mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: These return views in Python 3 which would not do anything in a lot of usages currently present in Caffe2. This diff simply removes (almost) all usages of these two in Caffe2 and sub projects in favor of comprehensions which are also easier to read/understand Reviewed By: akyrola Differential Revision: D5142049 fbshipit-source-id: e800631d2df7d0823fed698cae46c486038007dc
351 lines
10 KiB
Python
351 lines
10 KiB
Python
## @package net_printer
|
|
# Module caffe2.python.net_printer
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.proto.caffe2_pb2 import OperatorDef
|
|
from caffe2.python.checkpoint import Job
|
|
from caffe2.python.core import Net, ExecutionStep, Plan
|
|
from caffe2.python.task import Task, TaskGroup, WorkspaceType, TaskOutput
|
|
from collections import defaultdict
|
|
from contextlib import contextmanager
|
|
from copy import copy
|
|
from itertools import chain
|
|
|
|
|
|
class Visitor(object):
|
|
@classmethod
|
|
def register(cls, Type):
|
|
if not(hasattr(cls, 'visitors')):
|
|
cls.visitors = []
|
|
|
|
def _register(func):
|
|
cls.visitors.append((Type, func))
|
|
return func
|
|
|
|
return _register
|
|
|
|
def __call__(self, obj, *args, **kwargs):
|
|
if obj is None:
|
|
return
|
|
for Type, func in self.__class__.visitors:
|
|
if isinstance(obj, Type):
|
|
return func(self, obj, *args, **kwargs)
|
|
raise TypeError('%s: unsupported object type: %s' % (
|
|
self.__class__.__name__, type(obj)))
|
|
|
|
|
|
class Analyzer(Visitor):
|
|
PREFIXES_TO_IGNORE = {'distributed_ctx_init'}
|
|
|
|
def __init__(self):
|
|
self.workspaces = defaultdict(lambda: defaultdict(lambda: 0))
|
|
self.workspace_ctx = []
|
|
|
|
@property
|
|
def workspace(self):
|
|
return self.workspace_ctx[-1]
|
|
|
|
@contextmanager
|
|
def set_workspace(self, node=None, ws=None, do_copy=False):
|
|
if ws is not None:
|
|
ws = ws
|
|
elif node is not None:
|
|
ws = self.workspaces[str(node)]
|
|
else:
|
|
ws = self.workspace
|
|
if do_copy:
|
|
ws = copy(ws)
|
|
self.workspace_ctx.append(ws)
|
|
yield ws
|
|
del self.workspace_ctx[-1]
|
|
|
|
def define_blob(self, blob):
|
|
self.workspace[blob] += 1
|
|
|
|
def need_blob(self, blob):
|
|
if any(blob.startswith(p) for p in Analyzer.PREFIXES_TO_IGNORE):
|
|
return
|
|
assert blob in self.workspace, 'Blob undefined: %s' % blob
|
|
|
|
|
|
@Analyzer.register(OperatorDef)
|
|
def analyze_op(analyzer, op):
|
|
for x in op.input:
|
|
analyzer.need_blob(x)
|
|
for x in op.output:
|
|
analyzer.define_blob(x)
|
|
|
|
|
|
@Analyzer.register(Net)
|
|
def analyze_net(analyzer, net):
|
|
for x in net.Proto().op:
|
|
analyzer(x)
|
|
|
|
|
|
@Analyzer.register(ExecutionStep)
|
|
def analyze_step(analyzer, step):
|
|
proto = step.Proto()
|
|
if proto.report_net:
|
|
with analyzer.set_workspace(do_copy=True):
|
|
analyzer(step.get_net(proto.report_net))
|
|
all_new_blobs = set()
|
|
substeps = step.Substeps() + [step.get_net(n) for n in proto.network]
|
|
for substep in substeps:
|
|
with analyzer.set_workspace(do_copy=proto.concurrent_substeps) as ws_in:
|
|
analyzer(substep)
|
|
if proto.should_stop_blob:
|
|
analyzer.need_blob(proto.should_stop_blob)
|
|
if proto.concurrent_substeps:
|
|
new_blobs = set(ws_in.keys()) - set(analyzer.workspace.keys())
|
|
assert len(all_new_blobs & new_blobs) == 0, (
|
|
'Error: Blobs created by multiple parallel steps: %s' % (
|
|
', '.join(all_new_blobs & new_blobs)))
|
|
