mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
* Update ReduceMean Add reduce mean to math Add reduce mean to math * sync reduce_ops_test * Update math_gpu.cu
302 lines
11 KiB
C++
302 lines
11 KiB
C++
#ifndef CAFFE2_CORE_COMMON_GPU_H_
|
|
#define CAFFE2_CORE_COMMON_GPU_H_
|
|
|
|
#include <assert.h>
|
|
#include <cuda.h>
|
|
#include <cuda_runtime.h>
|
|
|
|
// Disable strict aliasing errors for CUDA 9.
|
|
// The cuda_fp16.h header in CUDA 9 RC triggers this diagnostic.
|
|
// It is included by cusparse.h as well, so guarding the
|
|
// inclusion of that header here is not enough.
|
|
#if CUDA_VERSION >= 9000
|
|
#ifdef __GNUC__
|
|
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)
|
|
#pragma GCC diagnostic push
|
|
#endif
|
|
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
|
|
#endif // __GNUC__
|
|
#endif // CUDA_VERSION >= 9000
|
|
|
|
#include <cublas_v2.h>
|
|
#include <curand.h>
|
|
#include <driver_types.h>
|
|
|
|
#include "caffe2/core/logging.h"
|
|
#include "caffe2/core/common.h"
|
|
|
|
// This is a macro defined for cuda fp16 support. In default, cuda fp16 is
|
|
// supported by NVCC 7.5, but it is also included in the Tegra X1 platform with
|
|
// a (custom?) NVCC 7.0. As a result, we would normally just check the cuda
|
|
// version here, but would also allow a use to pass in the flag
|
|
// CAFFE_HAS_CUDA_FP16 manually.
|
|
|
|
#ifndef CAFFE_HAS_CUDA_FP16
|
|
#if CUDA_VERSION >= 7050
|
|
#define CAFFE_HAS_CUDA_FP16
|
|
#endif // CUDA_VERSION >= 7050
|
|
#endif // CAFFE_HAS_CUDA_FP16
|
|
|
|
#ifdef CAFFE_HAS_CUDA_FP16
|
|
#include <cuda_fp16.h>
|
|
#endif
|
|
|
|
// Re-enable strict aliasing diagnostic if it was disabled.
|
|
#if CUDA_VERSION >= 9000
|
|
#ifdef __GNUC__
|
|
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
#endif // __GNUC__
|
|
#endif // CUDA_VERSION >= 9000
|
|
|
|
/**
|
|
* The maximum number of GPUs that caffe2 recognizes.
|
|
*/
|
|
#define CAFFE2_COMPILE_TIME_MAX_GPUS 16
|
|
/**
|
|
* The maximum number of peers that each gpu can have when doing p2p setup.
|
|
* Currently, according to NVidia documentation, each device can support a
|
|
* system-wide maximum of eight peer connections.
|
|
* When Caffe2 sets up peer access resources, if we have more than 8 gpus,
|
|
* we will enable peer access in groups of 8.
|
|
*/
|
|
#define CAFFE2_CUDA_MAX_PEER_SIZE 8
|
|
|
|
namespace caffe2 {
|
|
|
|
#if CUDA_VERSION >= 9000
|
|
/**
|
|
* Empty class to identify TensorCore-based math
|
|
*/
|
|
class TensorCoreEngine {};
|
|
#endif
|
|
|
|
/**
|
|
* A runtime function to report the cuda version that Caffe2 is built with.
|
|
*/
|
|
inline int CudaVersion() { return CUDA_VERSION; }
|
|
|
|
/**
|
|
* Returns the number of devices.
|
|
*/
|
|
int NumCudaDevices();
|
|
|
|
/**
|
|
* Check if the current running session has a cuda gpu present.
|
|
*
|
|
* Note that this is different from having caffe2 built with cuda. Building
|
|
* Caffe2 with cuda only guarantees that this function exists. If there are no
|
|
* cuda gpus present in the machine, or there are hardware configuration
|
|
* problems like an insufficient driver, this function will still return false,
|
|
* meaning that there is no usable GPU present.
|
|
*
|
|
* In the open source build, it is possible that Caffe2's GPU code is
|
|
* dynamically loaded, and as a result a library could be only linked to the
|
|
* CPU code, but want to test if cuda is later available or not. In this case,
|
|
* one should use HasCudaRuntime() from common.h.
