|
|
|
|
// Auxiliary data structure for desugaring variable binding into our always
|
|
// explicitly scoped language as we descend down
|
|
// nested control structures in the frontend (which themselves don't introduce
|
|
// scopes)
|
|
//
|
|
// The algorithm is roughly as follows:
|
|
// 1) While emitting a block within a control operator, add inputs and outputs
|
|
// from the block for each value referenced (both "reads" and "writes").
|
|
// This sets the value up as a candidate loop carried dependency.
|
|
// 2) When we reach the end of the block, examine all the values in the current
|
|
// scope's value map. If the name also resides in an outer scope with a
|
|
// different Value*, this is a true loop-carried dependency. If not, this
|
|
// value was not assigned to. Replace all references to the block input
|
|
// with the Value* pointed to in the tightest enclosing scope. Then delete
|
|
// that block input and output.
|
|
// 3) When we emit the actual control operator, take all of the loop-carried
|
|
// dependency values as inputs and return them as outputs from the control
|
|
// op
|
|
//
|
|
// Note that an alternative implementation could only add the loop-carried dep
|
|
// inputs and outputs when we see a value that is mutated. This, however
|
|
// requires replacing all references to that value *within the current
|
|
// block* with a new input. That is to say: we need to traverse the pre-
|
|
// decessor nodes and replace inputs that reference that value with the
|
|
// newly-created input. This could be made less expensive with a change to
|
|
// the IR API, but for now we choose to pessimisitically create inputs and
|
|
// delete unnecessary ones later with replaceAllusesWith().
|
|
struct Environment {
|
|
Environment(Method & method, Resolver resolver, Block* b, std::shared_ptr<Environment> next = nullptr)
|
|
: method(method), resolver(std::move(resolver)), b(b), next(next) {}
|
|
|
|
Method & method;
|
|
Resolver resolver;
|
|
std::vector<std::string> captured_inputs;
|
|
std::unordered_map<std::string, std::string> error_messages;
|
|
Block* b;
|
|
|
|
std::shared_ptr<Environment> next;
|
|
|
|
// set type error in the lowest environment. if the variable is used after an
|
|
// error has been set, then we will use the more informative error message
|
|
void setVariableTypeError(const std::string& name, const std::string &msg) {
|
|
auto runner = this;
|
|
while (runner->next) {
|
|
runner = runner->next.get();
|
|
}
|
|
runner->error_messages[name] = msg;
|
|
}
|
|
|
|
// see if type error has been set for a variable
|
|
c10::optional<std::string> findVariableTypeError(const std::string& name) {
|
|
auto runner = this;
|
|
while (runner->next) {
|
|
runner = runner->next.get();
|
|
}
|
|
auto msg = runner->error_messages.find(name);
|
|
if (msg != runner->error_messages.end()) {
|
|
return msg->second;
|
|
} else {
|
|
return c10::nullopt;
|
|
}
|
|
}
|
|
|
|
SugaredValuePtr findInThisFrame(const std::string& name) {
|
|
auto it = value_table.find(name);
|
|
if (it != value_table.end()) {
|
|
return it->second;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
SugaredValuePtr findInParentFrame(const std::string& name) {
|
|
return next ? next->findInAnyFrame(name) : nullptr;
|
|
}
|
|
|
|
SugaredValuePtr findInAnyFrame(const std::string& name) {
|
|
for (auto runner = this; runner; runner = runner->next.get()) {
|
|
if(auto r = runner->findInThisFrame(name)) {
|
|
return r;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Value* getValueInThisFrame(const SourceRange& loc, const std::string& name) {
|
|
return value_table.at(name)->asValue(loc, method);
|
|
}
|
|
|
|
SugaredValuePtr createCapturedInput(Value* orig, const std::string& name) {
|
|
// Create the input
|
|
Value* new_input = b->addInput()->setType(orig->type());
|
|
|
|
// Associate this name with this value
|
|
auto sv = std::make_shared<SimpleValue>(new_input);
|
|
value_table[name] = sv;
|
|
|
|
// List as a positional input
|
|
captured_inputs.push_back(name);
|
|
|
|
return sv;
|
|
}
|
|
|
|
SugaredValuePtr createCapturedInputIfNeeded(const SourceRange& loc, std::string ident) {
|
|
auto in_frame = findInThisFrame(ident);
|
|
if (in_frame) {
|
|
return in_frame;
|
|
}
|
|
|
|
// recursively handles the case where parent blocks are also loops
|
|
auto from_parent = next ? next->createCapturedInputIfNeeded(loc, ident) : nullptr;
|
|
|
|
// recursively create the captured input if it is the loop block
|
|
if (from_parent && getBlockOwningKind() == prim::Loop) {
|
|
if (Value* simple_val = asSimple(from_parent))
|
|
from_parent = createCapturedInput(simple_val, ident);
|
|
}
|
|
return from_parent;
|
|
}
|
|
|
|
Block* block() {
|
|
return b;
|
|
}
|
|
Symbol getBlockOwningKind() {
|
|
Symbol owning_kind = Symbol();
|
|
if (b->owningNode()) {
|
|
owning_kind = b->owningNode()->kind();
|
|
}
|
|
return owning_kind;
|
|
}
|
|
|
|
void setVar(const SourceRange& loc, const std::string& name, Value* value) {
|
|
setSugaredVar(loc, name, std::make_shared<SimpleValue>(value));
|
|
}
|
|
static Value* asSimple(SugaredValuePtr value) {
|
|
if(SimpleValue* sv = dynamic_cast<SimpleValue*>(value.get())) {
|
|
return sv->getValue();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void setSugaredVar(const SourceRange& loc, const std::string& name, SugaredValuePtr value) {
|
|
Value* as_simple_value = asSimple(value);
|
|
if (as_simple_value)
|
|
as_simple_value->setUniqueName(name);
|
|
// prevent re-assignment involving any sugared values
|
|
// any reassignment like:
|
|
// a = ...
|
|
// while ...
|
|
// a = ..
|
|
// requires 'a' to be first-class in the graph since its value depends on
|
|
// control flow
|
|
if(auto parent = findInParentFrame(name)) {
|
|
if(!as_simple_value) {
|
|
throw ErrorReport(loc) << "Cannot re-assign '" << name << "' to a value of type " << value->kind() <<
|
|
" because " << name << " is not a first-class value. Only reassignments to first-class values are allowed";
|
|
}
|
|
Value* simple_parent = asSimple(parent);
|
|
if(!simple_parent) {
|
|
throw ErrorReport(loc) << "Cannot re-assign '" << name << "' because it has type " << value->kind() <<
|
|
" and " << name << " is not a first-class value. Only reassignments to first-class values are allowed";
|
|
}
|
|
if (!as_simple_value->type()->isSubtypeOf(
|
|
unshapedType(simple_parent->type()))) {
|
|
std::stringstream errMsg;
|
|
errMsg << "variable '" << name << "' previously has type "
|
|
<< simple_parent->type()->str()
|
|
<< " but is now being assigned to a value of type "
|
|
<< as_simple_value->type()->str();
|
|
// Special-cased error msg if we're trying to assign to a tensor list.
|
|
if (simple_parent->type()->kind() == TypeKind::ListType &&
|
|
as_simple_value->type()->kind() == TypeKind::ListType) {
|
|
errMsg << "\n. (Note: empty lists are constructed as Tensor[]; "
|
|
<< "if you want an empty list of a different type, "
|
|
<< "use `_construct_empty_foo_list`, "
|
|
<< "where `foo` is `int` or `float`)";
|
|
}
|
|
throw ErrorReport(loc) << errMsg.str();
|
|
}
|
|
}
|
|
if (as_simple_value)
|
|
createCapturedInputIfNeeded(loc, name);
|
|
value_table[name] = std::move(value);
|
|
}
|
|
|
|
SugaredValuePtr getSugaredVar(const Ident& ident, bool required=true) {
|
|
return getSugaredVar(ident.name(), ident.range());
|
|
}
|
|
Value* getVar(const Ident& ident) {
|
|
return getSugaredVar(ident)->asValue(ident.range(), method);
|
|
}
|
|
|
|
SugaredValuePtr getSugaredVar(const std::string& ident, SourceRange range, bool required=true) {
|
|
auto retval = createCapturedInputIfNeeded(range, ident);
|
|
|
|
if(!retval) {
|
|
static std::unordered_map<std::string, SugaredValuePtr> globals = {
|
|
{"print", std::make_shared<PrintValue>()},
|
|
{"float", std::make_shared<CastValue>(FloatType::get())},
|
|
{"int", std::make_shared<CastValue>(IntType::get())},
|
|
{"bool", std::make_shared<CastValue>(BoolType::get())},
|
|
// todo(zach): remove when we can correctly export torch.full via ONNX
|
|
// or we have implicit conversion that can convert numbers to tensors
|
|
{"_to_tensor", std::make_shared<CastValue>(DynamicType::get()) },
|
|
};
|
|
auto it = globals.find(ident);
|
|
if(it != globals.end())
|
|
retval = it->second;
|
|
}
|
|
|
|
if(!retval) {
|
|
retval = resolver(ident, method, range);
|
|
}
|
|
|
|
if (!retval && required) {
|
|
// check if this value was not emitted in an if statement because of a
|
|
// type mismatch. if it was, then we print a more informative error msg
|
|
if (auto msg = findVariableTypeError(ident)) {
|
|
throw ErrorReport(range) << *msg << "and was used here";
|
|
}
|
|
throw ErrorReport(range) << "undefined value " << ident;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
Value* getVar(const std::string& ident, SourceRange range) {
|
|
return getSugaredVar(ident, range)->asValue(range, method);
|
|
}
|
|
|
|
// Given that after emitting statements in a block, we've added block inputs
|
|
// for all value references and assignments, delete inputs for which there was
|
|
// no assignment, only references.
|
|
void deleteExtraInputs(const SourceRange& loc) {
|
|
// note: skip i == 0, it is the loop trip count for inputs
|
|
// and the loop condition for outputs.
|
|
// captured_inputs is indexed by i - 1 since it only contains loop
|
|
// carried dependencies
|
|
// inputs: loop_counter, lcd0, lcd1, ...
|
|
// outputs: loop_condition, lcd0, lcd1, ...
|
|
// captured_inputs: lcd0, lcd1, ...
