mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: While there is currently support for scaling the base learning rate when loading the model, there is not support for scaling the base learning rate during training. This is needed for LATTE's seq2seq translation models, as the learning schedule is not predefined and is modified at runtime. Reviewed By: jhcross Differential Revision: D5701391 fbshipit-source-id: ae3bec45f238db1a2be7af9c04d720067e9095d5
240 lines
9.1 KiB
Python
240 lines
9.1 KiB
Python
## @package optimizer_test_util
|
|
# Module caffe2.python.optimizer_test_util
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from caffe2.python import brew, core, workspace, cnn, optimizer
|
|
from caffe2.proto import caffe2_pb2
|
|
from caffe2.python.modeling.initializers import (
|
|
Initializer, pFP16Initializer)
|
|
|
|
from caffe2.python.model_helper import ModelHelper
|
|
|
|
|
|
class OptimizerTestBase(object):
|
|
"""
|
|
This is an abstract base class.
|
|
Don't inherit from unittest.TestCase, and don't name it 'Test*'.
|
|
Do, however, do these things in classes which inherit from this.
|
|
"""
|
|
|
|
def _createDense(self, dtype=core.DataType.FLOAT):
|
|
perfect_model = np.array([2, 6, 5, 0, 1]).astype(np.float32)
|
|
np.random.seed(123) # make test deterministic
|
|
numpy_dtype = np.float32 if dtype == core.DataType.FLOAT else np.float16
|
|
initializer = Initializer if dtype == core.DataType.FLOAT else pFP16Initializer
|
|
data = np.random.randint(
|
|
2,
|
|
size=(20, perfect_model.size)).astype(numpy_dtype)
|
|
label = np.dot(data, perfect_model)[:, np.newaxis]
|
|
|
|
model = ModelHelper(name="test", arg_scope={'order':'NCHW'})
|
|
out = brew.fc(
|
|
model,
|
|
'data', 'fc', perfect_model.size, 1, ('ConstantFill', {}),
|
|
('ConstantFill', {}), axis=0,
|
|
WeightInitializer=initializer, BiasInitializer=initializer
|
|
)
|
|
if dtype == core.DataType.FLOAT16:
|
|
out = model.HalfToFloat(out, out + "_fp32")
|
|
sq = model.SquaredL2Distance([out, 'label'])
|
|
loss = model.AveragedLoss(sq, "avg_loss")
|
|
grad_map = model.AddGradientOperators([loss])
|
|
self.assertIsInstance(grad_map['fc_w'], core.BlobReference)
|
|
return (model, perfect_model, data, label)
|
|
|
|
def testDense(self):
|
|
model, perfect_model, data, label = self._createDense()
|
|
optimizer = self.build_optimizer(model)
|
|
|
|
workspace.FeedBlob('data', data[0])
|
|
workspace.FeedBlob('label', label[0])
|
|
workspace.RunNetOnce(model.param_init_net)
|
|
workspace.CreateNet(model.net, True)
|
|
for _ in range(2000):
|
|
idx = np.random.randint(data.shape[0])
|
|
workspace.FeedBlob('data', data[idx])
|
|
workspace.FeedBlob('label', label[idx])
|
|
workspace.RunNet(model.net.Proto().name)
|
|
|
|
np.testing.assert_allclose(
|
|
perfect_model[np.newaxis, :],
|
|
workspace.FetchBlob('fc_w'),
|
|
atol=1e-2
|
|
)
|
|
self.check_optimizer(optimizer)
|
|
|
|
@unittest.skipIf(not workspace.has_gpu_support, "No gpu support")
|
|
def testGPUDense(self, dtype=core.DataType.FLOAT):
|
|
device_opt = core.DeviceOption(caffe2_pb2.CUDA, 0)
|
|
with core.DeviceScope(device_opt):
|
|
model, _perfect_model, data, label = self._createDense(dtype)
|
|
if dtype == core.DataType.FLOAT16:
|
|
fc_fp32_for_host = model.HalfToFloat('fc', 'fc_fp32_for_host')
|
|
model.CopyGPUToCPU(fc_fp32_for_host, 'fc_cpu')
|
|
else:
|
|
model.CopyGPUToCPU('fc', 'fc_cpu')
|
|
workspace.FeedBlob('data', data[0])
|
|
workspace.FeedBlob('label', label[0])
|
|
|
|
# Add some CPU ops
|
|
brew.fc(model, 'fc_cpu', 'fc2', dim_in=1, dim_out=10, axis=0)
|
|
|
|
# Create optimizer in default device scope
|
|
self.build_optimizer(model)
|
|
|
|
if self._skip_gpu:
|
|
return
|
|
|
|
# Run net to see it does not crash
|
|
workspace.RunNetOnce(model.param_init_net)
|
|
workspace.CreateNet(model.net, True)
|
|
workspace.RunNet(model.net.Proto().name)
|
|
|
|
|
|
def testSparse(self):
|
|
# to test duplicated indices we assign two indices to each weight and
|
|
# thus each weight might count once or twice
|
|
DUPLICATION = 2
|
|
perfect_model = np.array([2, 6, 5, 0, 1]).astype(np.float32)
|
|
np.random.seed(123) # make test deterministic
|
|
data = np.random.randint(
|
|
2,
|
|
size=(20, perfect_model.size * DUPLICATION)).astype(np.float32)
|
|
label = np.dot(data, np.repeat(perfect_model, DUPLICATION))
|
|
|
|
