mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/42133 Test Plan: We save a module with module debugging information as follows. ``` import torch m = torch.jit.load('./detect.pt') # Save module without debug info m._save_for_lite_interpreter('./detect.bc') # Save module with debug info m._save_for_lite_interpreter('./detect.bc', _save_debug_info_in_bytecode=True) ``` Size of the file without module debugging information: 4.508 MB Size of the file with module debugging information: 4.512 MB Reviewed By: kimishpatel Differential Revision: D22803740 Pulled By: taivu1998 fbshipit-source-id: c82ea62498fde36a1cfc5b073e2cea510d3b7edb
145 lines
5.1 KiB
Python
145 lines
5.1 KiB
Python
import unittest
|
|
import torch
|
|
import torch.utils.bundled_inputs
|
|
|
|
import io
|
|
|
|
from torch.jit.mobile import _load_for_lite_interpreter
|
|
|
|
class TestLiteScriptModule(unittest.TestCase):
|
|
|
|
def test_load_mobile_module(self):
|
|
class MyTestModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyTestModule, self).__init__()
|
|
|
|
def forward(self, x):
|
|
return x + 10
|
|
|
|
input = torch.tensor([1])
|
|
|
|
script_module = torch.jit.script(MyTestModule())
|
|
script_module_result = script_module(input)
|
|
|
|
buffer = io.BytesIO(script_module._save_to_buffer_for_lite_interpreter())
|
|
buffer.seek(0)
|
|
mobile_module = _load_for_lite_interpreter(buffer)
|
|
|
|
mobile_module_result = mobile_module(input)
|
|
torch.testing.assert_allclose(script_module_result, mobile_module_result)
|
|
|
|
mobile_module_forward_result = mobile_module.forward(input)
|
|
torch.testing.assert_allclose(script_module_result, mobile_module_forward_result)
|
|
|
|
mobile_module_run_method_result = mobile_module.run_method("forward", input)
|
|
torch.testing.assert_allclose(script_module_result, mobile_module_run_method_result)
|
|
|
|
def test_save_mobile_module_with_debug_info(self):
|
|
class A(torch.nn.Module):
|
|
def __init__(self):
|
|
super(A, self).__init__()
|
|
|
|
def forward(self, x):
|
|
return x + 1
|
|
|
|
class B(torch.nn.Module):
|
|
def __init__(self):
|
|
super(B, self).__init__()
|
|
self.A0 = A()
|
|
self.A1 = A()
|
|
|
|
def forward(self, x):
|
|
return self.A0(x) + self.A1(x)
|
|
|
|
input = torch.tensor([5])
|
|
trace_module = torch.jit.trace(B(), input)
|
|
bytes = trace_module._save_to_buffer_for_lite_interpreter(_save_mobile_debug_info=True)
|
|
|
|
assert(b"mobile_debug.pkl" in bytes)
|
|
assert(b"module_debug_info" in bytes)
|
|
assert(b"top(B).forward" in bytes)
|
|
assert(b"top(B).A0(A).forward" in bytes)
|
|
assert(b"top(B).A1(A).forward" in bytes)
|
|
|
|
def test_load_mobile_module_with_debug_info(self):
|
|
class MyTestModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyTestModule, self).__init__()
|
|
|
|
def forward(self, x):
|
|
return x + 5
|
|
|
|
input = torch.tensor([3])
|
|
|
|
script_module = torch.jit.script(MyTestModule())
|
|
script_module_result = script_module(input)
|
|
|
|
buffer = io.BytesIO(script_module._save_to_buffer_for_lite_interpreter(_save_mobile_debug_info=True))
|
|
buffer.seek(0)
|
|
mobile_module = _load_for_lite_interpreter(buffer)
|
|
|
|
mobile_module_result = mobile_module(input)
|
|
torch.testing.assert_allclose(script_module_result, mobile_module_result)
|
|
|
|
mobile_module_forward_result = mobile_module.forward(input)
|
|
torch.testing.assert_allclose(script_module_result, mobile_module_forward_result)
|
|
|
|
mobile_module_run_method_result = mobile_module.run_method("forward", input)
|
|
torch.testing.assert_allclose(script_module_result, mobile_module_run_method_result)
|
|
|
|
def test_find_and_run_method(self):
|
|
class MyTestModule(torch.nn.Module):
|
|
def forward(self, arg):
|
|
return arg
|
|
|
|
input = (torch.tensor([1]), )
|
|
|
|
script_module = torch.jit.script(MyTestModule())
|
|
script_module_result = script_module(*input)
|
|
|
|
buffer = io.BytesIO(script_module._save_to_buffer_for_lite_interpreter())
|
|
buffer.seek(0)
|
|
mobile_module = _load_for_lite_interpreter(buffer)
|
|
|
|
has_bundled_inputs = mobile_module.find_method("get_all_bundled_inputs")
|
|
self.assertFalse(has_bundled_inputs)
|
|
|
|
torch.utils.bundled_inputs.augment_model_with_bundled_inputs(
|
|
script_module, [input], [])
|
|
|
|
buffer = io.BytesIO(script_module._save_to_buffer_for_lite_interpreter())
|
|
buffer.seek(0)
|
|
mobile_module = _load_for_lite_interpreter(buffer)
|
|
|
|
has_bundled_inputs = mobile_module.find_method("get_all_bundled_inputs")
|
|
self.assertTrue(has_bundled_inputs)
|
|
|
|
bundled_inputs = mobile_module.run_method("get_all_bundled_inputs")
|
|
mobile_module_result = mobile_module.forward(*bundled_inputs[0])
|
|
torch.testing.assert_allclose(script_module_result, mobile_module_result)
|
|
|
|
def test_unsupported_createobject(self):
|
|
class Foo():
|
|
def __init__(self):
|
|
return
|
|
|
|
def func(self, x: int, y: int):
|
|
return x + y
|
|
|
|
class MyTestModule(torch.nn.Module):
|
|
def forward(self, arg):
|
|
f = Foo()
|
|
return f.func(1, 2)
|
|
|
|
script_module = torch.jit.script(MyTestModule())
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
r"^CREATE_OBJECT is not supported in mobile module\. "
|
|
r"Workaround: instead of using arbitrary class type \(class Foo\(\)\), "
|
|
r"define a pytorch class \(class Foo\(torch\.nn\.Module\)\)\.$"):
|
|
script_module._save_to_buffer_for_lite_interpreter()
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|