mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
* Update ReduceMean Add reduce mean to math Add reduce mean to math * sync reduce_ops_test * Update math_gpu.cu
526 lines
16 KiB
C++
526 lines
16 KiB
C++
#ifndef CAFFE2_UTILS_MATH_H_
|
|
#define CAFFE2_UTILS_MATH_H_
|
|
// This is a simple translation from the old Caffe math interfaces. We aim to
|
|
// still keep it simple, so all platforms would be able to support it fairly
|
|
// easily.
|
|
|
|
// We include the cblas header here so that we can obtain the macros from cblas.
|
|
extern "C" {
|
|
#include "caffe2/utils/cblas.h"
|
|
}
|
|
|
|
#ifdef CAFFE2_USE_ACCELERATE
|
|
#include <Accelerate/Accelerate.h>
|
|
#endif // CAFFE2_USE_ACCELERATE
|
|
|
|
#include "caffe2/core/common.h"
|
|
#include "caffe2/core/types.h"
|
|
|
|
#include "Eigen/Core"
|
|
#include "Eigen/Dense"
|
|
|
|
#if EIGEN_VERSION_AT_LEAST(3, 3, 0)
|
|
#include "unsupported/Eigen/CXX11/Tensor"
|
|
#endif // EIGEN_VERSION_AT_LEAST(3, 3, 0)
|
|
|
|
namespace caffe2 {
|
|
|
|
template <class Context>
|
|
class Tensor;
|
|
|
|
// An empty class as a placeholder for a math function that has no specific
|
|
// engine specified.
|
|
class DefaultEngine {};
|
|
|
|
// Common Eigen types that we will often use
|
|
template <typename T>
|
|
using EigenMatrixMap =
|
|
Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> >;
|
|
template <typename T>
|
|
using EigenArrayMap =
|
|
Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic> >;
|
|
template <typename T>
|
|
using EigenVectorMap = Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, 1> >;
|
|
template <typename T>
|
|
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1> >;
|
|
template <typename T>
|
|
using ConstEigenMatrixMap =
|
|
Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> >;
|
|
template <typename T>
|
|
using ConstEigenArrayMap =
|
|
Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic> >;
|
|
template <typename T>
|
|
using ConstEigenVectorMap =
|
|
Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, 1> >;
|
|
template <typename T>
|
|
using ConstEigenVectorArrayMap =
|
|
Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1> >;
|
|
|
|
#if EIGEN_VERSION_AT_LEAST(3, 3, 0)
|
|
|
|
template <typename T, int D>
|
|
using EigenTensorMap = Eigen::TensorMap<Eigen::Tensor<T, D, Eigen::RowMajor>>;
|
|
|
|
#endif // EIGEN_VERSION_AT_LEAST(3, 3, 0)
|
|
|
|
namespace math {
|
|
|
|
template <typename T, class Context>
|
|
void Exp(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Log(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Cos(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Sin(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void SinCos(const int N, const T* x, T* ys, T* yc, Context* context);
|
|
template <typename T, class Context>
|
|
void Abs(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Sqrt(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void InvSqrt(const int N, const T* x, T* y, Context* context);
|
|
template <typename T, class Context>
|
|
void Sqr(const int N, const T* x, T* y, Context* context);
|
|
|
|
template <typename T, class Context>
|
|
void Not(const int N, const T* x, T* y, Context* context);
|
|
|
|
template <typename T, class Context>
