mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
361 lines
12 KiB
Python
361 lines
12 KiB
Python
import torch
|
|
from . import _tensor_str
|
|
from ._utils import _type, _cuda, _range
|
|
from functools import reduce
|
|
from itertools import chain
|
|
import sys
|
|
import math
|
|
|
|
|
|
def _infer_sizes(sizes, total):
|
|
to_infer = -1
|
|
total_sizes = 1
|
|
for i, size in enumerate(sizes):
|
|
total_sizes *= size
|
|
if size == -1:
|
|
if to_infer >= 0:
|
|
raise RuntimeError
|
|
to_infer = i
|
|
if to_infer >= 0:
|
|
assert total % total_sizes == 0, "Can't make sizes have exactly %d elements" % total
|
|
sizes = list(sizes)
|
|
sizes[to_infer] = -total // total_sizes
|
|
return torch.Size(sizes)
|
|
return sizes
|
|
|
|
|
|
class _TensorBase(object):
|
|
is_cuda = False
|
|
|
|
def new(self, *args, **kwargs):
|
|
return self.__class__(*args, **kwargs)
|
|
|
|
def type_as(self, t, async=False):
|
|
return self.type(t.type())
|
|
|
|
def cpu(self):
|
|
return self.type(getattr(torch, self.__class__.__name__))
|
|
|
|
def double(self, async=False):
|
|
return self.type(type(self).__module__ + '.DoubleTensor')
|
|
|
|
def float(self, async=False):
|
|
return self.type(type(self).__module__ + '.FloatTensor')
|
|
|
|
def half(self, async=False):
|
|
return self.type(type(self).__module__ + '.HalfTensor')
|
|
|
|
def long(self, async=False):
|
|
return self.type(type(self).__module__ + '.LongTensor')
|
|
|
|
def int(self, async=False):
|
|
return self.type(type(self).__module__ + '.IntTensor')
|
|
|
|
def short(self, async=False):
|
|
return self.type(type(self).__module__ + '.ShortTensor')
|
|
|
|
def char(self, async=False):
|
|
return self.type(type(self).__module__ + '.CharTensor')
|
|
|
|
def byte(self, async=False):
|
|
return self.type(type(self).__module__ + '.ByteTensor')
|
|
|
|
def is_pinned(self):
|
|
storage = self.storage()
|
|
return storage.is_pinned() if storage else False
|
|
|
|
def pin_memory(self):
|
|
if self.is_cuda:
|
|
raise TypeError("cannot pin '{0}' only CPU memory can be pinned"
|
|
.format(self.type()))
|
|
storage = self.storage()
|
|
if storage is None:
|
|
storage = (self.storage_type())()
|
|
return type(self)().set_(storage.pin_memory()).view_as(self)
|
|
|
|
def __deepcopy__(self, _memo):
|
|
memo = _memo.setdefault('torch', {})
|
|
if self._cdata in memo:
|
|
return memo[self._cdata]
|
|
new_storage = self.storage().__deepcopy__(_memo)
|
|
new_tensor = self.new()
|
|
new_tensor.set_(new_storage, self.storage_offset(), self.size(), self.stride())
|
|
memo[self._cdata] = new_tensor
|
|
return new_tensor
|
|
|
|
def __reduce__(self):
|
|
return type(self), (self.tolist(),)
|
|
|
|
def __repr__(self):
|
|
return str(self)
|
|
|
|
def __str__(self):
