pytorch/caffe2/python/operator_test/conv_test.py
Will Feng cdead5ace1 Enable CircleCI for Linux jobs (#12389)
Summary:
Changes in this PR:
1. Intermediate Docker image is shared from build stage to test stage through ECR, in order to fix the Caffe2 flaky CUDA tests.
2. There are ~7 Caffe2 operator tests that are only flaky in `caffe2_py2_gcc4_8_ubuntu14_04_test` on CPU. Disabling those tests on that config only, which is okay to do because we are still running those tests in other test jobs.

After this PR is merged, CircleCI will be running on master automatically, and will be running on PRs if the author rebased their PR onto the newest master (which we will ask all the authors to do when we switch off Jenkins for Linux).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12389

Differential Revision: D10224267

Pulled By: yf225

fbshipit-source-id: dd1a90a425c3d13b870d3d328cb301eee2e6e2cd
2018-10-08 17:09:37 -07:00

730 lines
28 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import functools
import numpy as np
from hypothesis import assume, given
import hypothesis.strategies as st
from caffe2.proto import caffe2_pb2
from caffe2.python import brew, core, workspace
import caffe2.python.hypothesis_test_util as hu
from caffe2.python.model_helper import ModelHelper
import caffe2.python.serialized_test.serialized_test_util as serial
import caffe2.python._import_c_extension as C
import unittest
import os
def _cudnn_supports(
dilation=False,
nhwc=False,
backward=False,
):
"""Return True if cuDNN supports this configuration."""
v = workspace.GetCuDNNVersion()
if backward:
if nhwc:
# nhwc isn't supported in backward ops.
return False
else:
# Forward mode.
if dilation and v < 6000:
# Dilation not supported until v6
return False
if dilation and nhwc:
# Dilation and NHWC not supported together
return False
return True
def _cudnn_convolution_algo_count(direction):
try:
if direction == "fwd":
return st.integers(0, C.cudnn_convolution_fwd_algo_count - 1)
elif direction == "dgrad":
return st.integers(0, C.cudnn_convolution_bwd_data_algo_count - 1)
elif direction == "wgrad":
return st.integers(0, C.cudnn_convolution_bwd_filter_algo_count - 1)
else:
assert False
except Exception:
return st.sampled_from([-1])
class TestConvolution(serial.SerializedTestCase):
# CUDNN does NOT support different padding values and we skip it
@given(op_type=st.sampled_from(["Conv", "Conv2D"]),
stride_h=st.integers(1, 3),
stride_w=st.integers(1, 3),
pad_t=st.integers(0, 3),
pad_l=st.integers(0, 3),
pad_b=st.integers(0, 3),
pad_r=st.integers(0, 3),
kernel=st.integers(3, 5),
size=st.integers(1, 8),
input_channels=st.integers(1, 3),
output_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
group=st.integers(1, 2),
order=st.sampled_from(["NCHW", "NHWC"]),
engine=st.sampled_from(["", "EIGEN"]),
shared_buffer=st.booleans(),
use_bias=st.booleans(),
**hu.gcs)
def test_convolution_separate_stride_pad_gradients(
self, op_type, stride_h, stride_w, pad_t, pad_l, pad_b, pad_r,
kernel, size, input_channels, output_channels, batch_size, group,
order, engine, shared_buffer, use_bias, gc, dc):
if order == "NHWC":
group = 1
input_channels *= group
output_channels *= group
op = core.CreateOperator(
op_type,
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
stride_h=stride_h,
stride_w=stride_w,
pad_t=pad_t,
pad_l=pad_l,
pad_b=pad_b,
pad_r=pad_r,
kernel=kernel,
group=group,
order=order,
engine=engine,
shared_buffer=int(shared_buffer),
)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32) - 0.5
w = np.random.rand(
output_channels, kernel, kernel, int(input_channels / group)
).astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
if order == "NCHW":
X = X.transpose((0, 3, 1, 2))
w = w.transpose((0, 3, 1, 2))
inputs = [X, w, b] if use_bias else [X, w]