|
|
JIT_ASSERT(b->inputs().size() == b->outputs().size());
|
|
JIT_ASSERT(b->inputs().size() == captured_inputs.size() + 1);
|
|
for(size_t i = b->inputs().size() - 1; i > 0; i--) {
|
|
// nothing changed along this loop
|
|
if(b->inputs()[i] == b->outputs()[i]) {
|
|
auto name = captured_inputs[i - 1];
|
|
Value* orig = findInParentFrame(name)->asValue(loc, method);
|
|
b->inputs()[i]->replaceAllUsesWith(orig);
|
|
b->eraseInput(i);
|
|
b->eraseOutput(i);
|
|
captured_inputs.erase(captured_inputs.begin() + i - 1);
|
|
}
|
|
}
|
|
}
|
|
std::vector<std::string> definedVariables() {
|
|
std::vector<std::string> result;
|
|
for(auto & kv : value_table) {
|
|
result.push_back(kv.first);
|
|
}
|
|
return result;
|
|
}
|
|
private:
|
|
ValueTable value_table;
|
|
};
|
|
|
|
Value* packOutputs(Graph& g, at::ArrayRef<Value*> values) {
|
|
if(values.size() == 1) {
|
|
return values[0];
|
|
}
|
|
return g.insertNode(g.createTuple(values))->output();
|
|
}
|
|
|
|
at::ArrayRef<Value*> createTupleUnpack(Value* v) {
|
|
// small peephole optimization to ensure IntList attributes can still turn
|
|
// into constants e.g. in x.expand([3, 4])
|
|
if(v->node()->kind() == prim::TupleConstruct)
|
|
return v->node()->inputs();
|
|
auto & g = *v->owningGraph();
|
|
return g.insertNode(g.createTupleUnpack(v))->outputs();
|
|
}
|
|
|
|
static inline bool isIntUsedAsIntList(
|
|
const Value* value,
|
|
const Argument& arg) {
|
|
// Look for int[N]
|
|
return value->type()->kind() == TypeKind::IntType &&
|
|
*arg.type() == *ListType::ofInts() && arg.N();
|
|
}
|
|
|
|
inline bool convertibleToList(TypePtr type, TypePtr list_type_) {
|
|
auto list_type = list_type_->cast<ListType>();
|
|
if(!list_type) {
|
|
return false;
|
|
}
|
|
if(type->isSubtypeOf(list_type_)) {
|
|
return true;
|
|
}
|
|
if(auto tuple = type->cast<TupleType>()) {
|
|
return std::all_of(
|
|
tuple->elements().begin(),
|
|
tuple->elements().end(),
|
|
[&](const TypePtr& t) {
|
|
return t->isSubtypeOf(list_type->getElementType());
|
|
});
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Value* tryMatchArgument(
|
|
const Argument& arg,
|
|
Graph& graph,
|
|
const SourceRange& loc,
|
|
const NamedValue& named_value,
|
|
std::function<std::ostream&()> err,
|
|
bool convert_tensors_to_nums,
|
|
TypeEnv & type_env) {
|
|
Value* value = named_value.value(graph);
|
|
|
|
// some functions that take lists of integers for fixed size arrays
|
|
// also allow single ints to be passed in their place.
|
|
// the single int is then repeated to the length of the list
|
|
if (isIntUsedAsIntList(value, arg)) {
|
|
std::vector<Value*> repeated(*arg.N(), value);
|
|
value = graph.insertNode(graph.createList(IntType::get(), repeated))->output();
|
|
}
|
|
|
|
TypePtr concrete_type;
|
|
try {
|
|
concrete_type = matchTypeVariables(arg.type(), value->type(), type_env);
|
|
} catch(TypeMatchError& e) {
|
|
err() << "could not match type " << value->type()->str() << " to "
|
|
<< arg.type()->str() << " in argument '" << arg.name() << "': " << e.what() << "\n"
|
|
<< named_value.locOr(loc);
|
|
return nullptr;
|
|
}
|
|
|
|
// Allow homogeneous tuples to be casted implicitly to lists of appropriate types
|
|
if (convertibleToList(value->type(), concrete_type) &&
|
|
value->type()->kind() == TypeKind::TupleType) {
|
|
auto unpacked = createTupleUnpack(value);
|
|
auto elem_type = concrete_type->expect<ListType>()->getElementType();
|
|
value = graph.insertNode(graph.createList(elem_type, unpacked))->output();
|
|
}
|
|
|
|
if (value->type()->isSubtypeOf(NoneType::get())){
|
|
if (concrete_type->isSubtypeOf(GeneratorType::get())) {
|
|
value = graph.insertNode(graph.createNoneGenerator())->output();
|
|
} else if (concrete_type->isSubtypeOf(DynamicType::get())) {
|
|
value = graph.insertNode(graph.createUndefined())->output();
|
|
}
|
|
}
|
|
|
|
//implicit conversion of tensors to scalars
|
|
if(convert_tensors_to_nums && concrete_type->isSubtypeOf(NumberType::get())
|
|
&& value->type()->isSubtypeOf(DynamicType::get())) {
|
|
auto n = graph.createImplicitTensorToNum(concrete_type, value);
|
|
value = graph.insertNode(n)
|
|
->setSourceLocation(std::make_shared<SourceRange>(loc))
|
|
->output();
|
|
}
|
|
|
|
if(!value->type()->isSubtypeOf(concrete_type)) {
|
|
err() << "expected a value of type " << concrete_type->str() << " for argument '" << arg.name() << "' but found "
|
|
<< value->type()->str() << "\n"
|
|
<< named_value.locOr(loc);
|
|
return nullptr;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
c10::optional<size_t> findInputWithName(
|
|
const std::string& name,
|
|
at::ArrayRef<NamedValue> kwargs) {
|
|
for(size_t i = 0; i < kwargs.size(); ++i) {
|
|
if(kwargs[i].name() == name)
|
|
return i;
|
|
}
|
|
return c10::nullopt;
|
|
}
|
|
|
|
Value* tryCreateList(
|
|
TypePtr elem_type,
|
|
Graph& graph,
|
|
const SourceRange& loc,
|
|
at::ArrayRef<NamedValue> varargs,
|
|
std::function<std::ostream&()> err,
|
|
bool convert_tensor_to_num,
|
|
TypeEnv & type_env) {
|
|
Argument elem_arg("<varargs>", elem_type);
|
|
std::vector<Value*> list_ctor;
|
|
for(const auto& a : varargs) {
|
|
Value* av = tryMatchArgument(elem_arg, graph, loc, a, err, convert_tensor_to_num, type_env);
|
|
if(!av)
|
|
return nullptr;
|
|
list_ctor.push_back(av);
|
|
}
|
|
return graph.insertNode(graph.createList(elem_type, list_ctor))->output();
|
|
}
|
|
|
|
template<class T>
|
|
static Value* materializeConstant(T val, Graph& graph,
|
|
const SourceRange& r, std::unordered_map<T, Value*>& map) {
|
|
auto existing_constant = map.find(val);
|
|
if (existing_constant != map.end()) {
|
|
return existing_constant->second;
|
|
}
|
|
|
|
WithInsertPoint guard(graph.block()->nodes().front());
|
|
auto new_constant = graph.insertConstant(val, r);
|
|
map[val] = new_constant;
|
|
|
|
return new_constant;
|
|
}
|
|
|
|
c10::optional<MatchedSchema> tryMatchSchema(
|
|
const FunctionSchema& schema,
|
|
const SourceRange& loc,
|
|
Graph& graph,
|
|
c10::optional<NamedValue> self,
|
|
at::ArrayRef<NamedValue> raw_args,
|
|
at::ArrayRef<NamedValue> kwargs,
|
|
std::ostream& failure_messages,
|
|
bool convert_tensors_to_nums) {
|
|
// Match against a potentially mutable schema.
|
|
//
|
|
// We need to treat mutable schemas differently because the IR explicitly
|
|
// expresses effects by including a world token in mutable ops. Users do not
|
|
// know about the world token, so we need to generate a dummy one and add
|
|
// it to the inputs for schema matching.
|
|
//
|
|
// Example:
|
|
// append(int[] list, int el)
|
|
// becomes
|
|
// append(World w, int[] list, int el)
|
|
//
|
|
// NOTE: The dummy world token has no meaning; the AnnotateEffects pass is
|
|
// necessary to enforce linearization on effectful ops.
|
|
std::vector<NamedValue> modifiedArgs(raw_args.begin(), raw_args.end());
|
|
if (schema.has_world_token()) {
|
|
// Add a dummy world token to be matched against
|
|
const auto worldToken = graph.insertDummyWorld();
|
|
modifiedArgs.insert(modifiedArgs.begin(), worldToken);
|
|
}
|
|
auto err = [&]() -> std::ostream& {
|
|
failure_messages << "\nfor operator " << schema << ":\n";
|
|
return failure_messages;
|
|
};
|
|
|
|
TypeEnv type_env;
|
|
std::vector<Value*> positional_inputs;
|
|
std::vector<bool> used_kwarg(kwargs.size(), false);
|
|
|
|
// if we finish the loop will we have consumed all arguments?
|
|
size_t used_args = 0;
|
|
for (size_t schema_i = 0; schema_i < schema.arguments().size(); ++schema_i) {
|
|
const auto& arg = schema.arguments()[schema_i];
|
|
c10::optional<NamedValue> v;
|
|
if (arg.name() == "self" && self) {
|
|
v = self;
|
|
self = c10::nullopt;
|
|
} else if (!arg.kwarg_only() && used_args < modifiedArgs.size()) {
|
|
// allow zeros(IntList sizes) to work with zeros(1, 2) or zeros(1)
|
|
if (arg.type()->kind() == TypeKind::ListType && // the formal must be a list
|
|
!arg.N() && // it must not be a broadcasting list like int[3], otherwise
|
|
// a single int is a valid input
|
|
(schema_i + 1 == schema.arguments().size() ||
|
|
schema.arguments()[schema_i + 1]
|
|
.kwarg_only())) { // must be the last position argument
|
|
auto actual_type = modifiedArgs[used_args].value(graph)->type();
|
|
if (actual_type->kind() != TypeKind::ListType &&
|
|
!convertibleToList(
|
|
actual_type,
|
|
arg.type())) { // and the actual should not be a list already
|
|
auto elem_type = arg.type()->expect<ListType>()->getElementType();
|
|
Value* list = tryCreateList(
|
|
elem_type,
|
|
graph,
|
|
loc,
|
|
at::ArrayRef<NamedValue>(modifiedArgs).slice(used_args),
|
|
err,
|
|
convert_tensors_to_nums,
|
|
type_env);
|
|
if (!list)
|
|
return c10::nullopt;
|
|
used_args = modifiedArgs.size();
|
|
positional_inputs.push_back(list);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
v = modifiedArgs[used_args];
|
|
used_args++;
|
|
} else if (auto idx = findInputWithName(arg.name(), kwargs)) {
|
|
const NamedValue& nv = kwargs[*idx];
|
|
if (used_kwarg[*idx]) {
|
|
err() << "argument " << nv.name()
|
|
<< " specified twice in schema, submit a bug report!\n"
|
|
<< nv.locOr(loc);
|
|
return c10::nullopt;
|
|
}
|
|
used_kwarg[*idx] = true;
|
|
v = nv;
|
|
} else if (arg.default_value()) {
|
|
v = NamedValue(*arg.default_value());
|
|
} else {
|
|
err() << "argument " << schema.arguments()[schema_i].name()
|
|
<< " not provided.\n"
|
|
<< loc;
|
|
return c10::nullopt;
|
|
}
|
|
Value* positional = tryMatchArgument(
|
|
arg, graph, loc, *v, err, convert_tensors_to_nums, type_env);
|
|
if (!positional)
|
|
return c10::nullopt;
|
|
positional_inputs.push_back(positional);
|
|
}
|
|
// check for unused self argument
|
|
if(self != c10::nullopt) {
|
|
err() << "provided self argument not used in schema\n";
|
|
}
|
|
|
|
// check for unused positional arguments
|
|
if (used_args < modifiedArgs.size()) {
|
|
err() << "expected at most " << used_args << " arguments "
|
|
<< "but found " << modifiedArgs.size() << " positional arguments.\n"
|
|
<< loc << "\n";
|
|
return c10::nullopt;
|
|
}
|
|
// check for unused kwargs
|
|
for (size_t i = 0; i < kwargs.size(); ++i) {
|
|
const auto& nv = kwargs[i];
|
|
if (!used_kwarg[i]) {
|
|
if (!schema.argumentIndexWithName(nv.name())) {
|
|
err() << "keyword argument " << nv.name() << " unknown\n";
|
|
} else {
|
|
err() << "keyword argument " << nv.name() << " specified twice\n";
|
|
}
|
|
return c10::nullopt;
|
|
}
|
|
}
|
|
auto return_types = fmap(schema.returns(), [&](const Argument& r) {
|
|
return evalTypeVariables(r.type(), type_env);
|
|
});
|
|
return MatchedSchema{std::move(positional_inputs), std::move(return_types)};
|
|
}
|
|
|
|
static std::string prefixLine(const std::string& str, std::string prefix) {
|
|
std::stringstream ss;
|
|
bool was_newline = true;
|
|
for(auto c : str) {
|
|
if(was_newline)
|
|
ss << prefix;
|
|
ss.put(c);
|
|
was_newline = c == '\n';
|
|
}
|
|
return ss.str();
|
|
}
|
|
|
|
// Given a successful match between operator schema and symbol, emit a node
|
|
// with the appropriate inputs and outputs.