|
|
*/
|
|
inline bool HasCudaGPU() { return NumCudaDevices() > 0; }
|
|
|
|
/**
|
|
* Gets the current GPU id. This is a simple wrapper around cudaGetDevice().
|
|
*/
|
|
int CaffeCudaGetDevice();
|
|
|
|
/**
|
|
* Gets the current GPU id. This is a simple wrapper around cudaGetDevice().
|
|
*/
|
|
void CaffeCudaSetDevice(const int id);
|
|
|
|
/**
|
|
* Gets the GPU id that the current pointer is located at.
|
|
*/
|
|
int GetGPUIDForPointer(const void* ptr);
|
|
|
|
/**
|
|
* Gets the device property for the given device. This function is thread safe.
|
|
*/
|
|
const cudaDeviceProp& GetDeviceProperty(const int device);
|
|
|
|
/**
|
|
* Runs a device query function and prints out the results to LOG(INFO).
|
|
*/
|
|
void DeviceQuery(const int deviceid);
|
|
|
|
/**
|
|
* Return a peer access pattern by returning a matrix (in the format of a
|
|
* nested vector) of boolean values specifying whether peer access is possible.
|
|
*
|
|
* This function returns false if anything wrong happens during the query of
|
|
* the GPU access pattern.
|
|
*/
|
|
bool GetCudaPeerAccessPattern(vector<vector<bool> >* pattern);
|
|
|
|
/**
|
|
* Return the availability of TensorCores for math
|
|
*/
|
|
bool TensorCoreAvailable();
|
|
|
|
/**
|
|
* Return a human readable cublas error string.
|
|
*/
|
|
const char* cublasGetErrorString(cublasStatus_t error);
|
|
|
|
/**
|
|
* Return a human readable curand error string.
|
|
*/
|
|
const char* curandGetErrorString(curandStatus_t error);
|
|
|
|
// CUDA: various checks for different function calls.
|
|
#define CUDA_ENFORCE(condition, ...) \
|
|
do { \
|
|
cudaError_t error = condition; \
|
|
CAFFE_ENFORCE_EQ( \
|
|
error, \
|
|
cudaSuccess, \
|
|
"Error at: ", \
|
|
__FILE__, \
|
|
":", \
|
|
__LINE__, \
|
|
": ", \
|
|
cudaGetErrorString(error), ##__VA_ARGS__); \
|
|
} while (0)
|
|
#define CUDA_CHECK(condition) \
|
|
do { \
|
|
cudaError_t error = condition; \
|
|
CHECK(error == cudaSuccess) << cudaGetErrorString(error); \
|
|
} while (0)
|
|
|
|
#define CUDA_DRIVERAPI_ENFORCE(condition) \
|
|
do { \
|
|
CUresult result = condition; \
|
|
if (result != CUDA_SUCCESS) { \
|
|
const char* msg; \
|
|
cuGetErrorName(result, &msg); \
|
|
CAFFE_THROW("Error at: ", __FILE__, ":", __LINE__, ": ", msg); \
|
|
} \
|
|
} while (0)
|
|
#define CUDA_DRIVERAPI_CHECK(condition) \
|
|
do { \
|
|
CUresult result = condition; \
|
|
if (result != CUDA_SUCCESS) { \
|
|
const char* msg; \
|
|
cuGetErrorName(result, &msg); \
|
|
LOG(FATAL) << "Error at: " << __FILE__ << ":" << __LINE__ << ": " \
|
|
<< msg; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define CUBLAS_ENFORCE(condition) \
|
|
do { \
|
|
cublasStatus_t status = condition; \
|
|
CAFFE_ENFORCE_EQ( \
|
|
status, \
|
|
CUBLAS_STATUS_SUCCESS, \
|
|
"Error at: ", \
|
|
__FILE__, \
|
|
":", \
|
|
__LINE__, \
|
|
": ", \
|
|
::caffe2::cublasGetErrorString(status)); \
|
|
} while (0)
|
|
#define CUBLAS_CHECK(condition) \
|
|
do { \
|
|
cublasStatus_t status = condition; \
|
|
CHECK(status == CUBLAS_STATUS_SUCCESS) \
|
|
<< ::caffe2::cublasGetErrorString(status); \
|
|
} while (0)
|
|
|
|
#define CURAND_ENFORCE(condition) \
|
|
do { \
|
|
curandStatus_t status = condition; \
|
|
CAFFE_ENFORCE_EQ( \
|
|
status, \
|
|
CURAND_STATUS_SUCCESS, \
|
|
"Error at: ", \
|
|
__FILE__, \
|
|
":", \
|
|
__LINE__, \
|
|
": ", \
|
|
::caffe2::curandGetErrorString(status)); \
|
|
} while (0)
|
|
#define CURAND_CHECK(condition) \
|
|
do { \
|
|
curandStatus_t status = condition; \
|
|
CHECK(status == CURAND_STATUS_SUCCESS) \
|
|
<< ::caffe2::curandGetErrorString(status); \
|
|
} while (0)
|
|
|
|
#define CUDA_1D_KERNEL_LOOP(i, n) \
|
|
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
|
|
i += blockDim.x * gridDim.x)
|
|
|
|
// CUDA_KERNEL_ASSERT is a macro that wraps an assert() call inside cuda
|
|
// kernels. This is not supported by Apple platforms so we special case it.
