mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: **Summary** This commit adds an implementation of `Tensor.tolist()` to the JIT interpreter. **Testing** This commit adds several unit tests that test that this function works correctly for 0D, 1D, 2D and 3D tensors of type `float`, `int` and `bool`. ``` (base) meghanl-mbp:pytorch meghanl$ python test/test_jit.py TestList.test_to_list -v Fail to import hypothesis in common_utils, tests are not derandomized test_to_list (jit.test_list_dict.TestList) Unit tests for Tensor.tolist() function. ... ok ---------------------------------------------------------------------- Ran 1 test in 0.329s OK ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/33472 Differential Revision: D20109738 Pulled By: SplitInfinity fbshipit-source-id: a6e3fee5e3201d5e1f0c4ca45048488ae2bf5e33
348 lines
11 KiB
C++
348 lines
11 KiB
C++
#include <ATen/ATen.h>
|
|
#include <ATen/core/alias_info.h>
|
|
#include <torch/csrc/jit/runtime/operator.h>
|
|
#include <torch/csrc/jit/frontend/edit_distance.h>
|
|
|
|
#include <queue>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
namespace {
|
|
using OperatorMap =
|
|
std::unordered_map<Symbol, std::vector<std::shared_ptr<Operator>>>;
|
|
struct OperatorRegistry {
|
|
private:
|
|
std::mutex lock;
|
|
OperatorMap operators;
|
|
// list of operators whose schema have not yet been parsed, and must
|
|
// be registered before any call to lookup an operator
|
|
std::vector<std::shared_ptr<Operator>> to_register;
|
|
// Those two maps are used to implement lookupByLiteral, which is needed for
|
|
// the n->match(...) calls. Basically, every function schema is assigned a
|
|
// unique string you can use to match it. However, parsing those strings or
|
|
// comparing and hashing them character by character would be very slow, so we
|
|
// use a trick here! Every string literal in your program is guaranteed to
|
|
// have static storage duration and so its address won't change at runtime.
|
|
// This allows us to memoize answers for every pointer, which is done by the
|
|
// operators_by_sig_literal map. Still, this map is initially empty, and so we
|
|
// still need to do the complete string matching at the first time, which is
|
|
// implemented by performing a lookup in the operators_by_sig map.
|
|
std::unordered_map<std::string, std::shared_ptr<Operator>> operators_by_sig;
|
|
std::unordered_map<const char*, std::shared_ptr<Operator>>
|
|
operators_by_sig_literal;
|
|
|
|
// XXX - caller must be holding lock
|
|
void registerPendingOperators() {
|
|
for (const auto& op : to_register) {
|
|
Symbol sym = Symbol::fromQualString(op->schema().name());
|
|
operators[sym].push_back(op);
|
|
operators_by_sig[canonicalSchemaString(op->schema())] = op;
|
|
}
|
|
to_register.clear();
|
|
}
|
|
|
|
public:
|
|
void registerOperator(Operator&& op) {
|
|
std::lock_guard<std::mutex> guard(lock);
|
|
to_register.push_back(std::make_shared<Operator>(std::move(op)));
|
|
}
|
|
|
|
const std::shared_ptr<Operator>& lookupByLiteral(const char* name) {
|
|
std::lock_guard<std::mutex> guard(lock);
|
|
registerPendingOperators();
|
|
auto it = operators_by_sig_literal.find(name);
|
|
if (it == operators_by_sig_literal.end()) {
|
|
auto op_ptr_it =
|
|
operators_by_sig.find(canonicalSchemaString(parseSchema(name)));
|
|
// Handy debugging code that dumps all operators we know about on mismatch
|
|
#if 0
|
|
if (op_ptr_it == operators_by_sig.end()) {
|
|
for (auto & entry : operators_by_sig) {
|
|
std::cout << entry.first << std::endl;
|
|
}
|
|
}
|
|
#endif
|
|
TORCH_CHECK(
|
|
op_ptr_it != operators_by_sig.end(),
|
|
"Couldn't find an operator for ",
|
|
name,
|
|
". Do you have to update a set of hardcoded JIT ops?");
|
|
it = operators_by_sig_literal.emplace_hint(it, name, op_ptr_it->second);
|
|
}
|
|
return it->second;
|
|
}
|
|
|
|
const std::vector<std::shared_ptr<Operator>>& getOperators(Symbol name) {
|
|