|
|
static Value* emitBuiltinNode(
|
|
const MatchedSchema& matched_schema,
|
|
const SourceRange& loc,
|
|
Graph& graph,
|
|
Symbol name) {
|
|
auto n = graph.insertNode(graph.create(name, matched_schema.inputs, 0))
|
|
->setSourceLocation(std::make_shared<SourceRange>(loc));
|
|
|
|
for(auto & ret : matched_schema.return_types) {
|
|
n->addOutput()->setType(ret);
|
|
}
|
|
|
|
// assert that we did indeed create an op that has implementation
|
|
// otherwise schema and dispatch are not in sync
|
|
getOperation(n);
|
|
|
|
return packOutputs(graph, n->outputs());
|
|
}
|
|
|
|
// Search for operators matching the provided symbol name and input types.
|
|
// If one is found, emit a node to the graph for that operator.
|
|
Value* emitBuiltinCall(
|
|
const SourceRange& loc,
|
|
Graph& graph,
|
|
Symbol name,
|
|
c10::optional<NamedValue> self,
|
|
at::ArrayRef<NamedValue> inputs,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
// if true, emitBuiltinCall will throw an exception if this builtin does not exist,
|
|
// otherwise it will return nullptr if the builtin is not found.
|
|
bool required) {
|
|
|
|
|
|
const auto& variants = getAllOperatorsFor(name);
|
|
const auto& builtin_functions = getAllBuiltinFunctionsFor(name);
|
|
|
|
std::stringstream failure_messages;
|
|
//first we try to match the schema without any conversion
|
|
//if no schema matches then insert ImplicitTensorToNum
|
|
for (bool convert_tensors_to_nums : {false, true}) {
|
|
// clear previous error messages
|
|
failure_messages.str("");
|
|
for (const std::shared_ptr<Operator>& op : variants) {
|
|
const auto matched_schema = tryMatchSchema(
|
|
op->schema(),
|
|
loc,
|
|
graph,
|
|
self,
|
|
inputs,
|
|
attributes,
|
|
failure_messages,
|
|
convert_tensors_to_nums);
|
|
|
|
if (matched_schema) {
|
|
return emitBuiltinNode(*matched_schema, loc, graph, name);
|
|
}
|
|
}
|
|
for (Method* method : builtin_functions) {
|
|
if (auto result = try_emit_call_to(
|
|
graph,
|
|
loc,
|
|
*method,
|
|
self,
|
|
inputs,
|
|
attributes,
|
|
failure_messages,
|
|
nullptr,
|
|
convert_tensors_to_nums)) {
|
|
return packOutputs(graph, *result);
|
|
}
|
|
}
|
|
}
|
|
|
|
// none of the options worked
|
|
if (!required) {
|
|
return nullptr;
|
|
}
|
|
if(variants.size() == 0) {
|
|
throw ErrorReport(loc) << "unknown builtin op";
|
|
}
|
|
throw ErrorReport(loc) << "arguments for call are not valid:\n"
|
|
<< prefixLine(failure_messages.str(), " ")
|
|
<< "for call at";
|
|
}
|
|
|
|
static Value* ensureInt(const SourceRange& range, Value* v) {
|
|
if(!v->type()->isSubtypeOf(IntType::get())) {
|
|
throw ErrorReport(range) << "expected a int but found a "
|
|
<< v->type()->str();
|
|
}
|
|
return v;
|
|
}
|
|
|
|
std::shared_ptr<SugaredValue> BuiltinFunction::call(
|
|
SourceRange loc,
|
|
Method& m,
|
|
at::ArrayRef<NamedValue> inputs,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
size_t n_binders) {
|
|
return std::make_shared<SimpleValue>(emitBuiltinCall(
|
|
loc, *m.graph(), symbol, self, inputs, attributes, true));
|
|
}
|
|
|
|
inline bool isSupportedListElementType(TypePtr type) {
|
|
return type->isSubtypeOf(DynamicType::get()) ||
|
|
type->isSubtypeOf(NumberType::get());
|
|
}
|
|
|
|
struct to_ir {
|
|
to_ir(
|
|
Def def,
|
|
Resolver resolver_,
|
|
SugaredValuePtr self,
|
|
Method& method) // method being constructed
|
|
: method(method)
|
|
, graph(method.graph())
|
|
, def(def)
|
|
, resolver(std::move(resolver_))
|
|
, environment_stack(nullptr) {
|
|
JIT_ASSERT(resolver);
|
|
pushFrame(graph->block());
|
|
|
|
auto schema = extractSchemaFromDef(def, bool(self));
|
|
|
|
std::vector<Argument> arguments, returns; // for schema
|
|
// inputs
|
|
auto it = def.decl().params().begin();
|
|
auto end = def.decl().params().end();
|
|
// Type annotations exclude explicitly typing the "self" parameter, so in the
|
|
// case that this is a method with self we expect one fewer parameter annotation
|
|
// than the number of parameters this Def takes.
|
|
if (self && def.decl().params().size() == 0) {
|
|
throw ErrorReport(def.decl().params().range()) << "methods must have a self argument";
|
|
}
|
|
auto expected_annotation_size = self ? def.decl().params().size() - 1 : def.decl().params().size();
|
|
if (schema.arguments().size() != expected_annotation_size) {
|
|
throw ErrorReport(def.decl().params().range()) << "Number of type annotations for"
|
|
<< " function parameters (" << arguments.size() << ")"
|
|
<< " does not match the number of parameters on the function ("
|
|
<< expected_annotation_size << ")!";
|
|
}
|
|
if(self) {
|
|
if(it == end)
|
|
throw ErrorReport(def.decl().params().range()) << "methods must have a self argument";
|
|
environment_stack->setSugaredVar(def.range(), (*it).ident().name(), self);
|
|
++it;
|
|
}
|
|
size_t arg_annotation_idx = 0;
|
|
for(;it != end; ++it) {
|
|
auto& name = (*it).ident().name();
|
|
// Add the input to the graph
|
|
Value *new_input = graph->addInput(name);
|
|
environment_stack->setVar((*it).ident().range(), name, new_input);
|
|
|
|
// Record the type for the schema and set the Type on the Value*
|
|
arguments.push_back(schema.arguments().at(arg_annotation_idx++));
|
|
new_input->setType(arguments.back().type());
|
|
}
|
|
// body
|
|
auto stmts = def.statements();
|
|
auto stmts_begin = stmts.begin();
|
|
auto stmts_end = stmts.end();
|
|
bool has_return = false;
|
|
if (stmts_begin != stmts_end && (*std::prev(stmts_end)).kind() == TK_RETURN) {
|
|
--stmts_end;
|
|
has_return = true;
|
|
}
|
|
|
|
emitStatements(stmts_begin, stmts_end);
|
|
|
|
// outputs
|
|
if (has_return) {
|
|
auto return_stmt = Return(*stmts_end);
|
|
auto results = getValues(return_stmt.values(), true);
|
|
// a single return value that is a tuple expands in place:
|
|
// return a
|
|
if (return_stmt.values().size() == 1 && results.size() == 1) {
|
|
auto result = results.at(0);
|
|
if(result->type()->cast<TupleType>()) {
|
|
results = createTupleUnpack(result).vec();
|
|
}
|
|
}
|
|
if (!schema.is_varret() && schema.returns().size() != results.size()) {
|
|
throw ErrorReport(def.range()) << "Number of type annotations for function"
|
|
<< " return (" << schema.returns().size() << ") does not match"
|
|
<< " the number of returns from the function (" << results.size() << ")!";
|
|
}
|
|
auto range = return_stmt.range();
|
|
size_t return_type_idx = 0;
|
|
for (auto& r : results) {
|
|
graph->registerOutput(r);
|
|
TypePtr type = DynamicType::get();
|
|
if (!schema.is_varret()) {
|
|
type = schema.returns().at(return_type_idx).type();
|
|
if (!r->type()->isSubtypeOf(type)) {
|
|
throw ErrorReport(return_stmt.range()) << "Return value at position "
|
|
<< return_type_idx << " was annotated as having type " << type->str()
|
|
<< " but is actually of type " << r->type()->str();
|
|
}
|
|
return_type_idx++;
|
|
}
|
|
returns.push_back({"", type});
|
|
}
|
|
}
|
|
|
|
method.setSchema({def.name().name(), std::move(arguments), std::move(returns)});
|
|
// annotate effects to prevent reordering
|
|
AnnotateEffects(graph);
|
|
// remove any uses of tuples that we inserted that are not needed
|
|
LowerSimpleTuples(graph);
|
|
ConstantPooling(graph);
|
|
}
|
|
|
|
private:
|
|
Method& method;
|
|
std::shared_ptr<Graph> graph;
|
|
Def def;
|
|
Resolver resolver;
|
|
std::unordered_map<int64_t, Value*> integral_constants;
|
|
std::unordered_map<double, Value*> fp_constants;
|
|
|
|
// Singly-linked list of environments. This top element contains a member
|
|
// `next` that points to the most immediate enclosing scope's value.
