pytorch/torch/csrc/jit/runtime/static/ops.cpp
Hao Lu ccd0977060 [Static Runtime] Support prim::GetAttr/SetAttr (#61505)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61505

The handling of `self` in static runtime was previously incorrect. This diff fixed that issue, since self is essential to prim::GetAttr/SetAttr. After all, most of the time we're getting and setting attributes from self, the torch script module.

Reviewed By: ajyu

Differential Revision: D29350173

fbshipit-source-id: 6e62add4cda517ef8cd6c315d4cb0595e7d531fb
2021-07-10 14:06:06 -07:00

1759 lines
63 KiB
C++

#include <torch/csrc/jit/runtime/static/ops.h>
#include <ATen/CPUFunctions.h>
#include <ATen/InferSize.h>
#include <ATen/NativeFunctions.h>
#include <ATen/ScalarOps.h>
#include <ATen/TensorUtils.h>
#include <ATen/native/EmbeddingBag.h>
#include <ATen/native/Fill.h>
#include <ATen/native/IndexingUtils.h>
#include <ATen/native/Resize.h>
#include <ATen/native/TensorAdvancedIndexing.h>
#include <ATen/native/layer_norm.h>
#include <ATen/native/quantized/cpu/fbgemm_utils.h>
#include <ATen/native/quantized/cpu/qembeddingbag.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/runtime/vararg_functions.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/llvm_codegen.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
C10_DEFINE_bool(
static_runtime_enable_fast_math,
true,
"If on, static runtime may use use optimizations that cause accurary loss "
"vs the jit interpreter");
namespace at {
namespace native {
void repeat_out(at::Tensor& result, const Tensor& self, IntArrayRef repeats) {
TORCH_CHECK(
repeats.size() >= static_cast<size_t>(self.dim()),
"Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor");
// Add new leading dimensions to the tensor if the
// number of target dimensions is larger than the
// number of source dimensions.
int64_t num_new_dimensions = repeats.size() - self.dim();
DimVector padded_size(num_new_dimensions, 1);
padded_size.insert(
padded_size.end(), self.sizes().begin(), self.sizes().end());
DimVector target_size(repeats.size());
bool zero_tensor = false;
for (const auto idx : c10::irange(repeats.size())) {
if (repeats[idx] == 0) {
zero_tensor = true;
}
target_size[idx] = padded_size[idx] * repeats[idx];
}
// return an empty tensor if one of the repeat dimensions is zero
at::native::resize_(result, target_size, c10::nullopt);
if (zero_tensor) {
return;
}
Tensor xtensor = at::native::expand(self, padded_size);
Tensor urtensor = at::native::alias(result);
for (const auto i : c10::irange(xtensor.dim())) {
// can't unfold with step 0, so make sure step is at least 1
// (it doesn't matter what it is in that case, because the size is 0).
urtensor = urtensor.unfold(
i, xtensor.size(i), std::max<int64_t>(xtensor.size(i), 1));
}
at::native::copy_(urtensor, xtensor.expand_as(urtensor));
}
// copy version of view ops
at::Tensor& reshape_copy_out(
at::Tensor& out,
const at::Tensor& self,
const std::vector<int64_t>& proposed_shape,
bool infer_size) {
auto shape = infer_size ? at::infer_size(proposed_shape, self.numel())
: proposed_shape;
at::native::resize_(out, shape, c10::nullopt);
auto self_contig = self.expect_contiguous();
size_t nbytes = self.nbytes();
if (nbytes == 0) {
return out;
}
const void* self_data = self_contig->data_ptr();
void* out_data = out.data_ptr();
memcpy(out_data, self_data, nbytes);
return out;
}
at::Tensor& flatten_copy_out(
at::Tensor& out,
const at::Tensor& self,
int64_t start_dim,
int64_t end_dim) {
start_dim =
start_dim < 0 ? c10::maybe_wrap_dim(start_dim, self.dim()) : start_dim;
end_dim = end_dim < 0 ? c10::maybe_wrap_dim(end_dim, self.dim()) : end_dim;
TORCH_CHECK(
start_dim <= end_dim,
"flatten() has invalid args: start_dim cannot come after end_dim");
if (self.dim() == 0) {
return reshape_copy_out(out, self, {1}, false);
}
if (start_dim == end_dim) {
auto shape = self.sizes().vec();
return reshape_copy_out(out, self, shape, false);
}
// We don't want to infer_size on the entire shape, because that can give us
// an extra degree of freedom we don't want; for example, consider shape [0,
// 1, 3, 0], with start_dim=1, end_dim=2. It's clear we want result shape [0,
// 3, 0] but passing [0, -1, 0] to infer_size means the -1 can take on any
// value and satisfy the constraints.
auto iter = self.sizes().data();
auto slice_numel = std::accumulate(
iter + start_dim,
iter + end_dim + 1,
static_cast<int64_t>(1),
// NOLINTNEXTLINE(modernize-use-transparent-functors)
std::multiplies<int64_t>());
std::vector<int64_t> shape;
shape.reserve(self.dim() - end_dim + start_dim);
for (const auto i : c10::irange(start_dim)) {
shape.push_back(self.sizes()[i]);
}
shape.push_back(slice_numel);
for (int64_t i = end_dim + 1; i < self.dim(); i++) {
shape.push_back(self.sizes()[i]);
}
return reshape_copy_out(out, self, shape, false);
}
at::Tensor& to_copy_out(
Tensor& out,
const Tensor& self,
bool non_blocking,
bool copy_strides) {
if (copy_strides) {
at::native::resize_impl_cpu_(
out.unsafeGetTensorImpl(), self.sizes(), self.strides());
} else {
at::native::resize_(out, self.sizes(), c10::nullopt);
}
at::native::copy_(out, self, non_blocking);
return out;
}
} // namespace native
} // namespace at
namespace torch {
namespace jit {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
C10_DEFINE_REGISTRY(SROperatorRegistry, SROperatorFunctor);
bool opIsRegistered(const c10::Symbol& op_name) {
const std::string name(op_name.toQualString());
return SROperatorRegistry()->Has(name);
}
bool disableUnsafeMathOp(const char* op_name) {
if (FLAGS_static_runtime_enable_fast_math) {
return false;
}
// This list contains ops that use caffe2 math library or use NNC that does
// not guarantee bit exactness vs the jit interpreter. Note aten::relu is not
// included even though it uses NNC because the results of relu should always
// match.
static const std::unordered_set<std::string> fast_ops{
"aten::add", "aten::tanh", "aten::sigmoid", "aten::logit"};
return fast_ops.count(op_name) > 0;
}
std::function<void(ProcessedNode*)> getOutOfPlaceOperation(Node* n) {
auto op_name = n->kind().toQualString();
if (SROperatorRegistry()->Has(op_name) && !disableUnsafeMathOp(op_name)) {
return SROperatorRegistry()->Create(op_name)->Generate(n);
}
return nullptr;
}
// Expensive check, use sparingly.