# Error handling path.
if size + pad_r + pad_l < kernel or size + pad_t + pad_b < kernel:
with self.assertRaises(RuntimeError):
self.assertDeviceChecks(dc, op, inputs, [0])
return
self.assertDeviceChecks(dc, op, inputs, [0])
for i in range(len(inputs)):
self.assertGradientChecks(gc, op, inputs, i, [0])
# CUDNN does NOT support different padding values and we skip it
@given(op_type=st.sampled_from(["Conv", "Conv2D"]),
stride_h=st.integers(1, 3),
stride_w=st.integers(1, 3),
pad_t=st.integers(0, 3),
pad_l=st.integers(0, 3),
pad_b=st.integers(0, 3),
pad_r=st.integers(0, 3),
kernel=st.integers(1, 5),
size=st.integers(7, 10),
input_channels=st.integers(1, 8),
output_channels=st.integers(1, 8),
batch_size=st.integers(1, 3),
engine=st.sampled_from(["", "EIGEN"]),
use_bias=st.booleans(),
**hu.gcs)
def test_convolution_separate_stride_pad_layout(
self, op_type, stride_h, stride_w, pad_t, pad_l, pad_b, pad_r,
kernel, size, input_channels, output_channels, batch_size, engine,
use_bias, gc, dc):
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32) - 0.5
w = np.random.rand(
output_channels, kernel, kernel, input_channels
).astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
outputs = {}
for order in ["NCHW", "NHWC"]:
op = core.CreateOperator(
op_type,
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
stride_h=stride_h,
stride_w=stride_w,
kernel=kernel,
pad_t=pad_t,
pad_l=pad_l,
pad_b=pad_b,
pad_r=pad_r,
order=order,
engine=engine,
device_option=gc,
)
if order == "NCHW":
X_f = X.transpose((0, 3, 1, 2))
w_f = w.transpose((0, 3, 1, 2))
else:
X_f = X
w_f = w
self.ws.create_blob("X").feed(X_f, device_option=gc)
self.ws.create_blob("w").feed(w_f, device_option=gc)
self.ws.create_blob("b").feed(b, device_option=gc)
self.ws.run(op)
outputs[order] = self.ws.blobs["Y"].fetch()
np.testing.assert_allclose(
outputs["NCHW"],
outputs["NHWC"].transpose((0, 3, 1, 2)),
atol=1e-4,
rtol=1e-4)
@given(op_type=st.sampled_from(["Conv", "Conv2D"]),
stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(1, 5),
dilation=st.integers(1, 3),
size=st.integers(7, 10),
input_channels=st.integers(1, 8),
output_channels=st.integers(1, 8),
batch_size=st.integers(1, 3),
group=st.integers(1, 2),
order=st.sampled_from(["NCHW", "NHWC"]),
engine=st.sampled_from(["", "CUDNN", "MKLDNN"]),
use_bias=st.booleans(),
force_algo_fwd=_cudnn_convolution_algo_count("fwd"),
force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"),
force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"),
**hu.gcs)
def test_convolution_gradients(
self, op_type, stride, pad, kernel, dilation, size, input_channels,
output_channels, batch_size, group, order, engine, use_bias,
force_algo_fwd, force_algo_dgrad, force_algo_wgrad, gc, dc):
if order == "NHWC" or engine == "MKLDNN":
group = 1
input_channels *= group
output_channels *= group
dkernel = dilation * (kernel - 1) + 1
if engine == 'CUDNN':
assume(_cudnn_supports(dilation=(dilation > 1),
nhwc=(order == 'NHWC'),
backward=True))
assume(engine != "MKLDNN" or use_bias is True)
op = core.CreateOperator(
op_type,
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
stride=stride,
kernel=kernel,
dilation=dilation,
pad=pad,
group=group,
order=order,
engine=engine,
force_algo_fwd=force_algo_fwd,
force_algo_dgrad=force_algo_dgrad,
force_algo_wgrad=force_algo_wgrad,
)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32) - 0.5
w = np.random.rand(
output_channels, kernel, kernel, int(input_channels / group)
).astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
if order == "NCHW":
X = X.transpose((0, 3, 1, 2))
w = w.transpose((0, 3, 1, 2))
inputs = [X, w, b] if use_bias else [X, w]