|
|
// See http://docs.nvidia.com/cuda/cuda-c-programming-guide/#assertion
|
|
#ifdef __APPLE__
|
|
#define CUDA_KERNEL_ASSERT(...)
|
|
#else // __APPLE__
|
|
#define CUDA_KERNEL_ASSERT(...) assert(__VA_ARGS__)
|
|
#endif // __APPLE__
|
|
|
|
// The following helper functions are here so that you can write a kernel call
|
|
// when you are not particularly interested in maxing out the kernels'
|
|
// performance. Usually, this will give you a reasonable speed, but if you
|
|
// really want to find the best performance, it is advised that you tune the
|
|
// size of the blocks and grids more reasonably.
|
|
// A legacy note: this is derived from the old good Caffe days, when I simply
|
|
// hard-coded the number of threads and wanted to keep backward compatibility
|
|
// for different computation capabilities.
|
|
// For more info on CUDA compute capabilities, visit the NVidia website at:
|
|
// http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
|
|
|
|
// The number of cuda threads to use. 512 is used for backward compatibility,
|
|
// and it is observed that setting it to 1024 usually does not bring much
|
|
// performance gain (which makes sense, because warp size being 32 means that
|
|
// blindly setting a huge block for a random kernel isn't optimal).
|
|
constexpr int CAFFE_CUDA_NUM_THREADS = 512;
|
|
// The maximum number of blocks to use in the default kernel call. We set it to
|
|
// 4096 which would work for compute capability 2.x (where 65536 is the limit).
|
|
// This number is very carelessly chosen. Ideally, one would like to look at
|
|
// the hardware at runtime, and pick the number of blocks that makes most
|
|
// sense for the specific runtime environment. This is a todo item.
|
|
constexpr int CAFFE_MAXIMUM_NUM_BLOCKS = 4096;
|
|
|
|
/**
|
|
* @brief Compute the number of blocks needed to run N threads.
|
|
*/
|
|
inline int CAFFE_GET_BLOCKS(const int N) {
|
|
return std::max(
|
|
std::min(
|
|
(N + CAFFE_CUDA_NUM_THREADS - 1) / CAFFE_CUDA_NUM_THREADS,
|
|
CAFFE_MAXIMUM_NUM_BLOCKS),
|
|
// Use at least 1 block, since CUDA does not allow empty block
|
|
1);
|
|
}
|
|
|
|
class DeviceGuard {
|
|
public:
|
|
explicit DeviceGuard(int newDevice) : previous_(CaffeCudaGetDevice()) {
|
|
if (previous_ != newDevice) {
|
|
CaffeCudaSetDevice(newDevice);
|
|
}
|
|
}
|
|
|
|
~DeviceGuard() noexcept {
|
|
CaffeCudaSetDevice(previous_);
|
|
}
|
|
|
|
private:
|
|
int previous_;
|
|
};
|
|
|
|
template <typename T, int N>
|
|
struct SimpleArray {
|
|
T data[N];
|
|
int size;
|
|
};
|
|
|
|
} // namespace caffe2
|
|
#endif // CAFFE2_CORE_COMMON_GPU_H_
|