|
|
std::shared_ptr<Environment> environment_stack;
|
|
|
|
void pushFrame(Block * b) {
|
|
environment_stack = std::make_shared<Environment>(method, resolver, b, environment_stack);
|
|
}
|
|
std::shared_ptr<Environment> popFrame() {
|
|
auto old_frame = environment_stack;
|
|
environment_stack = environment_stack->next;
|
|
return old_frame;
|
|
}
|
|
void emitStatements(const List<Stmt>& statements) {
|
|
return emitStatements(statements.begin(), statements.end());
|
|
}
|
|
void emitStatements(List<Stmt>::const_iterator begin, List<Stmt>::const_iterator end) {
|
|
for (; begin != end; ++begin) {
|
|
auto stmt = *begin;
|
|
switch (stmt.kind()) {
|
|
case TK_IF:
|
|
emitIf(If(stmt));
|
|
break;
|
|
case TK_WHILE:
|
|
emitWhile(While(stmt));
|
|
break;
|
|
case TK_FOR:
|
|
emitFor(For(stmt));
|
|
break;
|
|
case TK_ASSIGN:
|
|
emitAssignment(Assign(stmt));
|
|
break;
|
|
case TK_GLOBAL:
|
|
for (auto ident : Global(stmt).names()) {
|
|
const auto& name = Ident(ident).name();
|
|
environment_stack->setVar(ident.range(), name, graph->addInput(name));
|
|
}
|
|
break;
|
|
case TK_EXPR_STMT: {
|
|
auto exprs = ExprStmt(stmt).exprs();
|
|
for (const auto& expr : exprs) {
|
|
emitSugaredExpr(expr, 0);
|
|
}
|
|
}
|
|
break;
|
|
case TK_RETURN:
|
|
throw ErrorReport(stmt) << "return statements can appear only at the end "
|
|
<< "of the function body";
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::shared_ptr<Environment> emitSingleIfBranch(
|
|
Block* b,
|
|
const List<Stmt> branch) {
|
|
pushFrame(b);
|
|
WithInsertPoint guard(b);
|
|
emitStatements(branch);
|
|
return popFrame();
|
|
}
|
|
|
|
Node* create(Symbol kind, const SourceRange& loc, size_t n_outputs) {
|
|
return graph
|
|
->create(kind, n_outputs)
|
|
->setSourceLocation(std::make_shared<SourceRange>(loc));
|
|
}
|
|
|
|
Value* emitTernaryIf(const TernaryIf& expr) {
|
|
Value* cond_value = emitCond(expr.cond());
|
|
auto true_expr = [&] {
|
|
return emitExpr(expr.true_expr());
|
|
};
|
|
auto false_expr = [&] {
|
|
return emitExpr(expr.false_expr());
|
|
};
|
|
return emitIfExpr(expr.range(), cond_value, true_expr, false_expr);
|
|
}
|
|
|
|
Value* emitShortCircuitIf(
|
|
const SourceRange& loc,
|
|
const TreeRef & first_expr,
|
|
const TreeRef & second_expr,
|
|
bool is_or) {
|
|
Value * first_value = emitCond(Expr(first_expr));
|
|
|
|
auto get_first_expr = [first_value] {
|
|
return first_value;
|
|
};
|
|
auto get_second_expr = [&] {
|
|
return emitCond(Expr(second_expr));
|
|
};
|
|
|
|
// if this is an OR, eval second expression if first expr is False.
|
|
// If this is an AND, eval second expression if first expr is True
|
|
if (is_or) {
|
|
return emitIfExpr(loc, first_value, get_first_expr, get_second_expr);
|
|
} else {
|
|
return emitIfExpr(loc, first_value, get_second_expr, get_first_expr);
|
|
}
|
|
}
|
|
|
|
Value* emitIfExpr(const SourceRange& range, Value * cond_value,
|
|
std::function<Value*()> true_expr, std::function<Value*()> false_expr) {
|
|
Node* n = graph->insertNode(create(prim::If, range, 0));
|
|
|
|
n->addInput(cond_value);
|
|
auto* true_block = n->addBlock();
|
|
auto* false_block = n->addBlock();
|
|
|
|
auto emit_if_expr = [this](Block* b, std::function<Value*()> expr_value) {
|
|
pushFrame(b);
|
|
WithInsertPoint guard(b);
|
|
Value* out_val = expr_value();
|
|
b->registerOutput(out_val);
|
|
popFrame();
|
|
};
|
|
|
|
emit_if_expr(true_block, true_expr);
|
|
emit_if_expr(false_block, false_expr);
|
|
|
|
auto true_type = unshapedType(true_block->outputs().at(0)->type());
|
|
auto false_type = unshapedType(false_block->outputs().at(0)->type());
|
|
if (*true_type != *false_type) {
|
|
throw ErrorReport(range)
|
|
<< "if-expression's true branch has type " << true_type->str()
|
|
<< " but false branch has type " << false_type->str();
|
|
}
|
|
|
|
// Add op outputs
|
|
auto expr_value = n->addOutput()->setType(true_type); // Resulting value
|
|
|
|
return expr_value;
|
|
}
|
|
|
|
Value* emitCond(Expr cond) {
|
|
Value* v = emitExpr(cond);
|
|
if (!v->type()->isSubtypeOf(BoolType::get())) {
|
|
ErrorReport error(cond);
|
|
error << "expected a boolean expression for condition but found "
|
|
<< v->type()->str();
|
|
if (v->type()->isSubtypeOf(DynamicType::get())) {
|
|
error << ", to use a tensor in a boolean"
|
|
<< " expression, explicitly cast it with `bool()`";
|
|
}
|
|
throw error;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
void emitIf(const If& stmt) {
|
|
Value* cond_value = emitCond(stmt.cond());
|
|
|
|
Node* n = graph->insertNode(create(prim::If, stmt.range(), 0));
|
|
n->addInput(cond_value);
|
|
auto* true_block = n->addBlock();
|
|
auto* false_block = n->addBlock();
|
|
|
|
// Emit both blocks once to get the union of all mutated values
|
|
auto save_true = emitSingleIfBranch(true_block, stmt.trueBranch());
|
|
auto save_false = emitSingleIfBranch(false_block, stmt.falseBranch());
|
|
|
|
// In python, every variable assigned in an if statement escapes
|
|
// the scope of the if statement (all variables are scoped to the function).
|
|
// Script is a subset of python: we consider variables to be in scope
|
|
// as long as there is a definition of the variable along all paths
|
|
// through the if statemnent
|
|
// ----
|
|
// if ...:
|
|
// a =
|
|
// else:
|
|
// ...
|
|
// ... = a # error, a is not defined along all paths
|
|
// ----
|
|
// if ...:
|
|
// a =
|
|
// else:
|
|
// a =
|
|
// ... = a # OK, a is defined along all paths
|
|
// ----
|
|
// a = ...
|
|
// if ...:
|
|
// a =
|
|
// ... = a # OK, a is defined along all paths
|
|
|
|
|
|
//ordered set, because we want deterministic graph output
|
|
std::set<std::string> mutated_variables;
|
|
|
|
for(auto & v : save_true->definedVariables()) {
|
|
if(save_false->findInAnyFrame(v)) {
|
|
mutated_variables.insert(v);
|
|
}
|
|
}
|
|
for(auto & v : save_false->definedVariables()) {
|
|
if(save_true->findInAnyFrame(v)) {
|
|
mutated_variables.insert(v);
|
|
}
|
|
}
|
|
|
|
// Register outputs in each block
|
|
for (const auto& x : mutated_variables) {
|
|
auto tv = save_true->getVar(x, stmt.range());
|
|
auto fv = save_false->getVar(x, stmt.range());
|
|
auto unified = unifyTypes(tv->type(), fv->type());
|
|
|
|
// attempt to unify the types. we allow variables to be set to different types
|
|
// in each branch as long as that variable is not already in scope,
|
|
// or if that variable does not get used later. here, we save the error
|
|
// so that the error message will be more informative in the case that is
|
|
// used later. When a is accessed in (a + 1), the error will get printed
|
|
// if cond:
|
|
// a = 1
|
|
// else:
|
|
// a = tensor
|
|
// b = a + 1
|
|
//
|
|
if (!unified) {
|
|
ErrorReport error(stmt);
|
|
error << "Type mismatch: " << x << " is set to type " << tv->type()->str() << " in the true branch"
|
|
<< " and type " << fv->type()->str() << " in the false branch";
|
|
if (save_true->findInParentFrame(x) || save_false->findInParentFrame(x)) {
|
|
throw error;
|
|
} else {
|
|
// error gets saved in the lowest environment because all
|
|
// variables are scoped to the function. doesn't matter if this accessed
|
|
// through save_true or save_false
|
|
save_true->setVariableTypeError(x, error.what());
|
|
continue;
|
|
}
|
|
}
|
|
true_block->registerOutput(tv);
|
|
false_block->registerOutput(fv);
|
|
environment_stack->setVar(stmt.range(), x, n->addOutput()->setType(*unified));
|
|
}
|
|
}
|
|
|
|
// *********************** Loop Operators ************************************
|
|
// Emits a loop operators conforming to the semantics specified at
|
|
// https://github.com/onnx/onnx/blob/master/docs/Operators.md#experimental-loop
|
|
// TODO: implement scan_outputs
|
|
|
|
// the format of the Loop instruction is:
|
|
// loop_carried_outputs* = Loop(max_trip_count, start_condition,
|
|
// loop_carried_inputs*)
|
|
// block0(loop_counter, loop_carried_block*) {
|
|
// <body>
|
|
// -> (continue_condition,
|
|
// loop_carried_block_outputs*)
|
|
// }
|
|
// all loop_carried_... lists are the same length and represent the value of
|
|
// loop-carried variables whose definitions are updated as the loop executes
|
|
// in a way that ensure single static assignment.
|
|
|
|
void emitLoopCommon(
|
|
SourceRange range,
|
|
c10::optional<Expr> max_trip_count,
|
|
c10::optional<Expr> cond,
|
|
const List<Stmt>& body,
|
|
c10::optional<Ident> itr_ident) {
|
|
Node* n = graph->insertNode(create(prim::Loop, range, 0));
|
|
Value *max_trip_count_val, *cond_val;
|
|
{
|
|
WithInsertPoint guard(n);
|
|
if (max_trip_count) {
|
|
max_trip_count_val = ensureInt(
|
|
max_trip_count->range(), emitExpr(max_trip_count.value()));
|
|
} else {
|
|
max_trip_count_val =
|
|
materializeConstant((int64_t)INT_MAX, *graph, range, integral_constants);
|
|
}
|
|
if (cond) {
|
|
cond_val = emitCond(cond.value());
|
|
} else {
|
|
cond_val = graph->insertConstant(true, range);
|
|
}
|
|
}
|
|
n->addInput(max_trip_count_val);
|
|
n->addInput(cond_val);
|
|
auto* body_block = n->addBlock();
|
|
Value* trip_count = body_block->addInput()->setType(IntType::get()); // Iteration num
|
|
|
|
{
|
|
pushFrame(body_block);
|
|
if (itr_ident) {
|
|
environment_stack->setVar(itr_ident->range(), itr_ident->name(), trip_count);
|
|
}
|
|
WithInsertPoint guard(body_block);
|
|
emitStatements(body);
|
|
|
|
// Also emit the conditional
|
|
if (cond) {
|
|
Value* body_cond_value = emitCond(cond.value());
|
|
body_block->registerOutput(body_cond_value);
|
|
} else {
|
|
Value* cond_value_dummy = graph->insertConstant(true, range);
|
|
body_block->registerOutput(cond_value_dummy);
|
|
}
|
|
|
|
auto body_frame = popFrame();
|
|
auto outer_frame = environment_stack;
|
|
|
|
// Add block outputs to correspond to each captured input
|
|
// some of these will be removed.