|
|
void Powx(const int N, const T* a, const T b, T* y, Context* context);
|
|
|
|
#define CAFFE2_DECLARE_BINARY_OP_BINARY_RESULT(name) \
|
|
template <typename T, class Context> \
|
|
void name(const int N, const T* a, const T* b, bool* y, Context* context); \
|
|
template <typename T, class Context> \
|
|
void name##ToRow( \
|
|
const int M, \
|
|
const int N, \
|
|
const T* a, \
|
|
const T* b, \
|
|
bool* y, \
|
|
Context* context);
|
|
|
|
CAFFE2_DECLARE_BINARY_OP_BINARY_RESULT(LT);
|
|
CAFFE2_DECLARE_BINARY_OP_BINARY_RESULT(LE);
|
|
CAFFE2_DECLARE_BINARY_OP_BINARY_RESULT(GT);
|
|
CAFFE2_DECLARE_BINARY_OP_BINARY_RESULT(GE);
|
|
|
|
CAFFE2_DECLARE_BINARY_OP_BINARY_RESULT(And);
|
|
CAFFE2_DECLARE_BINARY_OP_BINARY_RESULT(Or);
|
|
CAFFE2_DECLARE_BINARY_OP_BINARY_RESULT(Xor);
|
|
|
|
#undef CAFFE2_DECLARE_BINARY_OP_BINARY_RESULT
|
|
|
|
#define CAFFE2_DECLARE_BINARY_OP(name) \
|
|
template <typename T, class Context> \
|
|
void name(const int N, const T* a, const T* b, T* y, Context* context); \
|
|
template <typename T, class Context> \
|
|
void name##ToRow( \
|
|
const int M, \
|
|
const int N, \
|
|
const T* a, \
|
|
const T* b, \
|
|
T* y, \
|
|
Context* context); \
|
|
template <typename T, class Context> \
|
|
void name##ToRow( \
|
|
const int M, const int N, const T* x, T* y, Context* context); \
|
|
template <typename T, class Context> \
|
|
void name##ToCol( \
|
|
const int M, const int N, const T* x, T* y, Context* context);
|
|
|
|
CAFFE2_DECLARE_BINARY_OP(Add);
|
|
CAFFE2_DECLARE_BINARY_OP(Sub);
|
|
CAFFE2_DECLARE_BINARY_OP(Mul);
|
|
CAFFE2_DECLARE_BINARY_OP(Div);
|
|
|
|
#undef CAFFE2_DECLARE_BINARY_OP
|
|
|
|
template <typename T, class Context>
|
|
void ReduceMin(
|
|
const int N,
|
|
const T* x,
|
|
T* y,
|
|
Tensor<Context>* scratch_ptr,
|
|
Context* context);
|
|
template <typename T, class Context>
|
|
void ReduceMax(
|
|
const int N,
|
|
const T* x,
|
|
T* y,
|
|
Tensor<Context>* scratch_ptr,
|
|
Context* context);
|
|
|
|
template <typename T, class Context>
|
|
void ReduceSum(
|
|
const int X_size,
|
|
const int Y_size,
|
|
const int num_dims,
|
|
const int* dims,
|
|
const int num_axes,
|
|
const int* axes,
|
|
const T* X,
|
|
T* Y,
|
|
Context* context,
|
|
Tensor<Context>* scratch_ptr = nullptr);
|
|
|
|
template <typename T, class Context>
|
|
void ReduceMean(
|
|
const int X_size,
|
|
const int Y_size,
|
|
const int num_dims,
|
|
const int* dims,
|
|
const int num_axes,
|
|
const int* axes,
|
|
const T* X,
|
|
T* Y,
|
|
Context* context,
|
|
Tensor<Context>* scratch_ptr = nullptr);
|
|
|
|
// Adds batch sub-tensors elementwise to output. Stripe is the stripe length
|
|
// and N is the number of elements to add (size of Y).
|
|
template <typename T, class Context>
|
|
void AddStripedBatch(
|
|
const int N,
|
|
const T* first,
|
|
T* y,
|
|
const int stripe,
|
|
const int batch,
|
|
Context* context);
|
|
|
|
// Compute the row-wise max of a N*D matrix X, and write it to a N
|
|
// dimensional vector y.
|
|
template <typename T, class Context>
|
|
void RowwiseMax(const int N, const int D, const T* x, T* y,
|
|
Context* context);
|
|
|
|
// Compute the column-wise max of a N*D matrix X, and write it to a D
|
|
// dimensional vector y.