# Error handling path.
if size + pad + pad < dkernel or size + pad + pad < dkernel:
with self.assertRaises(RuntimeError):
self.assertDeviceChecks(dc, op, inputs, [0])
return
try:
self.assertDeviceChecks(dc, op, inputs, [0])
except RuntimeError as e:
es = str(e)
# CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM should always have
# implementation
if "status == CUDNN_STATUS_SUCCESS" not in es \
or "CUDNN_STATUS_NOT_SUPPORTED" not in es \
or force_algo_fwd == 0:
raise e
for i in range(len(inputs)):
try:
self.assertGradientChecks(gc, op, inputs, i, [0])
except RuntimeError as e:
es = str(e)
if "status == CUDNN_STATUS_SUCCESS" not in es \
or "CUDNN_STATUS_NOT_SUPPORTED" not in es:
raise e
def _nd_convolution_nchw(self, n, input_channels, output_channels,
batch_size, stride, size, kernel, dilation, pad,
use_bias, force_algo_fwd, force_algo_dgrad,
force_algo_wgrad, gc, dc):
dkernel = dilation * (kernel - 1) + 1
for op_type in ["Conv", "Conv" + str(n) + "D"]:
op = core.CreateOperator(
op_type,
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
strides=[stride] * n,
kernels=[kernel] * n,
dilations=[dilation] * n,
pads=[pad] * n * 2,
order="NCHW",
engine="",
force_algo_fwd=force_algo_fwd,
force_algo_dgrad=force_algo_dgrad,
force_algo_wgrad=force_algo_wgrad,
)
input_dims = [batch_size, input_channels]
input_dims.extend([size] * n)
filter_dims = [output_channels, input_channels]
filter_dims.extend([kernel] * n)
X = np.random.rand(*input_dims).astype(np.float32) - 0.5
w = np.random.rand(*filter_dims).astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
inputs = [X, w, b] if use_bias else [X, w]
if size + pad + pad < dkernel or size + pad + pad < dkernel:
with self.assertRaises(RuntimeError):
self.assertDeviceChecks(dc, op, inputs, [0])
return
self.assertDeviceChecks(dc, op, inputs, [0])
for i in range(len(inputs)):
self.assertGradientChecks(gc, op, inputs, i, [0])
@given(input_channels=st.integers(1, 3),
output_channels=st.integers(1, 2),
batch_size=st.integers(1, 3),
stride=st.integers(1, 3),
size=st.integers(7, 10),
kernel=st.integers(1, 2),
dilation=st.integers(1, 3),
pad=st.integers(0, 3),
use_bias=st.booleans(),
force_algo_fwd=_cudnn_convolution_algo_count("fwd"),
force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"),
force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"),
**hu.gcs)
def test_1d_convolution_nchw(self, input_channels, output_channels,
batch_size, stride, size, kernel, dilation,
pad, use_bias,
force_algo_fwd, force_algo_dgrad,
force_algo_wgrad,
gc, dc):
self._nd_convolution_nchw(
1, input_channels, output_channels, batch_size, stride, size,
kernel, dilation, pad, use_bias, force_algo_fwd, force_algo_dgrad,
force_algo_wgrad, gc, dc
)
@given(input_channels=st.integers(1, 2),
output_channels=st.integers(1, 2),
batch_size=st.integers(1, 2),
stride=st.integers(1, 2),
size=st.integers(4, 5),
kernel=st.integers(1, 2),
dilation=st.integers(1, 2),
pad=st.integers(0, 2),
use_bias=st.booleans(),
force_algo_fwd=_cudnn_convolution_algo_count("fwd"),
force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"),
force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"),
**hu.gcs)
def test_3d_convolution_nchw(self, input_channels, output_channels,
batch_size, stride, size, kernel, dilation,
pad, use_bias,
force_algo_fwd, force_algo_dgrad,
force_algo_wgrad,
gc, dc):
self._nd_convolution_nchw(
3, input_channels, output_channels, batch_size, stride, size,
kernel, dilation, pad, use_bias, force_algo_fwd, force_algo_dgrad,
force_algo_wgrad, gc, dc
)
@given(op_type=st.sampled_from(["Conv", "Conv3D"]),
batch_size=st.integers(1, 2),
stride=st.integers(1, 2),
size=st.integers(3, 5),
kernel=st.integers(1, 2),
dilation=st.integers(1, 2),
pad=st.integers(0, 2),
use_bias=st.booleans(),
force_algo_fwd=_cudnn_convolution_algo_count("fwd"),
force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"),
