pytorch/test/cpp/api/module.cpp
Peter Goldsborough cba19e59ca
[C++ API] Implement builder style construction (#7597)
* Implemented fused builder based construction mechanism

* "weights" -> "weight"

* Use int64_t instead of size_t everywhere in RNN

* Extracted Conv::ExpandingSize into its own thing

* Rename TORCH_PARAMETER to TORCH_ATTR

* Added documentation

* Fix weight names in batchnorm module
2018-05-17 17:10:15 -04:00

197 lines
5.3 KiB
C++

#include <catch.hpp>
#include <torch/torch.h>
using namespace torch;
using namespace torch::nn;
using Catch::StartsWith;
struct AGIUnit : nn::Module {
variable_list forward(variable_list) {
return {};
}
};
namespace test {
struct AGIUnit : nn::Module {
variable_list forward(variable_list) {
return {};
}
};
struct AGIUnit2 : nn::Module {
AGIUnit2() : nn::Module("Foo") {}
variable_list forward(variable_list) {
return {};
}
};
} // namespace test
bool pointer_equal(Tensor first, Tensor second) {
return first.data<float>() == second.data<float>();
}
TEST_CASE("module/training-mode") {
auto model = Linear(3, 4).build();
REQUIRE(model->is_training());
SECTION("Enable eval mode") {
model->eval();
REQUIRE(!model->is_training());
}
SECTION("Enable train mode") {
model->train();
REQUIRE(model->is_training());
}
}
TEST_CASE("module/zero-grad") {
auto model = Linear(3, 4).build();
auto weights = Var(at::ones(at::CPU(at::kFloat), {8, 3}));
auto loss = model->forward({weights}).front().sum();
backward(loss);
for (auto& parameter : model->parameters()) {
Variable grad = parameter.second.grad();
REQUIRE(grad.defined());
REQUIRE(grad.sum().toCFloat() != 0);
}
model->zero_grad();
for (auto& parameter : model->parameters()) {
Variable grad = parameter.second.grad();
REQUIRE(grad.defined());
REQUIRE(grad.sum().toCFloat() == 0);
}
}
TEST_CASE("module/name") {
// CHECK instead of REQUIRE because demangling may fail.
AGIUnit agi;
// Call it twice just to make sure there are no bugs in the lazy
// initialization semantics.
CHECK(agi.name() == "AGIUnit");
CHECK(agi.name() == "AGIUnit");
SECTION("correctly demangled") {
CHECK(test::AGIUnit().name() == "test::AGIUnit");
CHECK(test::AGIUnit2().name() == "Foo");
}
}
TEST_CASE("module/conversions", "[cuda]") {
auto model = LSTM(128, 64).layers(3).dropout(0.2).build();
SECTION("starts as float on CPU") {
for (auto& parameter : model->parameters()) {
REQUIRE(parameter.second.type().backend() == at::kCPU);
REQUIRE(parameter.second.type().scalarType() == at::kFloat);
}
}
SECTION("to(CUDA)") {
model->cuda();
for (auto& parameter : model->parameters()) {
REQUIRE(parameter.second.type().backend() == at::kCUDA);
}
}
SECTION("to(CPU)") {
model->to(at::kCPU);
for (auto& parameter : model->parameters()) {
REQUIRE(parameter.second.type().backend() == at::kCPU);
}
}
SECTION("to(Int)") {
model->to(at::kInt);
for (auto& parameter : model->parameters()) {
REQUIRE(parameter.second.type().scalarType() == at::kInt);
}
}
SECTION("to(Double)") {
model->to(at::kDouble);
for (auto& parameter : model->parameters()) {
REQUIRE(parameter.second.type().scalarType() == at::kDouble);
}
}
SECTION("to(CUDA(Float))") {
model->to(at::CUDA(at::kFloat));
for (auto& parameter : model->parameters()) {
REQUIRE(parameter.second.type().backend() == at::kCUDA);
REQUIRE(parameter.second.type().scalarType() == at::kFloat);
}
}
}
TEST_CASE("module/clone") {
SECTION(
"a module that does not override clone() throws when clone() is called") {
struct UnCloneable : Module {
variable_list forward(variable_list) override {
return {};
}
};
UnCloneable module;
REQUIRE_THROWS_WITH(
module.clone(), StartsWith("clone() has not been implemented"));
}
SECTION(
"a module that overrides clone() does not throw when clone() is called ") {
struct Cloneable : Module {
variable_list forward(variable_list) override {
return {};
}
std::shared_ptr<Module> clone() const override {
return nullptr;
}
};
Cloneable module;
REQUIRE_NOTHROW(module.clone());
}
SECTION("Cloning creates distinct parameters") {
struct TestModel : public CloneableModule<TestModel> {
TestModel() {
add(Linear(10, 3).build(), "l1");
add(Linear(3, 5).build(), "l2");
add(Linear(5, 100).build(), "l3");
}
void reset() override {}
variable_list forward(variable_list input) override {
return input;
}
};
auto model = TestModel().build();
auto model2 = model->clone();
auto m1param = model->parameters();
auto m2param = model2->parameters();
for (auto& param : m1param) {
REQUIRE(param.second.allclose(m2param[param.first]));
param.second.data().mul_(2);
}
for (auto& param : m1param) {
REQUIRE(!param.second.allclose(m2param[param.first]));
}
}
SECTION("Cloning preserves external references") {
struct TestModel : public CloneableModule<TestModel> {
void reset() {
weights = add(Var(at::ones(at::CPU(at::kFloat), {4, 4})), "weight");
}
variable_list forward(variable_list input) override {
return input;
}
Variable weights;
};
auto model = TestModel().build();
REQUIRE(pointer_equal(model->weights, model->parameters_["weight"]));
auto model2 = std::dynamic_pointer_cast<TestModel>(
std::shared_ptr<Module>(model->clone()));
REQUIRE(!pointer_equal(model2->weights, model->weights));
REQUIRE(pointer_equal(model2->weights, model2->parameters_["weight"]));
REQUIRE(!pointer_equal(model2->weights, model->parameters_["weight"]));
}
}