std::lock_guard<std::mutex> guard(lock);
|
|
registerPendingOperators();
|
|
static std::vector<std::shared_ptr<Operator>> empty;
|
|
auto it = operators.find(name);
|
|
if (it != operators.end())
|
|
return it->second;
|
|
return empty;
|
|
}
|
|
|
|
std::vector<Symbol> findSimilarOperators(Symbol input_op) {
|
|
std::lock_guard<std::mutex> guard(lock);
|
|
registerPendingOperators();
|
|
|
|
using EntryPair = std::pair<int64_t, Symbol>;
|
|
auto cmp = [](const EntryPair& lhs, const EntryPair& rhs) {
|
|
return lhs.first > rhs.first;
|
|
};
|
|
|
|
std::priority_queue<EntryPair, std::vector<EntryPair>, decltype(cmp)>
|
|
rankings(cmp);
|
|
static constexpr size_t MAX_EDIT_DIST = 2u;
|
|
for (const auto& op : operators) {
|
|
auto edit_dist = script::ComputeEditDistance(
|
|
input_op.toQualString(), op.first.toQualString(), MAX_EDIT_DIST);
|
|
if (edit_dist <= MAX_EDIT_DIST) {
|
|
rankings.emplace(edit_dist, op.first);
|
|
}
|
|
}
|
|
std::vector<Symbol> ret;
|
|
while (!rankings.empty()) {
|
|
ret.push_back(rankings.top().second);
|
|
rankings.pop();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
const std::vector<std::shared_ptr<Operator>> getAllOperators() {
|
|
std::lock_guard<std::mutex> guard(lock);
|
|
registerPendingOperators();
|
|
std::vector<std::shared_ptr<Operator>> values;
|
|
values.clear();
|
|
for (auto & kv : operators) {
|
|
values.insert(values.end(), kv.second.begin(), kv.second.end());
|
|
}
|
|
return values;
|
|
}
|
|
};
|
|
|
|
OperatorRegistry& getRegistry() {
|
|
static OperatorRegistry r;
|
|
return r;
|
|
}
|
|
|
|
bool printerHasSpecialCaseFor(Symbol sym) {
|
|
using namespace at;
|
|
// WARNING: by adding a value to this set, you are asserting
|
|
// that you have also added special handling of this symbol to
|
|
// the python_print.cpp. Not adding handling will cause import and export
|
|
// of modules with this new operator to fail. This is only required
|
|
// for operators without schema. Prefer registering your operator with
|
|
// schema to editing this list here. These cases should only be things
|
|
// that require special handling because they do not fit normal schema
|
|
const static std::unordered_set<Symbol> handled = {
|
|
prim::Constant,
|
|
prim::Uninitialized,
|
|
prim::fork,
|
|
prim::ListConstruct,
|
|
prim::DictConstruct,
|
|
prim::ListUnpack,
|
|
prim::Print,
|
|
prim::PythonOp,
|
|
prim::TupleConstruct,
|
|
prim::TupleIndex,
|
|
prim::TupleSlice,
|
|
prim::TupleUnpack,
|
|
prim::CreateObject,
|
|
prim::GetAttr,
|
|
prim::SetAttr,
|
|
prim::CallFunction,
|
|
prim::isinstance,
|
|
prim::unchecked_cast,
|
|
prim::tolist,
|
|
};
|
|
|
|
// WARNING: by adding a value to this set, you are asserting that your
|
|
// primitive is only ever added during optimization and does not need
|
|
// to be correctly printed for export (a process that happens before
|
|
// optimization passes run)
|
|
const static std::unordered_set<Symbol> unneeded = {
|
|
c10::onnx::Reshape, // only used in onnx
|
|
c10::onnx::Shape, // only used in onnx
|
|
prim::AutogradZero, // temporarily inserted by autograd
|
|
prim::AutogradAnyNonZero, // temporarily inserted by autograd
|
|
prim::AutogradAdd, // temporarily inserted by autograd
|
|
prim::ConstantChunk, // optimization pass adds it
|
|
prim::DifferentiableGraph, // optimization pass adds it
|
|
prim::BroadcastSizes, // optimization pass (fuser) adds it
|
|
prim::ChunkSizes, // optimization pass (fuser) adds it
|
|
prim::Drop, // used in interpreter only
|
|
prim::FusedConcat, // optimization pass adds it
|
|
prim::FusionGroup, // optimization pass adds it
|
|
prim::Load, // used in interpreter only
|
|
prim::MMTreeReduce, // used as an optimization
|
|
prim::MMBatchSide, // used as an optimization
|
|
prim::Store, // used in interpreter only
|
|
prim::profile, // used in interpreter only
|
|
|
|
};
|
|
|
|
// These namespaces are required to have Python printers unless
|
|
// otherwise noted in unneeded.