// This is needed to make sure that we only switch to out variants for the
// supported overloads, which is checked in the `Generate` step in
// `SROperatorRegistry()->Create(op_name)->Generate(n)`
bool canReuseInputsOutputs(Node* n) {
return getOutOfPlaceOperation(n) != nullptr;
}
// returns true if the producers of the inputs
// to this operations are out of place.
// This means the IValues will not change run to run
bool inputsCanRunOutOfPlace(Node* n) {
for (auto* input : n->inputs()) {
if (!canReuseInputsOutputs(input->node())) {
return false;
}
}
return true;
}
bool isOptimizableContainerType(Node* n) {
const auto& type = n->output()->type();
bool is_supported_type = false;
if (type->kind() == TypeKind::ListType) {
const auto& list_type = type->expectRef<ListType>();
is_supported_type =
list_type.getElementType()->kind() == TypeKind::TensorType;
} else if (type->kind() == TypeKind::TupleType) {
const auto& tuple_type = type->expectRef<TupleType>();
auto types = tuple_type.containedTypes();
const auto& iter =
std::find_if(types.begin(), types.end(), [](const TypePtr& elem) {
return elem->kind() == TypeKind::TensorType;
});
is_supported_type = iter != types.end();
}
return is_supported_type && inputsCanRunOutOfPlace(n);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(
prim::ListConstruct,
prim_ListConstruct,
[](Node* n) -> SROperator {
const auto& type = n->output()->type()->expectRef<ListType>();
bool can_optimize = isOptimizableContainerType(n);
return [can_optimize, &type](ProcessedNode* p_node) {
const auto& out_l = p_node->Output(0);
if (!out_l.isNone() && can_optimize) {
return;
}
const size_t size = p_node->inputs().size();
c10::List<IValue> vals(type.getElementType());
vals.reserve(size);
for (const auto i : c10::irange(size)) {
vals.push_back(p_node->Input(i));
}
p_node->Output(0) = std::move(vals);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(
prim::TupleConstruct,
prim_TupleConstruct,
[](Node* n) -> SROperator {
bool can_optimize = isOptimizableContainerType(n);
return [can_optimize](ProcessedNode* p_node) {
const auto& out_l = p_node->Output(0);
if (!out_l.isNone() && can_optimize) {
return;
}
// prepare inputs
const size_t size = p_node->inputs().size();
std::vector<IValue> vals;
vals.reserve(size);
for (const auto i : c10::irange(size)) {
vals.push_back(p_node->Input(i));
}
p_node->Output(0) = c10::ivalue::Tuple::create(std::move(vals));
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::mul, aten_mul, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::mul.Tensor(Tensor self, Tensor other) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto& in1_t = p_node->Input(1).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::mul_out(out_t, in0_t, in1_t);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::addmm, aten_addmm, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto& in1_t = p_node->Input(1).toTensor();
const auto& in2_t = p_node->Input(2).toTensor();
const auto in3_s = p_node->Input(3).toScalar();
const auto in4_s = p_node->Input(4).toScalar();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::addmm_out(out_t, in0_t, in1_t, in2_t, in3_s, in4_s);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::clamp, aten_clamp, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> Tensor")) &&
!n->matches(torch::schema(
"aten::clamp.Tensor(Tensor self, Tensor? min=None, Tensor? max=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
if (p_node->Input(1).isTensor()) {
auto in1_t = p_node->Input(1).toOptional<at::Tensor>();
auto in2_t = p_node->Input(2).toOptional<at::Tensor>();
at::native::clamp_out(in0_t, in1_t, in2_t, out_t);
} else {
auto in1_s = p_node->Input(1).toOptional<at::Scalar>();
auto in2_s = p_node->Input(2).toOptional<at::Scalar>();
at::native::clamp_out(in0_t, in1_s, in2_s, out_t);
}
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::bmm, aten_bmm, [](Node* n) -> SROperator {
if (!n->matches(
torch::schema("aten::bmm(Tensor self, Tensor mat2) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto& in1_t = p_node->Input(1).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::bmm_out_cpu(in0_t, in1_t, out_t);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::nan_to_num, aten_nan_to_num, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::nan_to_num(Tensor self, float? nan=None, float? posinf=None, float? neginf=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_d = p_node->Input(1).toOptional<double>();
const auto in2_d = p_node->Input(2).toOptional<double>();
const auto in3_d = p_node->Input(3).toOptional<double>();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::nan_to_num_out(in0_t, in1_d, in2_d, in3_d, out_t);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::cat, aten_cat, [](Node* n) -> SROperator {
if (!n->matches(
torch::schema("aten::cat(Tensor[] tensors, int dim=0) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto in0_tl = p_node->Input(0).toTensorVector();
const auto in1_i = p_node->Input(1).toInt();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_tl[0]);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::_cat_out_cpu(in0_tl, in1_i, out_t);
};
});
// Split out into a function to appease MSVC's pre-processor
SROperator aten_stack(Node* n) {
if (!n->matches(torch::schema(
"aten::stack(Tensor[] tensors, int dim=0) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto inputs = p_node->Input(0).toTensorVector();
const auto dim = p_node->Input(1).toInt();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(inputs[0]);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::_stack_out_cpu(inputs, dim, out_t);
};
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::stack, aten_stack, aten_stack);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::leaky_relu, aten_leaky_relu, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::leaky_relu(Tensor self, Scalar negative_slope=0.01) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_s = p_node->Input(1).toScalar();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
at::cpu::leaky_relu_out(out_t, in0_t, in1_s);
};
});
namespace {
// Use the width of an AVX-512 vector by default; this happens to work OK for
// AVX2 as well. Some ops benefit from using multiple AVX ports, in which case
// they are vectorized by twice this constant. An exception is logit, since it
// contains FP divide, which is single-ported.