|
|
template <typename T, class Context>
|
|
void ColwiseMax(const int N, const int D, const T* x, T* y,
|
|
Context* context);
|
|
|
|
// Elemwise maximum of vector x and vector y. z[i] = max(x[i], y[i])
|
|
template <typename T, class Context>
|
|
void ElemwiseMax(const int N, const T* x, const T* y, T* z, Context* context);
|
|
|
|
// Elemwise maximum of vector x and scalar alpha. y[i] = max(x[i], alpha)
|
|
template <typename T, class Context>
|
|
void Maximum(
|
|
const int N,
|
|
const float alpha,
|
|
const T* x,
|
|
T* y,
|
|
Context* context);
|
|
|
|
// Transpose tensor X with dims by axes and write the result to tensor Y.
|
|
template <typename T, class Context>
|
|
void Transpose(
|
|
const int size,
|
|
const int ndim,
|
|
const int* dims,
|
|
const int* axes,
|
|
const T* X,
|
|
T* Y,
|
|
Context* context);
|
|
|
|
// Transpose tensor X with x_dims by axes and write the result to tensor Y with
|
|
// y_dims.
|
|
template <typename T, class Context>
|
|
void Transpose(
|
|
const int size,
|
|
const int ndim,
|
|
const int* X_dims,
|
|
const int* Y_dims,
|
|
const int* axes,
|
|
const T* X,
|
|
T* Y,
|
|
Context* context);
|
|
|
|
// Decaf gemm provides a simpler interface to the gemm functions, with the
|
|
// limitation that the data has to be contiguous in memory.
|
|
template <typename T, class Context, class Engine = DefaultEngine>
|
|
void Gemm(
|
|
const CBLAS_TRANSPOSE TransA,
|
|
const CBLAS_TRANSPOSE TransB,
|
|
const int M,
|
|
const int N,
|
|
const int K,
|
|
const float alpha,
|
|
const T* A,
|
|
const T* B,
|
|
const float beta,
|
|
T* C,
|
|
Context* context,
|
|
TensorProto::DataType math_type = TensorProto_DataType_FLOAT);
|
|
|
|
// We also provide a gemm that has explicit lda, ldb and ldc specified.
|
|
// In most cases you probably want to use the function above, though.
|
|
template <typename T, class Context, class Engine = DefaultEngine>
|
|
void GemmEx(
|
|
const CBLAS_TRANSPOSE TransA,
|
|
const CBLAS_TRANSPOSE TransB,
|
|
const int M,
|
|
const int N,
|
|
const int K,
|
|
const T alpha,
|
|
const T* A,
|
|
const int lda,
|
|
const T* B,
|
|
const int ldb,
|
|
const T beta,
|
|
T* C,
|
|
const int ldc,
|
|
Context* context);
|
|
|
|
// GemmBatched provides a simple abstraction into library routines
|
|
template <typename T, class Context, class Engine = DefaultEngine>
|
|
void GemmBatched(
|
|
const CBLAS_TRANSPOSE TransA,
|
|
const CBLAS_TRANSPOSE TransB,
|
|
const int batch_size,
|
|
const int M,
|
|
const int N,
|
|
const int K,
|
|
const float alpha,
|
|
const T* A,
|
|
const T* B,
|
|
const float beta,
|
|
T* C,
|
|
Context* context,
|
|
Tensor<Context>* scratch = nullptr,
|
|
TensorProto::DataType math_type = TensorProto_DataType_FLOAT);
|
|
|
|
// Gemv always takes in a M*N matrix A, and depending on whether we set TransA
|
|
// to Trans, the output is:
|
|
// CblasNoTrans: x is an N dim vector and y is an M dim vector.
|
|
// CblasTrans: x is an M dim vector and y is an N dim vector.