all_new_blobs |= new_blobs
|
|
for x in all_new_blobs:
|
|
analyzer.define_blob(x)
|
|
|
|
|
|
@Analyzer.register(Task)
|
|
def analyze_task(analyzer, task):
|
|
# check that our plan protobuf is not too large (limit of 64Mb)
|
|
step = task.get_step()
|
|
plan = Plan(task.node)
|
|
plan.AddStep(step)
|
|
proto_len = len(plan.Proto().SerializeToString())
|
|
assert proto_len < 2 ** 26, (
|
|
'Due to a protobuf limitation, serialized tasks must be smaller '
|
|
'than 64Mb, but this task has {} bytes.' % proto_len)
|
|
|
|
is_private = task.workspace_type() != WorkspaceType.GLOBAL
|
|
with analyzer.set_workspace(do_copy=is_private):
|
|
analyzer(step)
|
|
|
|
|
|
@Analyzer.register(TaskGroup)
|
|
def analyze_task_group(analyzer, tg):
|
|
for task in tg.tasks_by_node().tasks():
|
|
with analyzer.set_workspace(node=task.node):
|
|
analyzer(task)
|
|
|
|
|
|
@Analyzer.register(Job)
|
|
def analyze_job(analyzer, job):
|
|
analyzer(job.init_group)
|
|
analyzer(job.epoch_group)
|
|
|
|
|
|
def analyze(obj):
|
|
"""
|
|
Given a Job, visits all the execution steps making sure that:
|
|
- no undefined blobs will be found during excution
|
|
- no blob with same name is defined in concurrent steps
|
|
"""
|
|
Analyzer()(obj)
|
|
|
|
|
|
class Text(object):
|
|
def __init__(self):
|
|
self._indent = 0
|
|
self._lines_in_context = [0]
|
|
self.lines = []
|
|
|
|
@contextmanager
|
|
def context(self, text):
|
|
if text is not None:
|
|
self.add('with %s:' % text)
|
|
self._indent += 4
|
|
self._lines_in_context.append(0)
|
|
yield
|
|
if text is not None:
|
|
if self._lines_in_context[-1] == 0:
|
|
self.add('pass')
|
|
self._indent -= 4
|
|
del self._lines_in_context[-1]
|
|
|
|
def add(self, text):
|
|
self._lines_in_context[-1] += 1
|
|
self.lines.append((' ' * self._indent) + text)
|
|
|
|
def __str__(self):
|
|
return '\n'.join(self.lines)
|
|
|
|
|
|
class Printer(Visitor, Text):
|
|
def __init__(self, factor_prefixes=False):
|
|
super(Visitor, self).__init__()
|
|
super(Text, self).__init__()
|
|
self.factor_prefixes = factor_prefixes
|
|
|
|
|
|
def _sanitize_str(s):
|
|
s = str(s)
|
|
return s if len(s) < 64 else (s[:64] + '...<+len=%d>' % (len(s) - 64))
|
|
|
|
|
|
def _arg_val(arg):
|
|
if arg.HasField('f'):
|
|
return str(arg.f)
|
|
if arg.HasField('i'):
|
|
return str(arg.i)
|
|
if arg.HasField('s'):
|
|
return _sanitize_str(arg.s)
|
|
if arg.floats:
|
|
return str(list(arg.floats))
|
|
if arg.ints:
|
|
return str(list(arg.ints))
|
|
if arg.strings:
|
|
return str([_sanitize_str(s) for s in arg.strings])
|
|
return '[]'
|
|
|
|
|
|
def commonprefix(m):
|
|
"Given a list of strings, returns the longest common prefix"
|
|
if not m:
|
|
return ''
|
|
s1 = min(m)
|
|
s2 = max(m)
|
|
for i, c in enumerate(s1):
|
|
if c != s2[i]:
|
|
return s1[:i]
|
|
return s1
|
|
|
|
|
|
def factor_prefix(vals, do_it):
|
|
vals = [str(v) for v in vals]
|
|
prefix = commonprefix(vals) if len(vals) > 1 and do_it else ''
|
|
joined = ', '.join(v[len(prefix):] for v in vals)
|
|
return '%s[%s]' % (prefix, joined) if prefix else joined
|
|
|
|
|
|
def call(op, inputs=None, outputs=None, factor_prefixes=False):
|
|
if not inputs:
|
|
inputs = ''
|
|
else:
|
|
inputs_v = [a for a in inputs if not isinstance(a, tuple)]
|
|
inputs_kv = [a for a in inputs if isinstance(a, tuple)]
|
|
inputs = ', '.join(
|
|
x
|
|
for x in chain(
|
|
[factor_prefix(inputs_v, factor_prefixes)],
|
|
('%s=%s' % kv for kv in inputs_kv),
|
|
)
|
|
if x
|
|