force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"),
**hu.gcs)
def test_3d_convolution_cudnn_nchw(self, op_type, batch_size, stride, size,
kernel, dilation, pad, use_bias,
force_algo_fwd, force_algo_dgrad,
force_algo_wgrad, gc, dc):
input_channels = 1
output_channels = 1
n = 3
dkernel = dilation * (kernel - 1) + 1
order = "NCHW"
op = core.CreateOperator(
op_type,
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
strides=[stride] * n,
kernels=[kernel] * n,
dilations=[dilation] * n,
pads=[pad] * n * 2,
order=order,
engine="CUDNN",
force_algo_fwd=force_algo_fwd,
force_algo_dgrad=force_algo_dgrad,
force_algo_wgrad=force_algo_wgrad,
)
input_dims = [batch_size, input_channels]
input_dims.extend([size] * n)
filter_dims = [output_channels, input_channels]
filter_dims.extend([kernel] * n)
X = np.random.rand(*input_dims).astype(np.float32) - 0.5
w = np.random.rand(*filter_dims).astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
inputs = [X, w, b] if use_bias else [X, w]
if size + pad + pad < dkernel or size + pad + pad < dkernel:
with self.assertRaises(RuntimeError):
self.assertDeviceChecks(dc, op, inputs, [0])
return
try:
self.assertDeviceChecks(dc, op, inputs, [0])
except RuntimeError as e:
es = str(e)
# CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM should always have
# implementation
if "status == CUDNN_STATUS_SUCCESS" not in es \
or "CUDNN_STATUS_NOT_SUPPORTED" not in es \
or force_algo_fwd == 0:
raise e
for i in range(len(inputs)):
try:
self.assertGradientChecks(gc, op, inputs, i, [0])
except RuntimeError as e:
es = str(e)
if "status == CUDNN_STATUS_SUCCESS" not in es \
or "CUDNN_STATUS_NOT_SUPPORTED" not in es:
raise e
@given(op_type=st.sampled_from(["Conv", "Conv2D"]),
stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(1, 5),
dilation=st.integers(1, 3),
size=st.integers(7, 10),
input_channels=st.integers(1, 8),
output_channels=st.integers(1, 8),
batch_size=st.integers(1, 3),
use_bias=st.booleans(),
**hu.gcs)
def test_convolution_layout(self, op_type, stride, pad, kernel, dilation,
size, input_channels, output_channels,
batch_size, use_bias, gc, dc):
assume(size >= dilation * (kernel - 1) + 1)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32) - 0.5
w = np.random.rand(
output_channels, kernel, kernel, input_channels
).astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
Output = collections.namedtuple("Output", ["Y", "engine", "order"])
outputs = []
for order in ["NCHW", "NHWC"]:
engine_list = ['']
if _cudnn_supports(dilation=(dilation > 1), nhwc=(order == 'NHWC')):
engine_list.append('CUDNN')
for engine in engine_list:
op = core.CreateOperator(
op_type,
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
stride=stride,
kernel=kernel,
dilation=dilation,
pad=pad,
order=order,
engine=engine,
device_option=gc,
exhaustive_search=True,
)
if order == "NCHW":
X_f = X.transpose((0, 3, 1, 2))
w_f = w.transpose((0, 3, 1, 2))
else:
X_f = X
w_f = w
self.assertDeviceChecks(
dc,
op,
[X_f, w_f, b] if use_bias else [X_f, w_f],
[0])
self.ws.create_blob("X").feed(X_f, device_option=gc)
self.ws.create_blob("w").feed(w_f, device_option=gc)
self.ws.create_blob("b").feed(b, device_option=gc)
self.ws.run(op)
outputs.append(Output(
Y=self.ws.blobs["Y"].fetch(), engine=engine, order=order))
def canonical(o):
if o.order == "NHWC":
return o.Y.transpose((0, 3, 1, 2))
else:
return o.Y
for o in outputs:
np.testing.assert_allclose(
canonical(outputs[0]),
canonical(o),
atol=1e-4,
rtol=1e-4)
@given(num_workers=st.integers(1, 4),
net_type=st.sampled_from(
["simple", "dag"] +
(["async_dag"] if workspace.has_gpu_support or
workspace.has_hip_support else [])),
engine=st.sampled_from(["CUDNN", ""]),
**hu.gcs_no_hip)
def test_convolution_sync(self, net_type, num_workers, engine, gc, dc):
m = ModelHelper(name="test_model")
n = 1
d = 2
depth = 3
iters = 5
h = 5
w = 5
workspace.ResetWorkspace()
use_cudnn = (engine == 'CUDNN')
np.random.seed(1701)