static constexpr int kVectorWidth = 16;
#ifdef TORCH_ENABLE_LLVM
struct TEWrapper {
tensorexpr::KernelArena ka;
tensorexpr::KernelScope ks;
std::unique_ptr<tensorexpr::LLVMCodeGen> cg;
TEWrapper() = default;
void update(std::unique_ptr<tensorexpr::LLVMCodeGen>&& cg_) {
cg = std::move(cg_);
}
void call(const std::vector<void*>& args) {
cg->call_raw(args);
}
inline bool supports(const at::Tensor& t) {
return t.is_contiguous() && t.dtype().Match<float>();
}
};
void optimizePointwise(
tensorexpr::LoopNest* ln,
tensorexpr::Tensor* target,
int width) {
using namespace torch::jit::tensorexpr;
std::vector<For*> loops = ln->getLoopStmtsFor(target);
For *inner, *tail;
TORCH_CHECK(loops.size() > 0, "No loops created for pointwise op");
ln->splitWithTail(loops[0], width, &inner, &tail);
ln->vectorize(inner);
}
std::shared_ptr<TEWrapper> wrapTECompute(
std::shared_ptr<TEWrapper> wrap,
tensorexpr::Placeholder& in,
tensorexpr::Tensor* out,
tensorexpr::VarHandle& dim,
int width = kVectorWidth) {
using namespace torch::jit::tensorexpr;
LoopNest ln({out});
optimizePointwise(&ln, out, width);
ln.prepareForCodegen();
Stmt* s = ln.root_stmt();
s = tensorexpr::IRSimplifier::simplify(s);
std::vector<CodeGen::BufferArg> args;
args.emplace_back(out);
args.emplace_back(in);
args.emplace_back(dim);
auto cg = std::make_unique<LLVMCodeGen>(s, args);
wrap->update(std::move(cg));
return wrap;
};
#else
struct TEWrapper {
tensorexpr::KernelArena ka;
tensorexpr::KernelScope ks;
TEWrapper() = default;
template <typename... Ts>
void operator()(const Ts&... ts) {
DCHECK(0 && "Invalid call");
}
void call(const std::vector<void*>& args) {
DCHECK(0 && "Invalid call");
}
inline bool supports(const at::Tensor& t) {
return false;
}
};
std::shared_ptr<TEWrapper> wrapTECompute(
std::shared_ptr<TEWrapper> wrap,
tensorexpr::Placeholder& in,
tensorexpr::Tensor* out,
tensorexpr::VarHandle& dim,
int width = kVectorWidth) {
return wrap;
};
#endif
} // namespace
std::shared_ptr<TEWrapper> createLogit(c10::optional<float> clamp) {
using namespace torch::jit::tensorexpr;
auto wrap = std::make_shared<TEWrapper>();
auto N = VarHandle("N", kInt);
Placeholder A("A", kFloat, {N});
tensorexpr::Tensor* B = Compute("B", {N}, [&](const VarHandle& i) {
auto A_elem = [&]() {
if (!clamp) {
return A.load(i);
} else {
auto elem = A.load(i);
auto min = FloatImm::make(*clamp);
auto max = FloatImm::make(1.0f - *clamp);
elem = CompareSelect::make(elem, min, min, elem, kLT);
return CompareSelect::make(elem, max, max, elem, kGT);
}
}();
return log_vml(A_elem / (FloatImm::make(1.0f) - A_elem));
});
return wrapTECompute(wrap, A, B, N);
}
std::shared_ptr<TEWrapper> createRelu() {
using namespace torch::jit::tensorexpr;
auto wrap = std::make_shared<TEWrapper>();
auto N = VarHandle("N", kInt);
Placeholder A("A", kFloat, {N});
tensorexpr::Tensor* B = Compute("B", {N}, [&](const VarHandle& i) {
auto zero = FloatImm::make(0.f);
auto a = A.load(i);
return ifThenElse(a < zero, zero, a);
});
return wrapTECompute(wrap, A, B, N);
}
std::shared_ptr<TEWrapper> createTanh() {
using namespace torch::jit::tensorexpr;
auto wrap = std::make_shared<TEWrapper>();
auto N = VarHandle("N", kInt);
Placeholder A("A", kFloat, {N});
tensorexpr::Tensor* B = Compute("B", {N}, [&](const VarHandle& i) {
auto a = A.load(i);
return fast_tanh(a);
});
return wrapTECompute(wrap, A, B, N);
}
std::shared_ptr<TEWrapper> createSigmoid() {
using namespace torch::jit::tensorexpr;
auto wrap = std::make_shared<TEWrapper>();
auto N = VarHandle("N", kInt);
Placeholder A("A", kFloat, {N});
Tensor* B =
Compute("B", {N}, [&](const VarHandle& i) { return sigmoid(A.load(i)); });
// NNC uses sleef for vectorizing sigmoid, which comes in an 8-wide flavor
// (Sleef_expf8).