)
|
|
call = '%s(%s)' % (op, inputs)
|
|
return call if not outputs else '%s = %s' % (
|
|
factor_prefix(outputs, factor_prefixes), call)
|
|
|
|
|
|
@Printer.register(OperatorDef)
|
|
def print_op(text, op):
|
|
text.add(call(
|
|
op.type,
|
|
list(op.input) + [(a.name, _arg_val(a)) for a in op.arg],
|
|
op.output,
|
|
factor_prefixes=text.factor_prefixes))
|
|
|
|
|
|
@Printer.register(Net)
|
|
def print_net(text, net):
|
|
text.add('# net: %s' % str(net))
|
|
for op in net.Proto().op:
|
|
text(op)
|
|
|
|
|
|
def _get_step_context(step):
|
|
proto = step.Proto()
|
|
if proto.should_stop_blob:
|
|
return call('loop'), False
|
|
if proto.num_iter and proto.num_iter != 1:
|
|
return call('loop', [proto.num_iter]), False
|
|
concurrent = proto.concurrent_substeps and len(step.Substeps()) > 1
|
|
if concurrent:
|
|
return call('parallel'), True
|
|
if proto.report_net:
|
|
return call('run_once'), False
|
|
return None, False
|
|
|
|
|
|
@Printer.register(ExecutionStep)
|
|
def print_step(text, step):
|
|
proto = step.Proto()
|
|
step_ctx, do_substep = _get_step_context(step)
|
|
with text.context(step_ctx):
|
|
if proto.report_net:
|
|
with text.context(call('report_net', [proto.report_interval])):
|
|
text(step.get_net(proto.report_net))
|
|
substeps = step.Substeps() + [step.get_net(n) for n in proto.network]
|
|
for substep in substeps:
|
|
if (isinstance(substep, ExecutionStep) and
|
|
substep.Proto().run_every_ms):
|
|
substep_ctx = call(
|
|
'reporter',
|
|
[str(substep), ('interval_ms', substep.Proto().run_every_ms)])
|
|
elif do_substep:
|
|
substep_ctx = call('step', [str(substep)])
|
|
else:
|
|
substep_ctx = None
|
|
with text.context(substep_ctx):
|
|
text(substep)
|
|
if proto.should_stop_blob:
|
|
text.add(call('yield stop_if', [proto.should_stop_blob]))
|
|
|
|
|
|
def _print_task_output(x):
|
|
assert isinstance(x, TaskOutput)
|
|
return 'Output[' + ', '.join(str(x) for x in x.names) + ']'
|
|
|
|
|
|
@Printer.register(Task)
|
|
def print_task(text, task):
|
|
outs = ', '.join(_print_task_output(o) for o in task.outputs())
|
|
context = [('node', task.node), ('name', task.name), ('outputs', outs)]
|
|
with text.context(call('Task', context)):
|
|
text(task.get_step())
|
|
|
|
|
|
@Printer.register(TaskGroup)
|
|
def print_task_group(text, tg, header=None):
|
|
with text.context(header or call('TaskGroup')):
|
|
for task in tg.tasks_by_node().tasks():
|
|
text(task)
|
|
|
|
|
|
@Printer.register(Job)
|
|
def print_job(text, job):
|
|
text(job.init_group, 'Job.current().init_group')
|
|
text(job.epoch_group, 'Job.current().epoch_group')
|
|
with text.context('Job.current().stop_signals'):
|
|
for out in job.stop_signals:
|
|
text.add(_print_task_output(out))
|
|
text(job.exit_group, 'Job.current().exit_group')
|
|
|
|
|
|
def to_string(obj):
|
|
"""
|
|
Given a Net, ExecutionStep, Task, TaskGroup or Job, produces a string
|
|
with detailed description of the execution steps.
|
|
"""
|
|
printer = Printer()
|
|
printer(obj)
|
|
return str(printer)
|
|
|
|
|
|
def debug_net(net):
|
|
"""
|
|
Given a Net, produce another net that logs info about the operator call
|
|
before each operator execution. Use for debugging purposes.
|
|
"""
|
|
assert isinstance(net, Net)
|
|
debug_net = Net(str(net))
|
|
assert isinstance(net, Net)
|
|
for op in net.Proto().op:
|
|
text = Text()
|
|
print_op(op, text)
|
|
debug_net.LogInfo(str(text))
|
|
debug_net.Proto().op.extend([op])
|
|
return debug_net
|