model = cnn.CNNModelHelper("NCHW", name="test")
|
|
# imitate what model wrapper does
|
|
w = model.param_init_net.ConstantFill(
|
|
[], 'w', shape=[perfect_model.size], value=0.0)
|
|
model.params.append(w)
|
|
picked = model.net.Gather([w, 'indices'], 'gather')
|
|
out = model.ReduceFrontSum(picked, 'sum')
|
|
|
|
sq = model.SquaredL2Distance([out, 'label'])
|
|
loss = model.AveragedLoss(sq, "avg_loss")
|
|
grad_map = model.AddGradientOperators([loss])
|
|
self.assertIsInstance(grad_map['w'], core.GradientSlice)
|
|
optimizer = self.build_optimizer(model)
|
|
|
|
workspace.CreateBlob('indices')
|
|
workspace.CreateBlob('label')
|
|
|
|
for indices_type in [np.int32, np.int64]:
|
|
workspace.RunNetOnce(model.param_init_net)
|
|
workspace.CreateNet(model.net, True)
|
|
for _ in range(2000):
|
|
idx = np.random.randint(data.shape[0])
|
|
# transform into indices of binary features
|
|
indices = np.repeat(np.arange(perfect_model.size),
|
|
DUPLICATION)[data[idx] == 1]
|
|
if indices.size == 0:
|
|
continue
|
|
workspace.FeedBlob(
|
|
'indices',
|
|
indices.reshape((indices.size,)).astype(indices_type)
|
|
)
|
|
workspace.FeedBlob('label',
|
|
np.array(label[idx]).astype(np.float32))
|
|
workspace.RunNet(model.net.Proto().name)
|
|
|
|
np.testing.assert_allclose(
|
|
perfect_model,
|
|
workspace.FetchBlob('w'),
|
|
atol=1e-2
|
|
)
|
|
self.check_optimizer(optimizer)
|
|
|
|
|
|
class LRModificationTestBase(object):
|
|
"""
|
|
This is an abstract base class.
|
|
Don't inherit from unittest.TestCase, and don't name it 'Test*'.
|
|
Do, however, do these things in classes which inherit from this.
|
|
"""
|
|
|
|
def _gradient_ratio_reference(self, model, params, max_gradient_norm):
|
|
from caffe2.python import core
|
|
sum_squared_norms = 0.0
|
|
for param in params:
|
|
grad = (
|
|
model.param_to_grad[param]
|
|
if not isinstance(
|
|
model.param_to_grad[param],
|
|
core.GradientSlice,
|
|
) else model.param_to_grad[param].values
|
|
)
|
|
val = workspace.FetchBlob(grad)
|
|
sum_squared_norms += np.power(np.linalg.norm(val), 2.0)
|
|
global_norm = np.sqrt(sum_squared_norms)
|
|
clip_norm = max_gradient_norm
|
|
norm_ratio = clip_norm / np.maximum(clip_norm, global_norm)
|
|
return norm_ratio
|
|
|
|
def test_global_norm_based_gradient_clipping(self):
|
|
max_gradient_norm = 1
|
|
model, perfect_model, data, label = self._createDense()
|
|
opt = self.build_optimizer(model, max_gradient_norm=max_gradient_norm)
|
|
|
|
params = []
|
|
for param in model.GetParams(top_scope=True):
|
|
if param in model.param_to_grad:
|
|
if not isinstance(
|
|
model.param_to_grad[param],
|
|
core.GradientSlice,
|
|
):
|
|
params.append(param)
|
|
|
|
workspace.FeedBlob('data', data[0])
|
|
workspace.FeedBlob('label', label[0])
|
|
workspace.RunNetOnce(model.param_init_net)
|
|
workspace.CreateNet(model.net, True)
|
|
self.assertIsNotNone(opt._lr_multiplier)
|
|
|
|
# Run net once
|
|
idx = np.random.randint(data.shape[0])
|
|
workspace.FeedBlob('data', data[idx])
|
|
workspace.FeedBlob('label', label[idx])
|
|
workspace.RunNet(model.net.Proto().name)
|
|
|
|
reference = self._gradient_ratio_reference(
|
|
model,
|
|
params,
|
|
max_gradient_norm,
|
|
)
|
|
norm_ratio = workspace.FetchBlob(
|
|
'norm_clipped_grad_update/norm_ratio')
|
|
np.testing.assert_almost_equal(norm_ratio, reference)
|
|
self.assertTrue(
|
|
reference < 1.0, "Bad test, gradient not being scaled."
|
|
)
|
|
|
|
def test_lr_injection(self):
|
|
model, perfect_model, data, label = self._createDense()
|
|
opt = self.build_optimizer(
|
|
model, max_gradient_norm=1, allow_lr_injection=True
|
|
)
|
|
|
|
workspace.FeedBlob('data', data[0])
|
|
workspace.FeedBlob('label', label[0])
|
|
workspace.RunNetOnce(model.param_init_net)
|
|
workspace.CreateNet(model.net, True)
|
|
|
|
# Test LR injection initialized properly
|
|
self.assertIsNotNone(opt._lr_multiplier)
|
|
self.assertEqual(optimizer.get_lr_injection(), 1)
|
|
|
|
# Test that we're able to modify the value of the lr_injection
|
|
optimizer.set_lr_injection(0)
|
|
self.assertEqual(optimizer.get_lr_injection(), 0)
|
|
|
|
# Test that setting the lr_injector properly propogates to the
|
|
# lr_multiplier. Here, we have both lr_injector and norm_ratio that
|
|
# affect the lr_multiplier
|
|
workspace.RunNet(model.net.Proto().name)
|
|
self.assertEqual(workspace.FetchBlob('lr_multiplier'), 0)
|