constexpr int kSleefWidth = 8;
return wrapTECompute(wrap, A, B, N, kSleefWidth);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::relu, aten_relu, [](Node* n) -> SROperator {
if (!n->matches(torch::schema("aten::relu(Tensor self) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
auto te = createRelu();
return [te](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
if (!te->supports(in0_t)) {
fastResizeToZero(out_t);
at::cpu::threshold_out(out_t, in0_t, 0, 0);
} else {
at::native::resize_(out_t, in0_t.sizes(), c10::nullopt);
int64_t nn = in0_t.numel();
te->call({out_t.data_ptr(), in0_t.data_ptr(), &nn});
}
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::tanh, aten_tanh, [](Node* n) -> SROperator {
if (!n->matches(torch::schema("aten::tanh(Tensor self) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
auto te = createTanh();
return [te](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
if (!te->supports(in0_t)) {
fastResizeToZero(out_t);
at::cpu::tanh_out(out_t, in0_t);
} else {
at::native::resize_(out_t, in0_t.sizes(), c10::nullopt);
int64_t nn = in0_t.numel();
te->call({out_t.data_ptr(), in0_t.data_ptr(), &nn});
}
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(
aten::sigmoid,
aten_sigmoid,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema("aten::sigmoid(Tensor self) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
auto te = createSigmoid();
return [te](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
if (!te->supports(in0_t)) {
fastResizeToZero(out_t);
at::cpu::sigmoid_out(out_t, in0_t);
} else {
at::native::resize_(out_t, in0_t.sizes(), c10::nullopt);
int64_t nn = in0_t.numel();
te->call({out_t.data_ptr(), in0_t.data_ptr(), &nn});
}
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::logit, aten_logit, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::logit(Tensor self, float? eps=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
c10::optional<float> clamp = c10::nullopt;
if (n->inputs()[1]->node()->kind() == prim::Constant) {
auto clamp_d = toIValue(n->inputs()[1])->toOptional<double>();
clamp = clamp_d
? c10::make_optional<float>(static_cast<float>(clamp_d.value()))
: c10::nullopt;
}
auto te = clamp ? createLogit(clamp) : nullptr;
return [te](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
if (!te || !te->supports(in0_t)) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_d = p_node->Input(1).toOptional<double>();
fastResizeToZero(out_t);
at::native::logit_out(in0_t, in1_d, out_t);
} else {
at::native::resize_(out_t, in0_t.sizes(), c10::nullopt);
int64_t nn = in0_t.numel();
te->call({out_t.data_ptr(), in0_t.data_ptr(), &nn});
}
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::clone, aten_clone, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::clone(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& src = p_node->Input(0).toTensor();
const auto& optional_memory_format =
p_node->Input(1).toOptional<c10::MemoryFormat>();
auto memory_format =
optional_memory_format.value_or(c10::MemoryFormat::Preserve);
if (p_node->Output(0).isNone()) {
if (memory_format == c10::MemoryFormat::Preserve &&
src.is_non_overlapping_and_dense()) {
// Copy all strides
p_node->Output(0) =
at::empty_strided(src.sizes(), src.strides(), src.options());
} else {
memory_format = src.suggest_memory_format();
p_node->Output(0) = create_empty_from(src, memory_format);
}
}
auto& out_t = p_node->Output(0).toTensor();
at::native::resize_impl_cpu_(
out_t.unsafeGetTensorImpl(), src.sizes(), src.strides());
at::native::copy_(out_t, src, false);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(
quantized::embedding_bag_byte_rowwise_offsets,
quantized_embedding_bag_byte_rowwise_offsets,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"quantized::embedding_bag_byte_rowwise_offsets(Tensor weight, Tensor indices, Tensor? offsets=None, bool scale_grad_by_freq=False, int mode=0, bool pruned_weights=False, Tensor? per_sample_weights=None, Tensor? compressed_indices_mapping=None, bool include_last_offset=False) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& weight = p_node->Input(0).toTensor();
const auto& indices = p_node->Input(1).toTensor();
const auto offsets = p_node->Input(2).toOptional<at::Tensor>();
const auto pruned_weights = p_node->Input(5).toBool();
const auto per_sample_weights =
p_node->Input(6).toOptional<at::Tensor>();
const auto compressed_indices_mapping =
p_node->Input(7).toOptional<at::Tensor>();
const auto include_last_offset = p_node->Input(8).toBool();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(weight, at::kFloat);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
return at::native::embedding_bag_byte_rowwise_offsets_out(
out_t,
weight,
indices,
offsets,
false, // unused scale_grad_by_freq
0, // unused mode
pruned_weights,
per_sample_weights,
compressed_indices_mapping,
include_last_offset);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(
quantized::embedding_bag_4bit_rowwise_offsets,
embedding_bag_4bit_rowwise_offsets,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"quantized::embedding_bag_4bit_rowwise_offsets(Tensor weight, Tensor indices, Tensor? offsets=None, bool scale_grad_by_freq=False, int mode=0, bool pruned_weights=False, Tensor? per_sample_weights=None, Tensor? compressed_indices_mapping=None, bool include_last_offset=False) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& weight = p_node->Input(0).toTensor();
const auto& indices = p_node->Input(1).toTensor();
const auto offsets = p_node->Input(2).toOptional<at::Tensor>();
const auto pruned_weights = p_node->Input(5).toBool();
const auto per_sample_weights =
p_node->Input(6).toOptional<at::Tensor>();
const auto compressed_indices_mapping =
p_node->Input(7).toOptional<at::Tensor>();
const auto include_last_offset = p_node->Input(8).toBool();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(weight, at::kFloat);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
return at::native::embedding_bag_4bit_rowwise_offsets_out(
out_t,
weight,
indices,
offsets,
false, // unused scale_grad_by_freq
0, // unused mode
pruned_weights,
per_sample_weights,
compressed_indices_mapping,
include_last_offset);
};
});
// The out variant takes precedence over native
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::narrow_copy, aten_narrow_copy, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::narrow_copy(Tensor self, int dim, int start, int length) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor(); // self
const auto dim = p_node->Input(1).toInt(); // dim
int64_t start = 0;
if (p_node->Input(2).isScalar()) {
start = p_node->Input(2).toInt();
} else {
auto& t = p_node->Input(2).toTensor();
start = t.item<int64_t>();
}
auto length = p_node->Input(3).toInt(); // length
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(self);
}
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::native::narrow_copy_dense_cpu_out(self, dim, start, length, output);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::index, aten_index, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::index.Tensor(Tensor self, Tensor?[] indices) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_l =
at::native::toListOfOptionalTensors(p_node->Input(1).toListRef());
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::index_out(out_t, in0_t, in1_l);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::pow, aten_pow, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::pow.Tensor_Tensor(Tensor self, Tensor exponent) -> Tensor")) &&
!n->matches(torch::schema(
"aten::pow.Scalar(Scalar self, Tensor exponent) -> Tensor")) &&
!n->matches(torch::schema(
"aten::pow.Tensor_Scalar(Tensor self, Scalar exponent) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
if (p_node->Output(0).isNone()) {
c10::ScalarType dtype;
if (p_node->Input(0).isTensor()) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Input(1).isTensor()) {
dtype = at::native::result_type(in0_t, p_node->Input(1).toTensor());
p_node->Output(0) = create_empty_from(in0_t, dtype);
} else {
dtype = at::native::result_type(in0_t, p_node->Input(1).toScalar());
p_node->Output(0) = at::native::empty_like(
in0_t,
dtype,
in0_t.options().layout_opt(),
in0_t.options().device_opt(),
in0_t.options().pinned_memory_opt(),
at::MemoryFormat::Preserve);
}
} else {
const auto& in1_t = p_node->Input(1).toTensor();
dtype = at::native::result_type(p_node->Input(0).toScalar(), in1_t);
p_node->Output(0) = at::native::empty_like(
in1_t,
dtype,
in1_t.options().layout_opt(),
in1_t.options().device_opt(),
in1_t.options().pinned_memory_opt(),
at::MemoryFormat::Preserve);
}
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
if (p_node->Input(0).isTensor()) {
if (p_node->Input(1).isTensor()) {
at::cpu::pow_out(
out_t, p_node->Input(0).toTensor(), p_node->Input(1).toTensor());
} else {
at::cpu::pow_out(
out_t, p_node->Input(0).toTensor(), p_node->Input(1).toScalar());
}
} else {
at::cpu::pow_out(
out_t, p_node->Input(0).toScalar(), p_node->Input(1).toTensor());
}
};
});
// out variant takes precedence over native
// NB: This impl doesn't work for cpu->cuda copy/cast or vice versa.