|
|
# All strings are unicode in Python 3, while we have to encode unicode
|
|
# strings in Python2. If we can't, let python decide the best
|
|
# characters to replace unicode characters with.
|
|
if sys.version_info > (3,):
|
|
return _tensor_str._str(self)
|
|
else:
|
|
if hasattr(sys.stdout, 'encoding'):
|
|
return _tensor_str._str(self).encode(
|
|
sys.stdout.encoding or 'UTF-8', 'replace')
|
|
else:
|
|
return _tensor_str._str(self).encode('UTF-8', 'replace')
|
|
|
|
def __bool__(self):
|
|
if self.numel() == 0:
|
|
return False
|
|
raise RuntimeError("bool value of non-empty " + torch.typename(self) +
|
|
" objects is ambiguous")
|
|
|
|
__nonzero__ = __bool__
|
|
|
|
def __iter__(self):
|
|
return iter(map(lambda i: self.select(0, i), _range(self.size(0))))
|
|
|
|
def split(self, split_size, dim=0):
|
|
dim_size = self.size(dim)
|
|
num_splits = int(math.ceil(float(dim_size) / split_size))
|
|
last_split_size = split_size - (split_size * num_splits - dim_size)
|
|
def get_split_size(i):
|
|
return split_size if i < num_splits-1 else last_split_size
|
|
return tuple(self.narrow(int(dim), int(i*split_size), int(get_split_size(i))) for i
|
|
in _range(0, num_splits))
|
|
|
|
def chunk(self, n_chunks, dim=0):
|
|
split_size = math.ceil(float(self.size(dim)) / n_chunks)
|
|
return self.split(split_size, dim)
|
|
|
|
def tolist(self):
|
|
dim = self.dim()
|
|
if dim == 1:
|
|
return [v for v in self]
|
|
elif dim > 0:
|
|
return [subt.tolist() for subt in self]
|
|
return []
|
|
|
|
def view(self, *args):
|
|
dst = self.new()
|
|
if len(args) == 1 and isinstance(args[0], torch.Size):
|
|
sizes = args[0]
|
|
else:
|
|
sizes = torch.Size(args)
|
|
sizes = _infer_sizes(sizes, self.nelement())
|
|
numel = reduce(lambda a, b: a * b, sizes) if len(sizes) > 0 else 0
|
|
|
|
if numel != self.nelement():
|
|
def format_size(size):
|
|
return 'x'.join(str(v) for v in size) if len(size) > 0 else '0'
|
|
raise ValueError(
|
|
"view of size '{0}' is invalid for input of size '{1}'"
|
|
.format(format_size(sizes), format_size(self.size())))
|
|
if not self.is_contiguous():
|
|
raise ValueError("input should be contiguous")
|
|
if self.storage() is not None:
|
|
dst.set_(self.storage(), self.storage_offset(), sizes)
|
|
return dst
|
|
|
|
def view_as(self, tensor):
|
|
return self.view(tensor.size())
|
|
|
|
def permute(self, *args):
|
|
perm = list(args)
|
|
tensor = self
|
|
n_dims = tensor.dim()
|
|
assert len(perm) == n_dims, 'Invalid permutation'
|
|
for i, p in enumerate(perm):
|
|
if p != i and p != -1:
|
|
j = i
|
|
while True:
|
|
assert 0 <= perm[j] and perm[j] < n_dims, 'Invalid permutation'
|
|
tensor = tensor.transpose(j, perm[j])
|
|
perm[j], j = -1, perm[j]
|
|
if perm[j] == i:
|
|
break
|
|
perm[j] = -1
|
|
return tensor
|
|
|
|
def expand_as(self, tensor):
|
|
return self.expand(tensor.size())
|
|
|
|
def expand(self, *args):
|
|
result = self.new()
|
|
if len(args) == 1 and isinstance(args[0], torch.Size):
|
|
sizes = args[0]
|
|
else:
|
|
sizes = torch.Size(args)
|
|
src = self
|
|
|
|
src_dim = src.dim()
|
|
src_stride = list(src.stride())
|
|
src_size = list(src.size())
|
|
|
|
if len(sizes) != src_dim:
|
|
raise ValueError('the number of dimensions provided must equal tensor.dim()')
|
|
|
|
# create a new geometry for tensor:
|
|
for i, size in enumerate(src_size):
|
|
if size == 1:
|
|
src_size[i] = sizes[i]
|
|
src_stride[i] = 0
|
|
elif size != sizes[i]:
|
|
raise ValueError('incorrect size: only supporting singleton expansion (size=1)')
|
|
|
|
result.set_(src.storage(), src.storage_offset(), torch.Size(src_size),
|
|
tuple(src_stride))
|
|
return result
|
|
|
|
def repeat(self, *args):
|
|
# If args == (torch.Size,), then we need to unpack the tuple
|
|
if len(args) == 1 and isinstance(args[0], torch.Size):
|
|
args = args[0]
|
|
repeats = list(args)
|
|
result = self.new()
|
|
src = self.contiguous()
|
|
|
|
if len(repeats) < src.dim():
|
|
raise ValueError('Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor')
|
|
|
|
xtensor = src.new().set_(src)
|
|
xsize = list(xtensor.size())
|
|
for i in _range(len(repeats)-src.dim()):
|
|
xsize = [1] + xsize
|
|
|
|
size = torch.Size([a * b for a, b in zip(xsize, repeats)])
|
|
xtensor.resize_(torch.Size(xsize))
|
|
result.resize_(size)
|
|
urtensor = result.new(result)
|
|
for i in _range(xtensor.dim()):
|
|
urtensor = urtensor.unfold(i,xtensor.size(i),xtensor.size(i))
|
|
for i in _range(urtensor.dim()-xtensor.dim()):
|
|
xsize = [1] + xsize
|
|
xtensor.resize_(torch.Size(xsize))
|
|
xxtensor = xtensor.expand_as(urtensor)
|
|
urtensor.copy_(xxtensor)
|
|
return result
|
|
|
|
def unsqueeze(self, dim):
|
|
return self.new(self).unsqueeze_(dim)
|
|
|
|
def unsqueeze_(self, dim):
|
|
sizes = list(self.size())
|
|
sizes.insert(dim, 1)
|
|
strides = list(self.stride())
|
|
strides.insert(dim, 0)
|
|
return self.set_(self.storage(), self.storage_offset(),
|
|
torch.Size(sizes), tuple(strides))
|
|
|
|
#TODO: add tests for operators
|
|
def __add__(self, other):
|
|
return self.add(other)
|
|
__radd__ = __add__
|
|
|
|
def __iadd__(self, other):
|
|
return self.add_(other)
|
|
|
|
def __sub__(self, other):
|
|
return self.sub(other)
|
|
|
|
def __rsub__(self, other):
|
|
return self.new().resize_as_(self).fill_(other).add_(-1, self)
|
|
|
|
def __isub__(self, other):
|
|
return self.sub_(other)
|
|
|
|
def __mul__(self, other):
|
|
return self.mul(other)
|
|
__rmul__ = __mul__
|
|
|
|
def __imul__(self, other):
|
|
return self.mul_(other)
|
|
|
|
def __matmul__(self, other):
|
|
dim_self = self.dim()
|
|
dim_other = other.dim()