# Build a binary tree of conv layers, summing at each node.
for i in reversed(range(depth)):
for j in range(2 ** i):
bottom_1 = "{}_{}".format(i + 1, 2 * j)
bottom_2 = "{}_{}".format(i + 1, 2 * j + 1)
mid_1 = "{}_{}_m".format(i + 1, 2 * j)
mid_2 = "{}_{}_m".format(i + 1, 2 * j + 1)
top = "{}_{}".format(i, j)
w1, b1, w2, b2 = np.random.randn(4).tolist()
brew.conv(
m, bottom_1, mid_1,
dim_in=d, dim_out=d,
kernel=3,
weight_init=('ConstantFill', dict(value=w1)),
bias_init=('ConstantFill', dict(value=b1)),
cudnn_state=np.random.randint(0, 3),
stride=1,
pad=1,
deterministic=1,
use_cudnn=use_cudnn,
engine=engine)
brew.conv(
m, bottom_2, mid_2,
dim_in=d, dim_out=d,
kernel=3,
stride=1,
pad=1,
weight_init=('ConstantFill', dict(value=w2)),
bias_init=('ConstantFill', dict(value=b2)),
deterministic=1,
cudnn_state=np.random.randint(0, 3),
use_cudnn=use_cudnn,
engine=engine)
m.net.Sum([mid_1, mid_2], top)
m.net.Flatten(["0_0"], ["0_0_flat"])
m.net.SquaredL2Distance(["0_0_flat", "label"], "xent")
m.net.AveragedLoss("xent", "loss")
input_to_grad = m.AddGradientOperators(["loss"])
m.Proto().device_option.CopyFrom(gc)
m.param_init_net.Proto().device_option.CopyFrom(gc)
m.Proto().type = net_type
m.Proto().num_workers = num_workers
self.ws.run(m.param_init_net)
def run():
import numpy as np
np.random.seed(1701)
input_blobs = ["{}_{}".format(depth, j) for j in range(2 ** depth)]
for input_blob in input_blobs:
self.ws.create_blob(input_blob).feed(
np.random.randn(n, d, h, w).astype(np.float32),
device_option=gc)
self.ws.create_blob("label").feed(
np.random.randn(n, d * h * w).astype(np.float32),
device_option=gc)
self.ws.run(m.net)
gradients = [
self.ws.blobs[str(input_to_grad[input_blob])].fetch()
for input_blob in input_blobs]
return gradients
outputs = [run() for _ in range(iters)]
for output in outputs[1:]:
np.testing.assert_array_equal(outputs[0], output)
np.testing.assert_allclose(
np.sum(np.square(output)),
1763719461732352.0,
rtol=1e-5)
def test_use_cudnn_engine_interactions(self):
"""Make sure the use_cudnn and engine kwargs work as expected."""