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(
static_runtime::to_copy,
aten_to_copy,
[](Node* n) -> SROperator {
// support 4- or 5-arg for adindexer/adfinder models
// Keep TORCH_CHECK here because there is no alternative for fallback
TORCH_CHECK(n->inputs().size() == 4 || n->inputs().size() == 5);
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
// ignore input 3 (copy)
auto non_blocking = p_node->Input(2).toBool(); // non_blocking
// handle memory format
bool copy_strides = false;
c10::optional<c10::MemoryFormat> memory_format = c10::nullopt;
if (p_node->inputs().size() == 5) {
memory_format = p_node->Input(4).toOptional<c10::MemoryFormat>();
}
memory_format = memory_format.value_or(c10::MemoryFormat::Preserve);
if (p_node->Output(0).isNone()) {
// handle dtype, layout, and device
at::ScalarType dtype;
c10::Layout layout = self.layout();
c10::Device device = self.device();
if (p_node->Input(1).isTensor()) {
const auto& other = p_node->Input(1).toTensor();
dtype = other.scalar_type();
layout = other.layout();
device = other.device();
} else {
dtype = p_node->Input(1).toScalarType();
}
if (memory_format == c10::MemoryFormat::Preserve) {
if (self.is_non_overlapping_and_dense()) {
memory_format = c10::nullopt;
copy_strides = true;
} else {
memory_format = self.suggest_memory_format();
}
}
// See Note [Explicit nullopt MemoryFormat argument]
// Can't use size {0} if memory_format is ChannelLast
p_node->Output(0) = at::detail::empty_cpu(
self.sizes(),
dtype,
layout,
self.device(),
c10::nullopt,
memory_format);
}
copy_strides = copy_strides ||
(memory_format == c10::MemoryFormat::Preserve &&
self.is_non_overlapping_and_dense());
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::to_copy_out(out_t, self, non_blocking, copy_strides);
};
});
// Out variants for view ops are registered to a separate registry because
// their outputs (views) can't participate in memory reuse.
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(
static_runtime::reshape_copy,
aten_reshape,
[](Node* n) -> SROperator {
TORCH_CHECK(n->inputs().size() == 2);
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor(); // self
const auto proposed_shape = p_node->Input(1).toIntVector(); // shape
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(self);
}
auto& out = p_node->Output(0).toTensor();
at::native::reshape_copy_out(out, self, proposed_shape, true);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(
static_runtime::flatten_copy,
aten_flatten,
[](Node* n) -> SROperator {
TORCH_CHECK(n->inputs().size() == 3);
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
const auto start_dim = p_node->Input(1).toInt();
const auto end_dim = p_node->Input(2).toInt();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(self);
}
auto& out = p_node->Output(0).toTensor();
at::native::flatten_copy_out(out, self, start_dim, end_dim);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::sum, aten_sum, [](Node* n) -> SROperator {
if (n->inputs().size() != 2 && n->inputs().size() != 4) {
return nullptr;
}
if (!n->matches(torch::schema(
"aten::sum(Tensor self, *, ScalarType? dtype=None) -> Tensor")) &&
!n->matches(torch::schema(
"aten::sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const at::Tensor& self = p_node->Input(0).toTensor();
c10::optional<at::ScalarType> dtype = c10::nullopt;
if (p_node->inputs().size() == 2) {
// sum(Tensor self, *, ScalarType? dtype=None) -> Tensor
dtype = p_node->Input(1).toOptional<at::ScalarType>();
}
std::vector<int64_t> dim = {};
bool keepdim = false;
if (p_node->inputs().size() == 4) {
// sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *,
// ScalarType? dtype=None) -> Tensor
dim = p_node->Input(1).toIntList().vec();
keepdim = p_node->Input(2).toBool();
dtype = p_node->Input(3).toOptional<at::ScalarType>();
}
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(self);
}
auto& output = p_node->Output(0).toTensor();
fastResizeToZero(output);
at::native::sum_out(self, dim, keepdim, dtype, output);
};
});
std::function<void(ProcessedNode*)> getNativeOperation(Node* n) {
if (n->kind() == c10::Symbol::fromQualString("aten::transpose")) {
if (!n->matches(torch::schema(
"aten::transpose.int(Tensor(a) self, int dim0, int dim1) -> Tensor(a)"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_i = p_node->Input(1).toInt();
const auto in2_i = p_node->Input(2).toInt();
p_node->Output(0) = at::native::transpose(in0_t, in1_i, in2_i);
};
} else if (n->kind() == c10::Symbol::fromQualString("aten::flatten")) {
if (!n->matches(torch::schema(
"aten::flatten.using_ints(Tensor(a) self, int start_dim=0, int end_dim=-1) -> Tensor(a)"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_i = p_node->Input(1).toInt();
const auto in2_i = p_node->Input(2).toInt();
p_node->Output(0) = at::native::flatten(in0_t, in1_i, in2_i);
};
} else if (n->kind() == prim::TupleConstruct) {
return [](ProcessedNode* p_node) {
// prepare inputs
std::vector<IValue> stack;
const size_t size = p_node->inputs().size();
stack.reserve(size);
for (const auto i : c10::irange(size)) {
stack.emplace_back(p_node->Input(i));
}
// run op
auto* node = p_node->node();
const auto& type = node->output()->type()->expect<TupleType>();
if (type->name().has_value()) {
namedTupleConstruct(stack, type, node->inputs().size());
} else {
tupleConstruct(stack, node->inputs().size());
}
