pytorch/caffe2/python/onnx/backend_rep.py
Yinghai Lu cc7e61c88d Move onnx-caffe2 inside caffe2 (#1921)
* Move onnx-caffe2 inside caffe2

* Update to the lastest onnx-caffe2 and update jenkins env

* Rename onnx_caffe2 to onnx

* Add __init__.py to caffe2/python/onnx

* Change CI check variable to JENKINS_URL

* Cherrypick recent onnx-caffe2 update
2018-02-20 13:56:52 -08:00

78 lines
3.5 KiB
Python

# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
## @package onnx
# Module caffe2.python.onnx.backend_rep
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core, workspace
from caffe2.proto import caffe2_pb2
from onnx.backend.base import BackendRep, namedtupledict
class Caffe2Rep(BackendRep):
def __init__(self, init_net, predict_net, workspace, uninitialized):
super(Caffe2Rep, self).__init__()
self.init_net = init_net
self.predict_net = predict_net
self.workspace = workspace
# The list of uninitialized external_inputs in workspace, we need this to
# pair the name with given sequence inputs.
self.uninitialized = uninitialized
self.nets_created = False
self.ran_init_net = False
@property
def _name_scope(self):
if self.predict_net.device_option.device_type == caffe2_pb2.CUDA:
return 'gpu_{}'.format(self.predict_net.device_option.cuda_gpu_id)
return ''
def run(self, inputs, **kwargs):
super(Caffe2Rep, self).run(inputs, **kwargs)
with self.workspace:
with core.DeviceScope(self.predict_net.device_option):
if isinstance(inputs, dict):
with core.NameScope(self._name_scope):
for key, value in inputs.items():
workspace.FeedBlob(key, value)
elif isinstance(inputs, list) or isinstance(inputs, tuple):
if len(self.uninitialized) != len(inputs):
raise RuntimeError('Expected {} values for uninitialized '
'graph inputs ({}), but got {}.'.format(
len(self.uninitialized),
', '.join(self.uninitialized),
len(inputs)))
for i, value in enumerate(inputs):
# namescope already baked into protobuf
workspace.FeedBlob(self.uninitialized[i], value)
else:
# single input
workspace.FeedBlob(self.uninitialized[0], inputs)
if not self.nets_created:
workspace.CreateNet(self.init_net)
workspace.CreateNet(self.predict_net)
self.nets_created = True
if not self.ran_init_net:
workspace.RunNet(self.init_net.name)
self.ran_init_net = True
workspace.RunNet(self.predict_net.name)
output_values = [workspace.FetchBlob(name)
for name in self.predict_net.external_output]
return namedtupledict('Outputs',
self.predict_net.external_output)(*output_values)