|
|
for (const auto& x : body_frame->captured_inputs) {
|
|
auto fv = body_frame->getValueInThisFrame(range, x);
|
|
body_block->registerOutput(fv);
|
|
}
|
|
|
|
// Remove inputs for values that did not mutate within the
|
|
// block
|
|
body_frame->deleteExtraInputs(range);
|
|
|
|
// register node inputs/outputs for the true loop carried deps,
|
|
for(size_t i = 0; i < body_frame->captured_inputs.size(); ++i) {
|
|
auto x = body_frame->captured_inputs[i];
|
|
n->addInput(outer_frame->getVar(x, range));
|
|
// body_block->inputs(): loop_counter, lcd0, lcd1, ...
|
|
// captured_inputs: lcd0, lcd1, ...
|
|
auto typ = body_block->inputs()[i + 1]->type();
|
|
outer_frame->setVar(range, x, n->addOutput()->setType(typ));
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
void emitForRange(SourceRange range, const Ident& target, const List<Expr>& args, const List<Stmt>& body) {
|
|
// TODO: start, stop, step loop
|
|
if (args.size() != 1) {
|
|
throw ErrorReport(range)
|
|
<< "range() expects 1 argument but got " << args.size();
|
|
}
|
|
emitLoopCommon(range, {args[0]}, {}, body, target);
|
|
}
|
|
|
|
void emitFor(const For& stmt) {
|
|
// For now, we only support range loops. e.g. for i in range(3): ...
|
|
auto targets = stmt.targets();
|
|
auto itrs = stmt.itrs();
|
|
auto body = stmt.body();
|
|
|
|
if (stmt.itrs().size() != 1) {
|
|
throw ErrorReport(stmt)
|
|
<< "List of iterables is not supported currently.";
|
|
}
|
|
if (targets.size() != 1) {
|
|
throw ErrorReport(stmt) << "Iteration variable unpacking is not supported";
|
|
}
|
|
|
|
if (targets[0].kind() != TK_VAR) {
|
|
throw ErrorReport(targets[0]) << "Starred unpacking is currently not"
|
|
<< " supported for for loops.";
|
|
}
|
|
auto target = Var(targets[0]).name();
|
|
|
|
// match range(<expr>) style loops
|
|
// itrs must consist of a single Apply node
|
|
if (itrs[0].kind() == TK_APPLY) {
|
|
Apply range_iterator = Apply(itrs[0]);
|
|
if (range_iterator.callee().kind() == TK_VAR) {
|
|
Var var = Var(range_iterator.callee());
|
|
if (var.name().name() == "range") {
|
|
return emitForRange(stmt.range(), target, range_iterator.inputs(), body);
|
|
}
|
|
}
|
|
}
|
|
|
|
// it isn't a range(<expr>) loop, treat it as a sugared value that maybe can be
|
|
// unrolled
|
|
auto sv = emitSugaredExpr(itrs[0], 1);
|
|
auto instances = sv->asTuple(stmt.range(), method);
|
|
const std::string& target_name = target.name();
|
|
pushFrame(environment_stack->block());
|
|
for(auto inst : instances) {
|
|
environment_stack->setSugaredVar(itrs[0].range(), target_name, inst);
|
|
emitStatements(body);
|
|
}
|
|
|
|
for (const auto & n : environment_stack->definedVariables()) {
|
|
if (environment_stack->findInParentFrame(n)) {
|
|
environment_stack->next->setVar(stmt.range(), n, environment_stack->getVar(n, stmt.range()));
|
|
}
|
|
}
|
|
popFrame();
|
|
}
|
|
|
|
void emitWhile(const While& stmt) {
|
|
auto cond = stmt.cond();
|
|
emitLoopCommon(stmt.range(), {}, {cond}, stmt.body(), {});
|
|
}
|
|
|
|
// Validate that the `lhs` Expr's in an assignment statement are valid. That
|
|
// is:
|
|
//
|
|
// 1) All lhs Expr's are either Var or Starred nodes
|
|
// 2) There is at most one Starred node in the lhs Expr
|
|
// 3) A Starred node can only appear when there is another non-Starred lhs Expr
|
|
// Concretely this means that `*abc = func()` is illegal. Unpacking all
|
|
// outputs into a tuple is covered by `abc = func()`.
|
|
bool calcNumStarredUnpack(const List<Expr>& lhs, const SourceRange& r) {
|
|
size_t num_normal_assign = 0;
|
|
size_t num_starred = 0;
|
|
for (const auto& assignee : lhs) {
|
|
if (assignee.kind() == TK_VAR) {
|
|
num_normal_assign++;
|
|
} else if (assignee.kind() == TK_STARRED) {
|
|
num_starred++;
|
|
} else {
|
|
throw ErrorReport(assignee)
|
|
<< "lhs of assignment must be a variable or starred expression.";
|
|
}
|
|
}
|
|
|
|
if (num_starred > 1) {
|
|
throw ErrorReport(r)
|
|
<< "Only one starred expression is allowed on the lhs.";
|
|
}
|
|
|
|
if (num_starred > 0 && num_normal_assign == 0) {
|
|
throw ErrorReport(r) << "A Starred expression may only appear on the "
|
|
<< "lhs within the presence of another non-starred"
|
|
<< " expression.";
|
|
}
|
|
|
|
return num_starred;
|
|
}
|
|
|
|
void emitAssignment(const Assign& stmt) {
|
|
bool starred_unpack = calcNumStarredUnpack(stmt.lhs(), stmt.range());
|
|
if (stmt.reduction() != '=') {
|
|
if (stmt.lhs().size() != 1) {
|
|
throw ErrorReport(stmt)
|
|
<< "reductions are only allowed when there is a single variable "
|
|
<< "on the left-hand side.";
|
|
}
|
|
Ident lhs = Var(stmt.lhs()[0]).name();
|
|
Expr expr = BinOp::create(stmt.range(), stmt.reduction(),
|
|
Var::create(lhs.range(), lhs), stmt.rhs());
|
|
environment_stack->setVar(lhs.range(), lhs.name(), emitExpr(expr));
|
|
return;
|
|
}
|
|
|
|
size_t n_binders = stmt.lhs().size();
|
|
if(starred_unpack)
|
|
n_binders--;
|
|
|
|
auto output = emitSugaredExpr(stmt.rhs(), n_binders);
|
|
|
|
if(stmt.lhs().size() == 1) {
|
|
JIT_ASSERT(!starred_unpack);
|
|
auto v = Var(stmt.lhs()[0]);
|
|
environment_stack->setSugaredVar(v.range(), v.name().name(), output);
|
|
return;
|
|
}
|
|
|
|
auto outputs = output->asTuple(
|
|
stmt.rhs().range(),
|
|
method,
|
|
starred_unpack ? c10::nullopt : c10::optional<size_t>{n_binders});
|
|
if(outputs.size() < n_binders) {
|
|
throw ErrorReport(stmt)
|
|
<< "need " << (starred_unpack ? "at least " : "")
|
|
<< n_binders << " values to unpack but found only "
|
|
<< outputs.size();
|
|
}
|
|
if(outputs.size() > n_binders && !starred_unpack) {
|
|
throw ErrorReport(stmt)
|
|
<< "too many values to unpack: need " << n_binders << " but found "
|
|
<< outputs.size();
|
|
}
|
|
int i = 0;
|
|
for (auto assignee : stmt.lhs()) {
|
|
if (assignee.kind() == TK_VAR) {
|
|
environment_stack->setSugaredVar(assignee.range(), Var(assignee).name().name(), outputs.at(i));
|
|
i++;
|
|
} else if (assignee.kind() == TK_STARRED) {
|
|
auto var = Starred(assignee).expr();
|
|
if (var.kind() != TK_VAR) {
|
|
throw ErrorReport(var) << "Cannot pack a tuple into a non-variable.";
|
|
}
|
|
size_t n_matched = outputs.size() - n_binders;
|
|
ArrayRef<std::shared_ptr<SugaredValue>> outputs_ref = outputs;
|
|
auto values = fmap(outputs_ref.slice(i, n_matched), [&](const std::shared_ptr<SugaredValue>& v) {
|
|
return v->asValue(assignee.range(), method);
|
|
});
|
|
auto tup = graph->insertNode(graph->createTuple(values))->output();
|
|
environment_stack->setVar(
|
|
var.range(), Var(var).name().name(), tup);
|
|
i += n_matched;
|
|
}
|
|
}
|
|
}
|
|
|
|
NodeKind getNodeKind(int kind, int ninputs) {
|
|
switch (kind) {
|
|
case '+':
|
|
return aten::add;
|
|
case '-':
|
|
return aten::sub;
|
|
case TK_UNARY_MINUS:
|
|
return aten::neg;
|
|
case '*':
|
|
return aten::mul;
|
|
case TK_POW:
|
|
return aten::pow;
|
|
case '@':
|
|
return aten::matmul;
|
|
case TK_STARRED:
|
|
return prim::Starred;
|
|
case '/':
|
|
return aten::div;
|
|
case '%':
|
|
return aten::remainder;
|
|
case TK_NE:
|
|
return aten::ne;
|
|
case TK_EQ:
|
|
return aten::eq;
|
|
case '<':
|
|
return aten::lt;
|
|
case '>':
|
|
return aten::gt;
|
|
case TK_LE:
|
|
return aten::le;
|
|
case TK_GE:
|
|
return aten::ge;
|
|
case TK_AND:
|
|
return aten::__and__;
|
|
case TK_OR:
|
|
return aten::__or__;
|
|
case TK_NOT:
|
|
return aten::__not__;
|
|
default:
|
|
throw std::runtime_error("unknown kind " + std::to_string(kind));
|
|
}
|
|
}
|
|
|
|
|
|
|
|
std::vector<NamedValue> getNamedValues(
|
|
TreeList trees,
|
|
bool maybe_unpack) {
|
|
std::vector<NamedValue> values;
|
|
for (const auto& tree : trees) {
|
|
if(maybe_unpack && tree->kind() == TK_STARRED) {
|
|
auto starred = Starred(tree);
|
|
auto entries = emitSugaredExpr(starred.expr(), 1)->asTuple(starred.range(), method);
|
|
for(auto entry : entries) {
|
|
values.push_back(NamedValue(
|
|
tree->range(), entry->asValue(starred.range(), method)));
|
|
}
|
|
} else {
|
|
values.push_back(NamedValue(
|
|
tree->range(), emitExpr(Expr(tree))));
|
|
}
|
|
}
|
|
return values;