// put output back
p_node->Output(0) = std::move(stack[0]);
};
} else if (n->kind() == prim::DictConstruct) {
return [](ProcessedNode* p_node) {
// prepare inputs
std::vector<IValue> stack;
const size_t size = p_node->inputs().size();
stack.reserve(size);
for (const auto i : c10::irange(size)) {
stack.emplace_back(p_node->Input(i));
}
// run op
auto* node = p_node->node();
dictConstruct(
stack,
node->output()->type()->expectRef<DictType>(),
node->inputs().size());
// put output back
p_node->Output(0) = std::move(stack[0]);
};
} else if (n->kind() == c10::Symbol::fromQualString("aten::__getitem__")) {
if (n->inputs().size() != 2) {
return nullptr;
}
// TODO: make __getitem__ work for other container types
if (n->input(0)->type()->castRaw<DictType>() == nullptr) {
return nullptr;
}
return [](ProcessedNode* p_node) {
auto dict = p_node->Input(0).toGenericDict();
auto key = p_node->Input(1);
auto value = dict.find(key);
TORCH_CHECK(value != dict.end(), "Key not in dict: ", key);
p_node->Output(0) = value->value();
};
} else if (n->kind() == prim::ListConstruct) {
return [](ProcessedNode* p_node) {
// prepare inputs
std::vector<IValue> stack;
const size_t size = p_node->inputs().size();
stack.reserve(size);
for (const auto i : c10::irange(size)) {
stack.emplace_back(p_node->Input(i));
}
// run op
listConstruct(
stack,
p_node->node()->output()->type()->expectRef<ListType>(),
p_node->inputs().size());
// put output back
p_node->Output(0) = std::move(stack[0]);
};
} else if (n->kind() == prim::ListUnpack) {
return [](ProcessedNode* p_node) {
// prepare inputs
std::vector<IValue> stack;
const size_t size = p_node->inputs().size();
stack.reserve(size);
for (const auto i : c10::irange(size)) {
stack.emplace_back(p_node->Input(i));
}
// run op
size_t num_outputs = p_node->outputs().size();
listUnpack(stack, num_outputs);
// put output back
DCHECK_EQ(stack.size(), num_outputs);
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (auto i = 0; i < num_outputs; i++) {
p_node->Output(i) = std::move(stack[i]);
}
};
} else if (n->kind() == c10::Symbol::fromQualString("aten::permute")) {
if (!n->matches(torch::schema(
"aten::permute(Tensor(a) self, int[] dims) -> Tensor(a)"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_iv = p_node->Input(1).toIntVector();
p_node->Output(0) = at::native::permute(in0_t, in1_iv);
};
} else if (n->kind() == c10::Symbol::fromQualString("aten::reshape")) {
if (!n->matches(torch::schema(
"aten::reshape(Tensor(a) self, int[] shape) -> Tensor(a)"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_iv = p_node->Input(1).toIntVector();
p_node->Output(0) = at::native::reshape(in0_t, in1_iv);
};
} else if (n->kind() == c10::Symbol::fromQualString("aten::slice")) {
if (!n->matches(torch::schema(
"aten::slice.Tensor(Tensor(a) self, int dim=0, int? start=0, int? end=9223372036854775807, int step=1) -> Tensor(a)"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_i = p_node->Input(1).toInt();
const auto in2_i = p_node->Input(2).toInt();
const auto in3_i = p_node->Input(3).toInt();
const auto in4_i = p_node->Input(4).toInt();
p_node->Output(0) = at::native::slice(in0_t, in1_i, in2_i, in3_i, in4_i);
};
} else if (n->kind() == c10::Symbol::fromQualString("aten::narrow")) {
if (!n->matches(torch::schema(
"aten::narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)")) &&
!n->matches(torch::schema(
"aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor(); // self
const auto dim = p_node->Input(1).toInt(); // dim
int64_t start = 0;
if (p_node->Input(2).isScalar()) {
start = p_node->Input(2).toInt();
} else {
auto& t = p_node->Input(2).toTensor();
start = t.item<int64_t>();
}
const auto length = p_node->Input(3).toInt(); // length
TORCH_CHECK(
self.dim() > 0, "narrow() cannot be applied to a 0-dim tensor.");
auto cur_size = self.sizes()[dim];
if (start != cur_size && start < 0) { // start being the end is valid, but
// not a valid dim specification.
start = at::maybe_wrap_dim(start, cur_size);
}
TORCH_CHECK(
length >= 0 && start <= cur_size - length,
"start (",
start,
") + length (",
length,
") exceeds dimension size (",
cur_size,
").");
p_node->Output(0) =
at::native::slice(self, dim, start, start + length, 1);
};
} else if (n->kind() == c10::Symbol::fromQualString("aten::to")) {
if (!n->matches(torch::schema(
"aten::to.other(Tensor(a) self, Tensor other, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor(a)")) &&
!n->matches(torch::schema(
"aten::to.dtype(Tensor(a) self, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor(a)"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in2_i = p_node->Input(2).toBool();
const auto in3_i = p_node->Input(3).toBool();
const auto in4_o = p_node->Input(4).toOptional<at::MemoryFormat>();
if (p_node->Input(1).isTensor()) {
// to.other(Tensor(a) self, Tensor other, bool non_blocking=False, bool
// copy=False, MemoryFormat? memory_format=None) -> Tensor(a)
const auto in1_t = p_node->Input(1).toTensor();
p_node->Output(0) = at::native::to(in0_t, in1_t, in2_i, in3_i, in4_o);
} else {
// to.dtype(Tensor(a) self, ScalarType dtype, bool non_blocking=False,
// bool copy=False, MemoryFormat? memory_format=None) -> Tensor(a)
const auto in1_i = p_node->Input(1).toScalarType();
p_node->Output(0) = at::native::to(in0_t, in1_i, in2_i, in3_i, in4_o);
}
// in case that Output(0) is an alias of in0_t, copy the tensor.
