mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: hankun is using the optimizer, but having mixed set of of GPU and CPU operators. Currently this won't work with optimizer since it adds optimizers for all parameters in the current device scope. But we can actually infer the device that a param belongs to by looking at the device option in the param_init_net. Added a test as well. Reviewed By: salexspb Differential Revision: D5133652 fbshipit-source-id: ad8689d75ac1f5c78981bae1b6978fe91e40ef0f
137 lines
5.1 KiB
Python
137 lines
5.1 KiB
Python
## @package optimizer_test_util
|
|
# Module caffe2.python.optimizer_test_util
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from caffe2.python import core, workspace, cnn
|
|
from caffe2.proto import caffe2_pb2
|
|
|
|
|
|
class OptimizerTestBase(object):
|
|
"""
|
|
This is an abstract base class.
|
|
Don't inherit from unittest.TestCase, and don't name it 'Test*'.
|
|
Do, however, do these things in classes which inherit from this.
|
|
"""
|
|
|
|
def _createDense(self):
|
|
perfect_model = np.array([2, 6, 5, 0, 1]).astype(np.float32)
|
|
np.random.seed(123) # make test deterministic
|
|
data = np.random.randint(
|
|
2,
|
|
size=(20, perfect_model.size)).astype(np.float32)
|
|
label = np.dot(data, perfect_model)[:, np.newaxis]
|
|
|
|
model = cnn.CNNModelHelper("NCHW", name="test")
|
|
out = model.FC(
|
|
'data', 'fc', perfect_model.size, 1, ('ConstantFill', {}),
|
|
('ConstantFill', {}), axis=0
|
|
)
|
|
sq = model.SquaredL2Distance([out, 'label'])
|
|
loss = model.AveragedLoss(sq, "avg_loss")
|
|
grad_map = model.AddGradientOperators([loss])
|
|
self.assertIsInstance(grad_map['fc_w'], core.BlobReference)
|
|
return (model, perfect_model, data, label)
|
|
|
|
def testDense(self):
|
|
model, perfect_model, data, label = self._createDense()
|
|
optimizer = self.build_optimizer(model)
|
|
|
|
workspace.FeedBlob('data', data[0])
|
|
workspace.FeedBlob('label', label[0])
|
|
workspace.RunNetOnce(model.param_init_net)
|
|
workspace.CreateNet(model.net, True)
|
|
for _ in range(2000):
|
|
idx = np.random.randint(data.shape[0])
|
|
workspace.FeedBlob('data', data[idx])
|
|
workspace.FeedBlob('label', label[idx])
|
|
workspace.RunNet(model.net.Proto().name)
|
|
|
|
np.testing.assert_allclose(
|
|
perfect_model[np.newaxis, :],
|
|
workspace.FetchBlob('fc_w'),
|
|
atol=1e-2
|
|
)
|
|
self.check_optimizer(optimizer)
|
|
|
|
@unittest.skipIf(not workspace.has_gpu_support, "No gpu support")
|
|
def testGPUDense(self):
|
|
device_opt = core.DeviceOption(caffe2_pb2.CUDA, 0)
|
|
with core.DeviceScope(device_opt):
|
|
model, _perfect_model, data, label = self._createDense()
|
|
model.CopyGPUToCPU('fc', 'fc_cpu')
|
|
workspace.FeedBlob('data', data[0])
|
|
workspace.FeedBlob('label', label[0])
|
|
|
|
# Add some CPU ops
|
|
model.FC('fc_cpu', 'fc2', dim_in=1, dim_out=10, axis=0)
|
|
|
|
# Create optimizer in default device scope
|
|
self.build_optimizer(model)
|
|
|
|
if self._skip_gpu:
|
|
return
|
|
|
|
# Run net to see it does not crash
|
|
workspace.RunNetOnce(model.param_init_net)
|
|
workspace.CreateNet(model.net, True)
|
|
workspace.RunNet(model.net.Proto().name)
|
|
|
|
|
|
def testSparse(self):
|
|
# to test duplicated indices we assign two indices to each weight and
|
|
# thus each weight might count once or twice
|
|
DUPLICATION = 2
|
|
perfect_model = np.array([2, 6, 5, 0, 1]).astype(np.float32)
|
|
np.random.seed(123) # make test deterministic
|
|
data = np.random.randint(
|
|
2,
|
|
size=(20, perfect_model.size * DUPLICATION)).astype(np.float32)
|
|
label = np.dot(data, np.repeat(perfect_model, DUPLICATION))
|
|
|
|
model = cnn.CNNModelHelper("NCHW", name="test")
|
|
# imitate what model wrapper does
|
|
w = model.param_init_net.ConstantFill(
|
|
[], 'w', shape=[perfect_model.size], value=0.0)
|
|
model.params.append(w)
|
|
picked = model.net.Gather([w, 'indices'], 'gather')
|
|
out = model.ReduceFrontSum(picked, 'sum')
|
|
|
|
sq = model.SquaredL2Distance([out, 'label'])
|
|
loss = model.AveragedLoss(sq, "avg_loss")
|
|
grad_map = model.AddGradientOperators([loss])
|
|
self.assertIsInstance(grad_map['w'], core.GradientSlice)
|
|
optimizer = self.build_optimizer(model)
|
|
|
|
workspace.CreateBlob('indices')
|
|
workspace.CreateBlob('label')
|
|
|
|
for indices_type in [np.int32, np.int64]:
|
|
workspace.RunNetOnce(model.param_init_net)
|
|
workspace.CreateNet(model.net, True)
|
|
for _ in range(2000):
|
|
idx = np.random.randint(data.shape[0])
|
|
# transform into indices of binary features
|
|
indices = np.repeat(np.arange(perfect_model.size),
|
|
DUPLICATION)[data[idx] == 1]
|
|
if indices.size == 0:
|
|
continue
|
|
workspace.FeedBlob(
|
|
'indices',
|
|
indices.reshape((indices.size,)).astype(indices_type)
|
|
)
|
|
workspace.FeedBlob('label',
|
|
np.array(label[idx]).astype(np.float32))
|
|
workspace.RunNet(model.net.Proto().name)
|
|
|
|
np.testing.assert_allclose(
|
|
perfect_model,
|
|
workspace.FetchBlob('w'),
|
|
atol=1e-2
|
|
)
|
|
self.check_optimizer(optimizer)
|