|
|
}
|
|
std::vector<NamedValue> getNamedValues(
|
|
List<Expr> trees,
|
|
bool maybe_unpack) {
|
|
return getNamedValues(trees.tree()->trees(), maybe_unpack);
|
|
}
|
|
|
|
std::vector<Value*> getValues(
|
|
TreeList trees,
|
|
bool maybe_unpack) {
|
|
return toValues(*graph, getNamedValues(trees, maybe_unpack));
|
|
}
|
|
std::vector<Value*> getValues(
|
|
List<Expr> trees,
|
|
bool maybe_unpack) {
|
|
return getValues(trees.tree()->trees(), maybe_unpack);
|
|
}
|
|
|
|
std::shared_ptr<SugaredValue> emitApplyExpr(Apply &apply, size_t n_binders) {
|
|
auto sv = emitSugaredExpr(apply.callee(), 1);
|
|
auto inputs = getNamedValues(apply.inputs(), true);
|
|
auto attributes = fmap(apply.attributes(), [&](const Attribute& attr) {
|
|
return NamedValue(attr.range(), attr.name().name(), emitExpr(attr.value()));
|
|
});
|
|
return sv->call(apply.callee().range(), method, inputs, attributes, n_binders);
|
|
}
|
|
|
|
Value* emitExpr(Expr tree) {
|
|
return emitSugaredExpr(tree, 1)->asValue(tree.range(), method);
|
|
}
|
|
|
|
NodeKind reverseComparision(NodeKind kind) {
|
|
if (kind == aten::lt) {
|
|
return aten::gt;
|
|
} else if (kind == aten::le) {
|
|
return aten::ge;
|
|
} else if (kind == aten::gt) {
|
|
return aten::lt;
|
|
} else if (kind == aten::ge) {
|
|
return aten::le;
|
|
}
|
|
throw std::runtime_error("reverseComparision: unsupported NodeKind. File a bug");
|
|
}
|
|
|
|
// any expression that can produce a SugaredValue is handled here
|
|
// expressions that only return a single Value* are handled in emitSimpleExpr
|
|
std::shared_ptr<SugaredValue> emitSugaredExpr(Expr tree, size_t n_binders) {
|
|
switch(tree.kind()) {
|
|
case TK_VAR:
|
|
return environment_stack->getSugaredVar(Var(tree).name());
|
|
case '.': {
|
|
auto select = Select(tree);
|
|
auto sv = emitSugaredExpr(select.value(), 1);
|
|
return sv->attr(select.range(), method, select.selector().name());
|
|
}
|
|
case TK_APPLY: {
|
|
auto apply = Apply(tree);
|
|
return emitApplyExpr(apply, n_binders);
|
|
} break;
|
|
default:
|
|
return std::make_shared<SimpleValue>(emitSimpleExpr(tree));
|
|
}
|
|
}
|
|
|
|
Value * emitNegate(const TreeRef& tree) {
|
|
const auto& inputs = tree->trees();
|
|
auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false);
|
|
|
|
auto neg_val = emitBuiltinCall(
|
|
tree->range(),
|
|
*method.graph(),
|
|
aten::neg,
|
|
c10::nullopt,
|
|
named_values,
|
|
{},
|
|
/*required=*/true);
|
|
|
|
// constant fold the input if possible
|
|
auto maybe_constant_input = toIValue(neg_val->node()->input());
|
|
if (!maybe_constant_input) {
|
|
return neg_val;
|
|
}
|
|
auto op = getOperation(neg_val->node());
|
|
Stack stack;
|
|
stack.push_back(*maybe_constant_input);
|
|
op(stack);
|
|
JIT_ASSERT(stack.size() == 1);
|
|
return graph->insertConstant(stack[0], tree->range());
|
|
}
|
|
|
|
Value* emitSimpleExpr(
|
|
const TreeRef& tree) {
|
|
switch (tree->kind()) {
|
|
case '@':
|
|
case TK_POW:
|
|
case TK_NOT:
|
|
case TK_NE:
|
|
case TK_EQ:
|
|
case '<':
|
|
case '>':
|
|
case TK_LE:
|
|
case TK_GE:
|
|
case '*':
|
|
case '/':
|
|
case '+':
|
|
case '-':
|
|
case '%': {
|
|
const auto& inputs = tree->trees();
|
|
auto kind = getNodeKind(tree->kind(), inputs.size());
|
|
auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false);
|
|
return emitBuiltinCall(
|
|
tree->range(),
|
|
*method.graph(),
|
|
kind,
|
|
c10::nullopt,
|
|
named_values,
|
|
{},
|
|
/*required=*/true);
|
|
}
|
|
case TK_UNARY_MINUS: {
|
|
return emitNegate(tree);
|
|
}
|
|
case TK_AND:
|
|
case TK_OR: {
|
|
const auto& inputs = tree->trees();
|
|
return emitShortCircuitIf(
|
|
tree->range(),
|
|
inputs[0],
|
|
inputs[1],
|
|
tree->kind() == TK_OR);
|
|
}
|
|
case TK_STARRED: {
|
|
throw ErrorReport(tree) << "Unexpected starred expansion. File a bug report.";
|
|
}
|
|
case TK_CONST: {
|
|
return emitConst(Const(tree));
|
|
} break;
|
|
case TK_TRUE: {
|
|
return graph->insertConstant(true, tree->range());
|
|
} break;
|
|
case TK_FALSE: {
|
|
return graph->insertConstant(false, tree->range());
|
|
} break;
|
|
case TK_NONE: {
|
|
return graph->insertConstant(IValue(), tree->range());
|
|
} break;
|
|
case TK_SUBSCRIPT: {
|
|
const auto subscript = Subscript(tree);
|
|
auto slice_exprs = subscript.subscript_exprs();
|
|
if (slice_exprs.size() != 1) {
|
|
return emitMultidimSlicing(subscript);
|
|
}
|
|
if (slice_exprs[0].kind() == TK_SLICE_EXPR) {
|
|
return emitBasicSlice(subscript);
|
|
} else {
|
|
return emitBasicGather(subscript);
|
|
}
|
|
} break;
|
|
case TK_IF_EXPR: {
|
|
return emitTernaryIf(TernaryIf(tree));
|
|
} break;
|
|
case TK_STRINGLITERAL: {
|
|
return emitStringLiteral(StringLiteral(tree));
|
|
} break;
|
|
case TK_LIST_LITERAL: {
|
|
auto ll = ListLiteral(tree);
|
|
auto values = getValues(ll.inputs(), /*maybe_unpack=*/true);
|
|
|
|
// If this is an empty list literal `[]`, construct an empty Tensor[]
|
|
const auto elem_type =
|
|
values.empty() ? DynamicType::get() : values.at(0)->type();
|
|
for (auto v : values) {
|
|
if (v->type() != elem_type) {
|
|
throw ErrorReport(tree)
|
|
<< "Lists must contain only a single type, expected: "
|
|
<< *elem_type << " but found " << *v->type() << " instead";
|
|
}
|
|
}
|
|
Value* result = graph->insertNode(graph->createList(elem_type, values))
|
|
->output();
|
|
return result;
|
|
} break;
|
|
case TK_TUPLE_LITERAL: {
|
|
auto ll = TupleLiteral(tree);
|
|
auto values = getValues(ll.inputs(), /*maybe_unpack=*/true);
|
|
return graph->insertNode(graph->createTuple(values))->output();
|
|
} break;
|
|
default:
|
|
throw ErrorReport(tree) << "NYI: " << tree;
|
|
break;
|
|
}
|
|
}
|
|
|
|
Value* emitConst(const Const& c) {
|
|
if (c.isFloatingPoint())
|
|
return materializeConstant(c.asFloatingPoint(), *graph, c.range(), fp_constants);
|
|
else
|
|
return materializeConstant(c.asIntegral(), *graph, c.range(), integral_constants);
|
|
}
|
|
|
|
Value* emitStringLiteral(const StringLiteral& c) {
|
|
return insertConstant(*graph, c.text(), c.range());
|
|
}
|
|
|
|
// Desugars select indexing: tensor[i] -> tensor.select(dim, i)
|
|
Value* emitSelect(
|
|
const SourceRange& loc,
|
|
Value* input,
|
|
int64_t dim,
|
|
Value* index) {
|
|
return emitBuiltinCall(
|
|
loc, *graph, aten::select, c10::nullopt,
|
|
{input, graph->insertConstant(dim, loc), index}, {}, true);
|
|
}
|
|
|
|
// Desugars slice indexing: tensor[begin:end] -> tensor.slice(dim, begin, end, 1)
|
|
Value* emitSlice(
|
|
const SourceRange& loc,
|
|
Value* input,
|
|
c10::optional<int64_t> dim, // Only used for tensor slicing
|
|
const SliceExpr& slice) {
|
|
std::vector<NamedValue> args;
|
|
args.reserve(4);
|
|
args.emplace_back(loc, "self", input);
|
|
|
|
// XXX: If list slicing becomes more complicated or stops using
|
|
// aten::slice, we should separate it from this function.
|
|
if (dim) {
|
|
JIT_ASSERT(input->type()->isSubtypeOf(DynamicType::get()));
|
|
args.emplace_back(loc, "dim", graph->insertConstant(dim.value(), loc));
|
|
} else {
|
|
JIT_ASSERT(!input->type()->isSubtypeOf(DynamicType::get()));
|
|
}
|
|
|
|
args.emplace_back(loc, "begin", emitExpr(Expr(slice.startOr(0))));
|
|
const auto has_end = slice.end().present();
|
|
if (has_end) {
|
|
args.emplace_back(loc, "end", emitExpr(Expr(slice.end().get())));
|
|
}
|
|
if (input->type()->cast<TupleType>()) {
|
|
if (has_end) {
|
|
return emitTupleSlice(loc, args[0], args[1], /*end*/args[2]);
|
|
} else {
|
|
return emitTupleSlice(loc, args[0], args[1], c10::nullopt);
|
|
}
|
|
}
|
|
NamedValue step = NamedValue(loc, "step", graph->insertConstant(1, loc));
|
|
return emitBuiltinCall(loc, *graph, aten::slice, c10::nullopt, args, {step}, true);
|
|
}
|
|
|
|
Value* emitIndex(
|
|
const SourceRange& loc,
|
|
Value* input,
|
|
at::ArrayRef<Value*> indices) {
|
|
auto* index = graph->insertNode(
|
|
graph->createList(DynamicType::get(), indices))->output();
|
|
return emitBuiltinCall(loc, *graph, aten::index, c10::nullopt, {input, index}, {}, true);
|
|
}
|
|
|
|
// Emits multidimensional slicing with int and slice indices.