if (p_node->Output(0).toTensor().unsafeGetTensorImpl() ==
in0_t.unsafeGetTensorImpl()) {
p_node->Output(0) = in0_t.clone();
}
};
} else if (n->kind() == prim::GetAttr) {
return [](ProcessedNode* p_node) {
auto module = p_node->Input(0).toObject();
Node* node = p_node->node();
const auto type = node->input()->type()->expect<ClassType>();
const auto& field = node->s(attr::name);
const auto slot = type->getAttributeSlot(field);
p_node->Output(0) = module->getSlot(slot);
};
} else if (n->kind() == prim::SetAttr) {
return [](ProcessedNode* p_node) {
auto module = p_node->Input(0).toObject();
Node* node = p_node->node();
const auto type = node->inputs()[0]->type()->expect<ClassType>();
const auto& field = node->s(attr::name);
const auto slot = type->getAttributeSlot(field);
module->setSlot(slot, p_node->Input(1));
};
}
return nullptr;
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::embedding_bag, aten_embedding_bag, [](Node* n) -> SROperator {
// TODO: Support only 9 args once the old signature has been removed.
if (!n->matches(torch::schema(
"aten::embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False) -> (Tensor, Tensor, Tensor, Tensor)")) &&
!n->matches(torch::schema(
"aten::embedding_bag.padding_idx(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq, int mode, bool sparse, Tensor? per_sample_weights, bool include_last_offset, int? padding_idx) -> (Tensor, Tensor, Tensor, Tensor)"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& weight = p_node->Input(0).toTensor();
const auto& indices = p_node->Input(1).toTensor();
const auto& offsets = p_node->Input(2).toTensor();
auto scale_grad_by_freq = p_node->Input(3).toBool();
auto mode = p_node->Input(4).to<int64_t>();
auto sparse = p_node->Input(5).toBool();
auto per_sample_weights = p_node->Input(6).toOptional<at::Tensor>();
auto include_last_offset = p_node->Input(7).toBool();
c10::optional<int64_t> padding_idx;
if (p_node->inputs().size() == 9) {
if (p_node->Input(8).isNone()) {
padding_idx = c10::nullopt;
} else {
padding_idx = p_node->Input(8).toInt();
}
}
at::native::check_arguments(
weight,
indices,
offsets,
mode,
per_sample_weights,
include_last_offset);
std::ignore = scale_grad_by_freq;
std::ignore = sparse;
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::empty(
{include_last_offset ? offsets.sizes()[0] - 1 : offsets.sizes()[0],
weight.sizes()[1]},
weight.options());
} else {
at::native::resize_(
p_node->Output(0).toTensor(),
{include_last_offset ? offsets.sizes()[0] - 1 : offsets.sizes()[0],
weight.sizes()[1]},
c10::nullopt);
}
at::Tensor& output = p_node->Output(0).toTensor();
if (p_node->Output(1).isNone()) {
p_node->Output(1) = at::empty({0}, offsets.options());
}
at::Tensor& offset2bag = p_node->Output(1).toTensor();
at::native::make_offset2bag_out(
offset2bag,
output,
weight,
indices,
offsets,
mode,
per_sample_weights,
padding_idx.value_or(-1));
if (p_node->Output(2).isNone()) {
p_node->Output(2) = at::empty(offsets.sizes(), offsets.options());
}
at::Tensor& bag_size = p_node->Output(2).toTensor();
at::native::make_bag_size_out(
bag_size, offsets, indices, mode, include_last_offset, false);
if (p_node->Output(3).isNone()) {
p_node->Output(3) = at::empty(bag_size.sizes(), offsets.options());
}
at::Tensor& max_indices = p_node->Output(3).toTensor();
at::native::make_max_indices_out(
max_indices,
weight,
indices,
offsets,
bag_size,
mode,
include_last_offset);
at::native::_embedding_bag_cpu_impl_out(
output,
offset2bag,
bag_size,
max_indices,
weight,
indices,
offsets,
mode,
per_sample_weights,
include_last_offset,
padding_idx.value_or(-1));
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::repeat, aten_repeat, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::repeat(Tensor self, int[] repeats) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& self = p_node->Input(0).toTensor();
const auto repeats = p_node->Input(1).toIntVector();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(self);
}
at::Tensor& output = p_node->Output(0).toTensor();
at::native::repeat_out(output, self, repeats);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::sign, aten_sign, [](Node* n) -> SROperator {
if (!n->matches(torch::schema("aten::sign.Tensor(Tensor input) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::sign_out(out_t, in0_t);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::div, aten_div, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::div.Tensor(Tensor self, Tensor other) -> Tensor")) &&
!n->matches(torch::schema(
"aten::div.Tensor_mode(Tensor self, Tensor other, *, str? rounding_mode) -> Tensor")) &&
!n->matches(torch::schema(
"aten::div.Scalar(Tensor self, Scalar other) -> Tensor")) &&
!n->matches(torch::schema(
"aten::div.Scalar_mode(Tensor self, Scalar other, *, str? rounding_mode) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
c10::optional<c10::string_view> rounding_mode = c10::nullopt;
if (p_node->inputs().size() > 2) {
rounding_mode = p_node->Input(2).toOptional<c10::string_view>();
}
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
const auto& in1_t = p_node->Input(1).isTensor()
? p_node->Input(1).toTensor()
: at::native::wrapped_scalar_tensor(p_node->Input(1).toScalar());
at::cpu::div_out(out_t, in0_t, in1_t, rounding_mode);
};
});
REGISTER_OPERATOR_FUNCTOR(aten::log, aten_log, [](Node* n) -> SROperator {
if (!n->matches(torch::schema("aten::log.Tensor(Tensor input) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::log_out(out_t, in0_t);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::sub, aten_sub, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::sub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor")) &&
!n->matches(torch::schema(
"aten::sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto alpha = p_node->Input(2).toScalar();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
const auto& in1_t = p_node->Input(1).isTensor()
? p_node->Input(1).toTensor()
: at::native::wrapped_scalar_tensor(p_node->Input(1).toScalar());
at::cpu::sub_out(out_t, in0_t, in1_t, alpha);
};
});
// TODO: support clamp_min.Tensor(Tensor self, Tensor min) -> Tensor
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(
aten::clamp_min,
aten_clamp_min,