|
|
# TODO: should this really be dot product?
|
|
# if dim_self == 1 and dim_other == 1:
|
|
# return self.dot(other)
|
|
if dim_self == 2 and dim_other == 1:
|
|
return torch.mv(self, other)
|
|
elif dim_self == 2 and dim_other == 2:
|
|
return torch.mm(self, other)
|
|
|
|
def __div__(self, other):
|
|
return self.div(other)
|
|
__truediv__ = __div__
|
|
|
|
def __rdiv__(self, other):
|
|
return self.new().resize_as_(self).fill_(other).div_(self)
|
|
__rtruediv__ = __rdiv__
|
|
|
|
def __idiv__(self, other):
|
|
return self.div_(other)
|
|
|
|
def __mod__(self, other):
|
|
return self.remainder(other)
|
|
|
|
def __neg__(self):
|
|
return self.neg()
|
|
|
|
def __eq__(self, other):
|
|
return self.eq(other)
|
|
|
|
def __ne__(self, other):
|
|
return self.ne(other)
|
|
|
|
def __lt__(self, other):
|
|
return self.lt(other)
|
|
|
|
def __le__(self, other):
|
|
return self.le(other)
|
|
|
|
def __gt__(self, other):
|
|
return self.gt(other)
|
|
|
|
def __ge__(self, other):
|
|
return self.ge(other)
|
|
|
|
# TODO: add native add or and xor in the libs
|
|
def __and__(self, other):
|
|
if (type(self).__name__ != 'ByteTensor' or
|
|
type(other).__name__ != 'ByteTensor'):
|
|
raise RuntimeError('logical operations are supported on ByteTensors only')
|
|
return (self + other).eq(2)
|
|
|
|
def __or__(self, other):
|
|
if (type(self).__name__ != 'ByteTensor' or
|
|
type(other).__name__ != 'ByteTensor'):
|
|
raise RuntimeError('logical operations are supported on ByteTensors only')
|
|
return (self + other).gt(0)
|
|
|
|
def __xor__(self, other):
|
|
if (type(self).__name__ != 'ByteTensor' or
|
|
type(other).__name__ != 'ByteTensor'):
|
|
raise RuntimeError('logical operations are supported on ByteTensors only')
|
|
return (self + other).eq(1)
|
|
|
|
def __iand__(self, other):
|
|
if (type(self).__name__ != 'ByteTensor' or
|
|
type(other).__name__ != 'ByteTensor'):
|
|
raise RuntimeError('logical operations are supported on ByteTensors only')
|
|
return self.mul_(other)
|
|
|
|
def __ior__(self, other):
|
|
if (type(self).__name__ != 'ByteTensor' or
|
|
type(other).__name__ != 'ByteTensor'):
|
|
raise RuntimeError('logical operations are supported on ByteTensors only')
|
|
return self.copy_((self + other).gt(0))
|
|
|
|
def __ixor__(self, other):
|
|
if (type(self).__name__ != 'ByteTensor' or
|
|
type(other).__name__ != 'ByteTensor'):
|
|
raise RuntimeError('logical operations are supported on ByteTensors only')
|
|
return self.copy_((self + other).eq(1))
|
|
|
|
def __hash__(self):
|
|
return id(self)
|
|
|
|
|
|
_TensorBase.type = _type
|
|
_TensorBase.cuda = _cuda
|