|
|
// Returns:
|
|
// - Value*: the input after it has been indexed by int and slice indices.
|
|
// - vector<Value*>: A list of tensor Value* indices that have not been applied yet.
|
|
// Should be NULL at indices where sliceable (post-slicing) isn't indexed by a tensor.
|
|
std::pair<Value*, std::vector<Value*>> emitIntAndSliceIndexing(
|
|
const SourceRange& loc,
|
|
Value* sliceable,
|
|
const Subscript& subscript) {
|
|
std::vector<Value*> tensor_indices;
|
|
size_t dim = 0;
|
|
|
|
auto handle_tensor = [&](Value* tensor) {
|
|
// NB: tensor_indices can have NULL holes because of how at::index works.
|
|
tensor_indices.resize(dim + 1);
|
|
tensor_indices[dim] = tensor;
|
|
dim++;
|
|
};
|
|
|
|
for (const auto & subscript_expr : subscript.subscript_exprs()) {
|
|
if (subscript_expr.kind() == TK_SLICE_EXPR) {
|
|
sliceable = emitSlice(loc, sliceable, dim, SliceExpr(subscript_expr));
|
|
++dim;
|
|
continue;
|
|
}
|
|
auto index = emitExpr(subscript_expr);
|
|
if (index->type() == IntType::get()) {
|
|
sliceable = emitSelect(loc, sliceable, dim, index);
|
|
continue;
|
|
} else if (index->type()->isSubtypeOf(DynamicType::get())) {
|
|
handle_tensor(index);
|
|
continue;
|
|
}
|
|
throw ErrorReport(loc)
|
|
<< "Unsupported operation: indexing tensor with unsupported index type "
|
|
<< index->type()->str() << ". Only ints, slices, and tensors are supported.";
|
|
}
|
|
return std::make_pair(sliceable, tensor_indices);
|
|
}
|
|
|
|
// The strategy is to slice and select the tensor for int and slices first
|
|
// in one pass and then apply at::index on the result of the slicing/selecting.
|
|
// Call the tensor after we've applied slice / select the `sliced`.
|
|
// tensor_indices should have the same size as sliced.dim():
|
|
// - tensor_indices[i] = NULL if we should not index `sliced` at dim i
|
|
// - tensor_indices[i] = t if we should index `sliced` at dim i with tensor t.
|
|
Value* emitMultidimSlicing(
|
|
const SourceRange& loc,
|
|
Value* sliceable,
|
|
const Subscript& subscript) {
|
|
std::vector<Value*> tensor_indices;
|
|
std::tie(sliceable, tensor_indices) = emitIntAndSliceIndexing(loc, sliceable, subscript);
|
|
|
|
if (tensor_indices.empty()) {
|
|
// XXX: Might need to at::alias this when we support mutability
|
|
return sliceable;
|
|
}
|
|
|
|
// at::index takes in a TensorList where some tensors can be undefined.
|
|
// Convert NULL tensor_indices to undefined tensors to pass to at::index.
|
|
for (auto& index : tensor_indices) {
|
|
if (index == nullptr) {
|
|
index = graph->insertNode(graph->createUndefined())->output();
|
|
}
|
|
}
|
|
return emitIndex(loc, sliceable, tensor_indices);
|
|
}
|
|
|
|
// Desugars multidim slicing into slice/select/index calls.
|
|
//
|
|
// XXX: Errors in user code are not elegantly reported.
|
|
// Let's say someone were to do the following:
|
|
// @torch.jit.script
|
|
// def fn(x):
|
|
// return x[0, 1]
|
|
// fn(torch.randn(5))
|
|
// Because we desugar this into two aten::select ops, the error message
|
|
// complains about aten::select failing rather than there "not being
|
|
// enough dimensions to index".
|
|
Value* emitMultidimSlicing(const Subscript& subscript) {
|
|
const auto& loc = subscript.range();
|
|
auto* sliceable = emitExpr(subscript.value());
|
|
if (!sliceable->type()->isSubtypeOf(DynamicType::get())) {
|
|
throw ErrorReport(loc)
|
|
<< "Unsupported operation: attempted to use multidimensional "
|
|
<< "indexing on a non-tensor type.";
|
|
}
|
|
return emitMultidimSlicing(loc, sliceable, subscript);
|
|
}
|
|
|
|
// Desugars slice syntactic sugar tensor[begin:end] -> tensor.slice(begin,
|
|
// end).
|
|
Value* emitBasicSlice(const Subscript& subscript) {
|
|
const auto& loc = subscript.range();
|
|
JIT_ASSERT(subscript.subscript_exprs().size() == 1);
|
|
JIT_ASSERT(subscript.subscript_exprs()[0].kind() == TK_SLICE_EXPR);
|
|
auto slice_exp = SliceExpr(subscript.subscript_exprs()[0]);
|
|
auto * sliceable = emitExpr(subscript.value());
|
|
c10::optional<int64_t> maybe_dim;
|
|
if (sliceable->type()->isSubtypeOf(DynamicType::get())) {
|
|
// If the sliceable object is a tensor, specify a default dimension
|
|
maybe_dim = 0;
|
|
}
|
|
return emitSlice(loc, sliceable, maybe_dim, slice_exp);
|
|
}
|
|
|
|
int64_t getTupleIndexVal(const SourceRange& loc,
|
|
const TupleTypePtr& tuple_type,
|
|
Value * idx_val,
|
|
bool allow_out_of_bounds) {
|
|
int64_t index;
|
|
at::optional<IValue> ivalue = toIValue(idx_val);
|
|
if (ivalue && ivalue->isInt()) {
|
|
index = ivalue->to<int64_t>();
|
|
} else {
|
|
throw ErrorReport(loc)
|
|
<< "tuple indices must be integer constants";
|
|
}
|
|
// set index to be positive to simplify logic in runtime
|
|
int64_t adj_index = index;
|
|
int64_t tuple_len = tuple_type->elements().size();
|
|
if (index < 0) {
|
|
adj_index = tuple_len + index;
|
|
}
|
|
if (!allow_out_of_bounds && (adj_index >= tuple_len || adj_index < 0)) {
|
|
throw ErrorReport(loc)
|
|
<< "Tuple index out of range. Tuple is length " << tuple_len
|
|
<< " and index is " << index;
|
|
}
|
|
return adj_index;
|
|
}
|
|
Value* emitTupleIndex(const SourceRange& loc,
|
|
Value * tuple_val,
|
|
Value * idx_val) {
|
|
auto tuple_typ = tuple_val->type()->cast<TupleType>();
|
|
auto adj_index = getTupleIndexVal(loc, tuple_typ, idx_val, /*allow_out_of_bounds*/false);
|
|
return graph->insertNode(
|
|
graph->createTupleIndex(tuple_val, adj_index))->output();
|
|
}
|
|
|
|
Value* emitTupleSlice(const SourceRange& loc,
|
|
const NamedValue& tuple_val,
|
|
const NamedValue& beg_val,
|
|
const at::optional<NamedValue>& end_val) {
|
|
auto tuple_type = tuple_val.value(*graph)->type()->expect<TupleType>();
|
|
int64_t beg = getTupleIndexVal(loc, tuple_type, beg_val.value(*graph), /*allow_out_of_bounds*/true);
|
|
int64_t end;
|
|
int64_t tuple_len = tuple_type->elements().size();
|
|
if (end_val) {
|
|
end = getTupleIndexVal(loc, tuple_type, end_val->value(*graph), true);
|
|
} else {
|
|
end = tuple_len;
|
|
}
|
|
// slicing does not throw out of bounds errors
|
|
end = std::min(std::max((int64_t)0, end), tuple_len);
|
|
beg = std::min(std::max((int64_t)0, beg), tuple_len);
|
|
|
|
return graph->insertNode(
|
|
graph->createTupleSlice(tuple_val.value(*graph), beg, end))->output();
|
|
}
|
|
|
|
|
|
// Desugars gather syntactic sugar foo[i]
|
|
Value* emitBasicGather(const Subscript& subscript) {
|
|
const auto& loc = subscript.range();
|
|
JIT_ASSERT(subscript.subscript_exprs().size() == 1);
|
|
auto* gatherable = emitExpr(subscript.value());
|
|
|
|
if (gatherable->type()->kind() == TypeKind::ListType) {
|
|
// if it's a list, emit a regular index selection op
|
|
auto* idx = emitExpr(subscript.subscript_exprs()[0]);
|
|
return emitBuiltinCall(
|
|
loc, *graph, aten::select, c10::nullopt, {gatherable, idx}, {}, true);
|
|
} else if (gatherable->type()->isSubtypeOf(DynamicType::get())) {
|
|
return emitMultidimSlicing(loc, gatherable, subscript);
|
|
} else if (auto tuple_type = gatherable->type()->cast<TupleType>()) {
|
|
auto* idx = emitExpr(subscript.subscript_exprs()[0]);
|
|
return emitTupleIndex(loc, gatherable, idx);
|
|
} else {
|
|
throw ErrorReport(loc)
|
|
<< "Indexing only supported on lists, tensors, and tuples.";
|
|
}
|
|
}
|
|
};
|
|
|
|
static const std::unordered_map<std::string, std::string> &builtin_cast_methods() {
|
|
static std::unordered_map<std::string, std::string> builtin_cast_methods = {
|
|
{"byte", "_cast_Byte"},
|
|
{"char", "_cast_Char"},
|
|
{"double", "_cast_Double"},
|
|
{"float", "_cast_Float"},
|
|
{"int", "_cast_Int"},
|
|
{"long", "_cast_Long"},
|
|
{"short", "_cast_Short"},
|
|
{"half", "_cast_Half"}
|
|
};
|
|
return builtin_cast_methods;
|
|
}
|
|
|
|
// support syntax sugar for x.foo(y, z) by allowing x.foo to return a
|
|
// callable value that will resolve to foo(x, y, z) when called.