for model_default in [None, True, False]:
arg_scope = {}
if model_default is not None:
arg_scope['use_cudnn'] = model_default
else:
model_default = True # the default
model = ModelHelper(arg_scope=arg_scope)
self.assertEqual(model.arg_scope['use_cudnn'], model_default)
f = functools.partial(brew.conv, model,
'conv_in', 'conv_out', 10, 10, 5)
for op_cudnn in [None, True, False]:
for op_engine in [None, '', 'CUDNN']:
kwargs = {}
if op_cudnn is not None:
kwargs['use_cudnn'] = op_cudnn
else:
op_cudnn = False # the default
if op_engine is not None:
kwargs['engine'] = op_engine
calculated_cudnn = kwargs.get('use_cudnn', model_default)
expected_engine = kwargs.get(
'engine',
'CUDNN' if calculated_cudnn else '')
if ((calculated_cudnn is False and op_engine == 'CUDNN') or
(calculated_cudnn is True and op_engine == '')):
with self.assertRaises(ValueError):
f(**kwargs)
else:
f(**kwargs)
self.assertEqual(model.Proto().op[-1].engine,
expected_engine)
@serial.given(
op_type=st.sampled_from(["Conv", "Conv2D"]), N=st.integers(1, 4),
G=st.integers(1, 4), DX=st.integers(1, 4), DY=st.integers(1, 4),
H=st.integers(1, 4), W=st.integers(1, 4), use_bias=st.booleans(),
order=st.sampled_from(["NCHW", "NHWC"]),
force_algo_fwd=_cudnn_convolution_algo_count("fwd"),
force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"),
force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"),
**hu.gcs)
def test_1x1_conv(self, op_type, N, G, DX, DY, H, W, use_bias, order,
force_algo_fwd, force_algo_dgrad,
force_algo_wgrad, gc, dc):
if order == "NHWC":
G = 1
C = G * DX
M = G * DY
op = core.CreateOperator(
op_type,
["X", "filter", "bias"] if use_bias else ["X", "filter"],
["Y"],
stride_h=1,
stride_w=1,
pad_t=0,
pad_l=0,
pad_b=0,
pad_r=0,
kernel=1,
order=order,
group=G,
force_algo_fwd=force_algo_fwd,
force_algo_dgrad=force_algo_dgrad,
force_algo_wgrad=force_algo_wgrad,
)
if order == "NCHW":
X = np.random.randn(N, C, H, W).astype(np.float32)
filter = np.random.randn(M, DX, 1, 1).astype(np.float32)
else:
X = np.random.randn(N, H, W, C).astype(np.float32)
filter = np.random.randn(M, 1, 1, DX).astype(np.float32)
bias = np.random.randn(M).astype(np.float32)
inputs = [X, filter, bias] if use_bias else [X, filter]
def conv_1x1_nchw_ref(X, filter, bias=None):
X = X.reshape(N, G, DX, -1)
filter = filter.reshape(G, DY, DX)
Y = np.zeros(shape=(N, G, DY, H * W), dtype=np.float32)
for i in range(N):
for j in range(G):
Y[i, j, :, :] = np.dot(filter[j, :, :], X[i, j, :, :])
Y = Y.reshape(N, M, H, W)
if bias is not None:
bias = bias.reshape(1, M, 1, 1)
Y = np.add(Y, bias)
return [Y]
def conv_1x1_nhwc_ref(X, filter, bias=None):
X = X.reshape(N, -1, G, DX)
filter = filter.reshape(G, DY, DX)
Y = np.zeros(shape=(N, H * W, G, DY), dtype=np.float32)
for i in range(N):
for j in range(G):
Y[i, :, j, :] = np.dot(
X[i, :, j, :], filter[j, :, :].transpose())
Y = Y.reshape(N, H, W, M)
if bias is not None:
bias = bias.reshape(1, 1, 1, M)
Y = np.add(Y, bias)
return [Y]
if order == "NCHW":
conv_1x1_ref = conv_1x1_nchw_ref
else:
conv_1x1_ref = conv_1x1_nhwc_ref
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=inputs,
reference=conv_1x1_ref,
)
self.assertDeviceChecks(dc, op, inputs, [0])
for i in range(len(inputs)):
self.assertGradientChecks(gc, op, inputs, i, [0])
if __name__ == "__main__":
import unittest
unittest.main()