|
|
template <typename T, class Context, class Engine = DefaultEngine>
|
|
void Gemv(
|
|
const CBLAS_TRANSPOSE TransA,
|
|
const int M,
|
|
const int N,
|
|
const float alpha,
|
|
const T* A,
|
|
const T* x,
|
|
const float beta,
|
|
T* y,
|
|
Context* context,
|
|
TensorProto::DataType math_type = TensorProto_DataType_FLOAT);
|
|
|
|
template <typename T, class Context>
|
|
void Set(const size_t N, const T alpha, T* X, Context* context);
|
|
|
|
template <typename T, class Context>
|
|
void RandUniform(const size_t n, const T a, const T b, T* r, Context* context);
|
|
|
|
template <typename T, class Context>
|
|
void RandUniformUnique(
|
|
const size_t n,
|
|
const T a,
|
|
const T b,
|
|
T* r,
|
|
const size_t m,
|
|
const T* avoid,
|
|
Context* context);
|
|
|
|
template <typename T, class Context>
|
|
void RandGaussian(
|
|
const size_t n,
|
|
const T mean,
|
|
const T std,
|
|
T* r,
|
|
Context* context);
|
|
|
|
// Dot matrix of vector a and b, and writes the result to a single value y.
|
|
template <typename T, class Context>
|
|
void Dot(const int N, const T* a, const T* b, T* y, Context* context);
|
|
|
|
// Sum of vector x, and writes the result to a single value y.
|
|
template <typename T, class Context>
|
|
void Sum(const int N, const T* x, T* y, Context* context,
|
|
Tensor<Context>* scratch_ptr = nullptr);
|
|
|
|
// Sum of squares of vector x, and writes the result to a single value y.
|
|
template <typename T, class Context>
|
|
void SumSqr(
|
|
const int N,
|
|
const T* x,
|
|
T* y,
|
|
Context* context,
|
|
Tensor<Context>* scratch_ptr = nullptr);
|
|
|
|
// Select does index selection of the rows a N*D matrix x, and gives the N
|
|
// dimensional vector y that contains the selected data.
|
|
template <typename T, class Context>
|
|
void Select(const int N, const int D, const T* x, const int* idx, T* y,
|
|
Context* context);
|
|
|
|
template <typename T, class Context>
|
|
void Scale(const int N, const float alpha, const T* x, T* y, Context* context);
|
|
|
|
// Different from the Scale function above, if alpha is passed in
|
|
// as a pointer, we will assume that it lives on the Context device,
|
|
// for example on GPU.
|
|
template <typename T, class Context>
|
|
void Scale(const int N, const float* alpha, const T* x, T* y, Context* context);
|
|
|
|
template <typename T, class Context>
|
|
void Axpy(const int N, const float alpha, const T* x, T* y, Context* context);
|
|
|
|
// Different from the Axpy function above, if alpha is passed in
|
|
// as a pointer, we will assume that it lives on the Context device,
|
|
// for example on GPU.
|
|
template <typename T, class Context>
|
|
void Axpy(const int N, const float* alpha, const T* x, T* y, Context* context);
|
|
|
|
template <typename T, class Context>
|
|
void Axpby(
|
|
const int N,
|
|
const float alpha,
|
|
const T* x,
|
|
const T b,
|
|
T* y,
|
|
Context* context);
|
|
|
|
template <typename T, class Context, int order>
|
|
void Im2colNd(
|
|
const T* data_img,
|
|
const int* im_shape,
|
|
const int* col_shape,
|
|
const int img_size,
|
|
const int col_size,
|
|
const int* kernel_shape,
|
|
const int* stride,
|
|
const int* dilation,
|
|
const int* pad,
|
|
const int N,
|
|
T* data_col,
|
|
Context* context,
|
|
bool accumulate_output = false);
|
|
|
|
template <typename T, class Context, int order>
|
|
void Col2imNd(
|
|
const T* data_col,
|
|