[](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::clamp_min(Tensor self, Scalar min) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto in1_s = p_node->Input(1).toScalar();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::clamp_min_out(in0_t, in1_s, out_t);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::argmin, aten_argmin, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::argmin(Tensor self, int? dim=None, bool keepdim=False) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto dim = p_node->Input(1).toOptional<int64_t>();
const auto keepdim = p_node->Input(2).toBool();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t, at::kLong);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::cpu::argmin_out(out_t, in0_t, dim, keepdim);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::layer_norm, aten_layer_norm, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::layer_norm(Tensor input, int[] normalized_shape, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enable=True) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
// ignore Input(5): `bool cudnn_enable=True`
const auto& input = p_node->Input(0).toTensor();
const auto normalized_shape = p_node->Input(1).toIntVector();
auto weight_opt = p_node->Input(2).toOptional<at::Tensor>();
auto bias_opt = p_node->Input(3).toOptional<at::Tensor>();
float eps = p_node->Input(4).toDouble();
c10::MaybeOwned<at::Tensor> weight_maybe_owned =
at::borrow_from_optional_tensor(weight_opt);
const at::Tensor& weight = *weight_maybe_owned;
c10::MaybeOwned<at::Tensor> bias_maybe_owned =
at::borrow_from_optional_tensor(bias_opt);
const at::Tensor& bias = *bias_maybe_owned;
auto M_N = at::native::_check_layer_norm_inputs(
input, normalized_shape, weight, bias);
auto M = M_N.first;
auto N = M_N.second;
auto X = input.expect_contiguous();
auto gamma = weight.expect_contiguous();
auto beta = bias.expect_contiguous();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::empty_like(
*X,
c10::nullopt /* dtype */,
c10::nullopt /* layout */,
c10::nullopt /* device */,
c10::nullopt /* pin_memory */,
at::MemoryFormat::Contiguous);
} else {
at::native::resize_(
p_node->Output(0).toTensor(), X->sizes(), c10::nullopt);
}
at::Tensor& output = p_node->Output(0).toTensor();
at::Tensor mean = create_empty_from({M}, *X);
at::Tensor rstd = create_empty_from({M}, *X);
at::native::layer_norm_cpu_out(
output, mean, rstd, input, normalized_shape, *gamma, *beta, eps, M, N);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::norm, aten_norm, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::norm.ScalarOpt_dtype(Tensor self, Scalar? p, *, ScalarType dtype) -> Tensor")) &&
!n->matches(torch::schema(
"aten::norm.ScalarOpt_dim_dtype(Tensor self, Scalar? p, int[1] dim, bool keepdim, *, ScalarType dtype) -> Tensor")) &&
!n->matches(torch::schema(
"aten::norm.ScalarOpt_dim(Tensor self, Scalar? p, int[1] dim, bool keepdim=False) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
const size_t num_inp = p_node->inputs().size();
const auto in1_s = p_node->Input(1).toOptional<at::Scalar>();
if (num_inp == 3) {
at::native::norm_out(
in0_t,
in1_s,
c10::IntArrayRef{},
false,
p_node->Input(2).toScalarType(),
out_t);
return;
}
if (num_inp > 4) {
at::native::norm_out(
in0_t,
in1_s,
p_node->Input(2).toIntVector(), // dim
p_node->Input(3).toBool(), // keepdim
p_node->Input(4).toScalarType(), // dtype
out_t);
return;
}
at::native::norm_out(
in0_t,
in1_s,
p_node->Input(2).toIntVector(), // dim
p_node->Input(3).toBool(), // keepdim
out_t);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::matmul, aten_matmul, [](Node* n) -> SROperator {
if (!n->matches(
torch::schema("aten::matmul(Tensor self, Tensor other) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto& in0_t = p_node->Input(0).toTensor();
const auto& in1_t = p_node->Input(1).toTensor();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = create_empty_from(in0_t);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
at::native::matmul_out(in0_t, in1_t, out_t);
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(quantized::linear, quantized_linear, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"quantized::linear(Tensor X, __torch__.torch.classes.quantized.LinearPackedParamsBase W_prepack, float Y_scale_i, int Y_zero_point_i) -> Tensor Y"))) {
LogAndDumpSchema(n);
return nullptr;
}
const auto w = toIValue(n->inputs()[1]);
c10::intrusive_ptr<LinearPackedParamsBase> packed_weight;
if (w) {
packed_weight = w->toCustomClass<LinearPackedParamsBase>();
}
return [packed_weight](ProcessedNode* p_node) {
const auto& input = p_node->Input(0).toTensor();
const auto output_scale = p_node->Input(2).toDouble();
const auto output_zero_point = p_node->Input(3).toInt();
if (p_node->Output(0).isNone()) {
p_node->Output(0) = at::native::empty_affine_quantized(
{0},
c10::kQUInt8,
c10::nullopt,
c10::kCPU,
false,
output_scale,
output_zero_point,
c10::nullopt);
}
auto& out_t = p_node->Output(0).toTensor();
fastResizeToZero(out_t);
if (packed_weight) {
packed_weight->apply_out(input, output_scale, output_zero_point, out_t);
} else {
// Weights could be quantized on the fly
auto packed_weight_tmp =
p_node->Input(1).toCustomClass<LinearPackedParamsBase>();
packed_weight_tmp->apply_out(
input, output_scale, output_zero_point, out_t);
}
};
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
REGISTER_OPERATOR_FUNCTOR(aten::full_like, aten_full_like, [](Node* n) -> SROperator {
if (!n->matches(torch::schema(
"aten::full_like(Tensor self, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor"))) {
LogAndDumpSchema(n);
return nullptr;
}
return [](ProcessedNode* p_node) {
const auto in1_s = p_node->Input(1).toScalar();
const auto& in0_t = p_node->Input(0).toTensor();
if (p_node->Output(0).isNone()) {
const auto dtype = p_node->Input(2).toOptional<c10::ScalarType>();
const auto layout = p_node->Input(3).toOptional<c10::Layout>();
const auto device = p_node->Input(4).toOptional<c10::Device>();
const auto pin_memory = p_node->Input(5).toOptional<bool>();
const auto memory_format =
p_node->Input(6).toOptional<c10::MemoryFormat>();
p_node->Output(0) = at::native::empty_like(
in0_t, dtype, layout, device, pin_memory, memory_format);
}
auto& out_t = p_node->Output(0).toTensor();
at::native::resize_(out_t, in0_t.sizes(), c10::nullopt);
at::native::fill_out(out_t, in1_s);
};
});
} // namespace jit
} // namespace torch