|
|
std::shared_ptr<SugaredValue> SimpleValue::attr(SourceRange loc, Method & m, const std::string& field) {
|
|
// Allow method-style casts on Tensor types. e.g. x.int()
|
|
if (value->type()->isSubtypeOf(DynamicType::get())) {
|
|
if (builtin_cast_methods().count(field)) {
|
|
return std::make_shared<BuiltinFunction>(
|
|
Symbol::aten(builtin_cast_methods().at(field)),
|
|
NamedValue(loc, "self", value));
|
|
}
|
|
if (field == "dtype") {
|
|
auto* node = m.graph()->create(prim::TensorDType, {value});
|
|
node->output()->setType(IntType::get());
|
|
return std::make_shared<SimpleValue>(m.graph()->insertNode(node)->output());
|
|
} else if (field == "device") {
|
|
auto* node = m.graph()->create(prim::TensorDevice, {value});
|
|
node->output()->setType(ListType::create(IntType::get()));
|
|
return std::make_shared<SimpleValue>(m.graph()->insertNode(node)->output());
|
|
} else if (field == "shape") {
|
|
auto* node = m.graph()->create(prim::TensorShape, {value});
|
|
node->output()->setType(ListType::create(IntType::get()));
|
|
return std::make_shared<SimpleValue>(m.graph()->insertNode(node)->output());
|
|
}
|
|
}
|
|
if (getValue()->type()->isSubtypeOf(NumberType::get())) {
|
|
throw ErrorReport(loc) << "Cannot call methods on numbers";
|
|
}
|
|
return std::make_shared<BuiltinFunction>(
|
|
Symbol::aten(field), NamedValue(loc, "self", value));
|
|
}
|
|
|
|
std::vector<Value*> inlineCallTo(Graph& g, Graph& callee, ArrayRef<Value*> inputs) {
|
|
std::unordered_map<Value*, Value*> value_map;
|
|
auto value_map_func = [&](Value* v) { return value_map.at(v); };
|
|
JIT_ASSERT(callee.inputs().size() == inputs.size());
|
|
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
value_map[callee.inputs()[i]] = inputs[i];
|
|
}
|
|
for (auto* node : callee.nodes()) {
|
|
auto* new_node =
|
|
g.insertNode(g.createClone(node, value_map_func));
|
|
for (size_t i = 0; i < node->outputs().size(); ++i) {
|
|
value_map[node->outputs()[i]] = new_node->outputs()[i];
|
|
}
|
|
}
|
|
|
|
std::vector<Value*> outputs;
|
|
for (auto* output : callee.outputs()) {
|
|
outputs.push_back(value_map_func(output));
|
|
}
|
|
return outputs;
|
|
}
|
|
|
|
void defineMethodsInModule(Module & m, const std::vector<Def>& definitions, const std::vector<Resolver>& resolvers, SugaredValuePtr self) {
|
|
JIT_ASSERT(definitions.size() == resolvers.size());
|
|
auto resolver_it = resolvers.begin();
|
|
std::vector<Method*> methods;
|
|
std::unordered_map<std::string, Method*> function_table;
|
|
for(Def def : definitions) {
|
|
const std::string& name = def.name().name();
|
|
auto resolver = *resolver_it++;
|
|
JIT_ASSERT(resolver);
|
|
if(!self) {
|
|
// if self is defined, then these are methods and do not go into the global namespace
|
|
// otherwise, they get defined together so we add them to the function table
|
|
// so the methods can see each other
|
|
resolver = [resolver, &function_table](
|
|
const std::string& name,
|
|
Method& m,
|
|
const SourceRange& loc) -> std::shared_ptr<SugaredValue> {
|
|
auto it = function_table.find(name);
|
|
if (it != function_table.end()) {
|
|
return std::make_shared<MethodValue>(nullptr, *it->second);
|
|
}
|
|
return resolver(name, m, loc);
|
|
};
|
|
}
|
|
auto creator = [def, resolver, self](Method& method) {
|
|
JIT_ASSERT(resolver);
|
|
to_ir(def, resolver, self, method);
|
|
};
|
|
Method& method = m.create_method(name, creator);
|
|
function_table[name] = &method;
|
|
methods.push_back(&method);
|
|
}
|
|
for(Method* method : methods) {
|
|
method->ensure_defined();
|
|
}
|
|
}
|
|
|
|
const std::unordered_map<std::string, TypePtr> &ident_to_type_lut() {
|
|
static std::unordered_map<std::string, TypePtr> map = {
|
|
{"Tensor", DynamicType::get()},
|
|
{"int", IntType::get()},
|
|
{"float", FloatType::get()},
|
|
{"bool", BoolType::get()},
|
|
{"str", StringType::get()},
|
|
};
|
|
return map;
|
|
}
|
|
|
|
TypePtr parseTypeFromExpr(Expr expr);
|
|
|
|
const std::unordered_map<std::string, std::function<TypePtr(Subscript)>> &subscript_to_type_fns() {
|
|
static std::unordered_map<std::string, std::function<TypePtr(Subscript)>> map = {
|
|
{"Tuple", [](Subscript subscript) -> TypePtr {
|
|
std::vector<TypePtr> subscript_expr_types;
|
|
for (auto expr : subscript.subscript_exprs()) {
|
|
subscript_expr_types.push_back(parseTypeFromExpr(expr));
|
|
}
|
|
return TupleType::create(subscript_expr_types);
|
|
}},
|
|
{"List", [](Subscript subscript) -> TypePtr {
|
|
if (subscript.subscript_exprs().size() != 1) {
|
|
throw ErrorReport(subscript) << " expected exactly one element type but found " << subscript.subscript_exprs().size();
|
|
}
|
|
auto elem_type = parseTypeFromExpr(*subscript.subscript_exprs().begin());
|
|
return ListType::create(elem_type);
|
|
}},
|
|
};
|
|
return map;
|
|
}
|
|
|
|
TypePtr parseTypeFromExpr(Expr expr) {
|
|
if (expr.kind() == TK_VAR) {
|
|
auto ident = Var(expr).name();
|
|
auto itr = ident_to_type_lut().find(ident.name());
|
|
if (itr != ident_to_type_lut().end()) {
|
|
return itr->second;
|
|
}
|
|
throw ErrorReport(expr.range()) << "Unknown type name " << ident.name();
|
|
} else if (expr.kind() == TK_SUBSCRIPT) {
|
|
auto subscript = Subscript(expr);
|
|
if (subscript.value().kind() != TK_VAR) {
|
|
throw ErrorReport(subscript.value().range()) << "Subscripted type must be a type identifier";
|
|
}
|
|
auto value_name = Var(subscript.value()).name().name();
|
|
if (!subscript_to_type_fns().count(value_name)) {
|
|
throw ErrorReport(subscript.range()) << "Unknown type constructor " << value_name;
|
|
}
|
|
return subscript_to_type_fns().at(value_name)(subscript);
|
|
} else if (expr.kind() == '.') {
|
|
auto select = Select(expr);
|
|
if (select.value().kind() == TK_VAR && Var(select.value()).name().name() == "torch"
|
|
&& select.selector().name() == "Tensor") {
|
|
return ident_to_type_lut().at("Tensor");
|
|
}
|
|
}
|
|
throw ErrorReport(expr.range()) << "Expression of type " << kindToString(expr.kind())
|
|
<< " cannot be used in a type expression";
|
|
}
|
|
|
|
std::vector<Argument> parseArgsFromDecl(Decl decl, bool is_method) {
|
|
std::vector<Argument> retval;
|
|
size_t i = is_method ? 1 : 0;
|
|
for (; i < decl.params().size(); ++i) {
|
|
auto decl_arg = decl.params()[i];
|
|
auto arg = Argument(
|
|
decl_arg.ident().name(),
|
|
parseTypeFromExpr(decl_arg.type()),
|
|
/*N =*/c10::nullopt,
|
|
/*default_value =*/c10::nullopt,
|
|
/*kwarg_only =*/false);
|
|
retval.push_back(arg);
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
std::vector<Argument> parseReturnsFromDecl(Decl decl) {
|
|
JIT_ASSERT(decl.return_type().present());
|
|
auto parsed_type = parseTypeFromExpr(decl.return_type().get());
|
|
if (auto tuple_type = parsed_type->cast<TupleType>()) {
|
|
// Flatten a single return type of type Tuple into its constituent types
|
|
std::vector<Argument> retval;
|
|
for (auto type_ptr : tuple_type->elements()) {
|
|
retval.emplace_back(
|
|
"",
|
|
type_ptr,
|
|
/*N =*/c10::nullopt,
|
|
/*default_value =*/c10::nullopt,
|
|
/*kwarg_only =*/false);
|
|
}
|
|
return retval;
|
|
} else {
|
|
return {Argument(
|
|
"",
|
|
parsed_type,
|
|
/*N =*/c10::nullopt,
|
|
/*default_value =*/c10::nullopt,
|
|
/*kwarg_only =*/false)};
|
|
}
|
|
}
|
|
|
|
FunctionSchema extractSchemaFromDef(const Def &def, bool is_method) {
|
|
auto name = def.name().name();
|
|
std::vector<Argument> args = parseArgsFromDecl(def.decl(), is_method);
|
|
std::vector<Argument> returns;
|
|
bool is_varret;
|
|
if (def.decl().return_type().present()) {
|
|
returns = parseReturnsFromDecl(def.decl());
|
|
is_varret = false;
|
|
} else {
|
|
is_varret = true;
|
|
}
|
|
return FunctionSchema(name, args, returns, false, is_varret);
|
|
}
|
|
|
|
void defineMethodsInModule(Module & m, const std::string& source, Resolver resolver, SugaredValuePtr self) {
|
|
Parser p(source);
|
|
std::vector<Def> definitions;
|
|
std::vector<Resolver> resolvers;
|
|
while (p.lexer().cur().kind != TK_EOF) {
|
|
auto def = Def(p.parseFunction(/*is_method=*/bool(self)));
|
|
definitions.push_back(def);
|
|
resolvers.push_back(resolver);
|
|
}
|
|
defineMethodsInModule(m, definitions, resolvers, self);
|
|
}
|
|
|
|
std::shared_ptr<Graph> compileFunction(Def def, Resolver resolver) {
|
|
Module m;
|
|
defineMethodsInModule(m, {def}, {resolver}, nullptr);
|
|
return m.get_method(def.name().name()).graph();
|
|
}
|
|
|
|
std::vector<std::shared_ptr<SugaredValue>> SimpleValue::asTuple(
|
|
SourceRange loc,
|
|
Method& m,
|
|
c10::optional<size_t> size_hint) {
|
|
static const auto make_simple_value = [](Value* v) -> std::shared_ptr<SugaredValue> {
|
|
return std::make_shared<SimpleValue>(v);
|
|
};
|
|
if(value->type()->kind() == TypeKind::TupleType) {
|
|
auto outputs = createTupleUnpack(value);
|
|
return fmap(outputs, make_simple_value);
|
|
} else if (value->type()->kind() == TypeKind::ListType) {
|
|
if (!size_hint) {
|
|
throw ErrorReport(loc) << "cannot statically infer the expected size of a list in this context";
|
|
}
|
|
auto graph = value->owningGraph();
|
|
Node *unpack = graph->insertNode(graph->createListUnpack(value, *size_hint));
|
|
return fmap(unpack->outputs(), make_simple_value);
|
|
}
|
|
throw ErrorReport(loc) << value->type()->str() << " cannot be used as a tuple";
|
|
}
|
|
|
|
void ensureSizeMatches(SourceRange loc, size_t expected, size_t actual, const std::string& what) {
|
|
if(expected != actual) {
|
|
throw ErrorReport(loc) << "expected " << expected << " " << what << " but found " << actual;
|
|
}
|
|
}
|
|
|
|
} // namespace script
|
|
} // namespace jit
|
|
} // namespace torch
|