const int* img_shape,
|
|
const int* col_shape,
|
|
const int img_size,
|
|
const int col_size,
|
|
const int* kernel_shape,
|
|
const int* stride,
|
|
const int* dilation,
|
|
const int* pad,
|
|
const int N,
|
|
T* data_img,
|
|
Context* context);
|
|
|
|
template <typename T, class Context, int order>
|
|
void Im2col(
|
|
const T* data_im,
|
|
const int channels,
|
|
const int height,
|
|
const int width,
|
|
const int kernel_h,
|
|
const int kernel_w,
|
|
const int dilation_h,
|
|
const int dilation_w,
|
|
const int pad_t,
|
|
const int pad_l,
|
|
const int pad_b,
|
|
const int pad_r,
|
|
const int stride_h,
|
|
const int stride_w,
|
|
T* data_col,
|
|
Context* context);
|
|
|
|
template <typename T, class Context, int order>
|
|
void Col2im(
|
|
const T* data_col,
|
|
const int channels,
|
|
const int height,
|
|
const int width,
|
|
const int patch_h,
|
|
const int patch_w,
|
|
const int dilation_h,
|
|
const int dilation_w,
|
|
const int pad_t,
|
|
const int pad_l,
|
|
const int pad_b,
|
|
const int pad_r,
|
|
const int stride_h,
|
|
const int stride_w,
|
|
T* data_im,
|
|
Context* context);
|
|
|
|
// Applies a per-channel bias value to each channel of the input
|
|
// image. image_size is H * W
|
|
template <typename T, class Context>
|
|
void BiasCHW(
|
|
const T* bias,
|
|
const int bias_channels,
|
|
const int image_size,
|
|
T* image,
|
|
Context* context);
|
|
|
|
template <class Context>
|
|
void CopyMatrix(
|
|
const size_t item_size,
|
|
const int M,
|
|
const int N,
|
|
const void* A,
|
|
const int lda,
|
|
void* B,
|
|
const int ldb,
|
|
Context* context,
|
|
TypeMeta::TypedCopy copy = nullptr);
|
|
|
|
template <typename T, class Context>
|
|
void CopyVector(const int N, const T* A, T* B, Context* context);
|
|
|
|
// Function uses casting from int to unsigned to compare if value of
|
|
// parameter a is greater or equal to zero and lower than value of
|
|
// parameter b. The b parameter is of type signed and is always
|
|
// positive,
|
|
// therefore its value is always lower than 0x800... where casting
|
|
// negative value of a parameter converts it to value higher than
|
|
// 0x800...
|
|
// The casting allows to use one condition instead of two.
|
|
inline bool is_a_ge_zero_and_a_lt_b(int a, int b) {
|
|
return static_cast<unsigned>(a) < static_cast<unsigned>(b);
|
|
}
|
|
|
|
// Calculates ceil(a / b). User must be careful to ensure that there
|
|
// is no overflow or underflow in the calculation.
|
|
template <typename T>
|
|
constexpr T divUp(T a, T b) {
|
|
return (a + b - (T) 1) / b;
|
|
}
|
|
|
|
// Rounds a up to the next highest multiple of b. User must be careful
|
|
// to ensure that there is no overflow or underflow in the calculation
|
|
// of divUp.
|
|
template <typename T>
|
|
constexpr T roundUp(T a, T b) {
|
|
return divUp<T>(a, b) * b;
|
|
}
|
|
|
|
// Returns log2(n) for a positive integer type
|
|
template <typename T>
|
|
constexpr int integerLog2(T n, int p = 0) {
|
|
return (n <= 1) ? p : integerLog2(n / 2, p + 1);
|
|
}
|
|
|
|
// Returns the next highest power-of-2 for an integer type
|
|
template <typename T>
|
|
constexpr T integerNextHighestPowerOf2(T v) {
|
|
return (integerIsPowerOf2(v) ? (T)2 * v : ((T)1 << (integerLog2(v) + 1)));
|
|
}
|
|
|
|
} // namespace math
|
|
} // namespace caffe2
|
|
|
|
#include "caffe2/utils/math-detail.h"
|
|
#endif // CAFFE2_UTILS_MATH_H_
|