|
|
const static std::unordered_set<Symbol> required_namespaces = {
|
|
c10::namespaces::prim,
|
|
c10::namespaces::aten,
|
|
c10::namespaces::onnx,
|
|
};
|
|
|
|
return handled.count(sym) || unneeded.count(sym) ||
|
|
!required_namespaces.count(sym.ns());
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
bool aliasAnalysisHasSpecialCaseFor(Symbol symbol) {
|
|
using namespace at;
|
|
// WARNING: by adding a case to this list, you are asserting that you have
|
|
// added a case for the unschematized node in AliasDb::analyze
|
|
const static std::unordered_set<Symbol> handled = {
|
|
prim::If,
|
|
prim::Loop,
|
|
prim::FusionGroup,
|
|
prim::DifferentiableGraph,
|
|
prim::Constant,
|
|
prim::Uninitialized,
|
|
prim::DictConstruct,
|
|
prim::ListConstruct,
|
|
prim::TupleConstruct,
|
|
prim::AutogradZero,
|
|
prim::FusedConcat,
|
|
prim::GradOf,
|
|
prim::MMTreeReduce,
|
|
prim::MMBatchSide,
|
|
prim::BroadcastSizes,
|
|
prim::ChunkSizes,
|
|
prim::Function,
|
|
prim::TupleUnpack,
|
|
prim::TupleIndex,
|
|
prim::TupleSlice,
|
|
prim::ListUnpack,
|
|
prim::PythonOp,
|
|
prim::ConstantChunk,
|
|
prim::BroadcastingChunk,
|
|
prim::fork,
|
|
prim::CreateObject,
|
|
prim::AutogradAdd,
|
|
prim::GetAttr,
|
|
prim::SetAttr,
|
|
prim::profile,
|
|
prim::Print,
|
|
prim::CallFunction,
|
|
prim::CallMethod,
|
|
aten::wait,
|
|
prim::isinstance,
|
|
prim::unchecked_cast,
|
|
prim::tolist,
|
|
};
|
|
|
|
// Operators that should not be used by alias analysis
|
|
const static std::unordered_set<Symbol> purposefully_not_handled = {
|
|
prim::Load,
|
|
prim::Store,
|
|
prim::Drop,
|
|
at::onnx::Reshape,
|
|
at::onnx::Shape,
|
|
prim::AutogradAdd,
|
|
};
|
|
|
|
return handled.count(symbol) || purposefully_not_handled.count(symbol);
|
|
}
|
|
|
|
void registerOperator(Operator&& op) {
|
|
if (op.schema().is_varret()) {
|
|
Symbol s = Symbol::fromQualString(op.schema().name());
|
|
if (!printerHasSpecialCaseFor(s)) {
|
|
AT_ERROR(
|
|
"Missing special case in python printer for non-schematized"
|
|
" operator ",
|
|
op.schema().name(),
|
|
". File a bug to add a case for this operator.\n");
|
|
}
|
|
if (!aliasAnalysisHasSpecialCaseFor(s) &&
|
|
op.aliasAnalysisKind() == AliasAnalysisKind::CONSERVATIVE) {
|
|
AT_ERROR(
|
|
"Missing special case in alias analysis for non-schematized"
|
|
" operator ",
|
|
op.schema().name(),
|
|
". File a bug to add a case for this operator.\n");
|
|
}
|
|
if (aliasAnalysisHasSpecialCaseFor(s) &&
|
|
op.aliasAnalysisKind() == AliasAnalysisKind::FROM_SCHEMA) {
|
|
AT_ERROR(
|
|
"The operator ",
|
|
op.schema().name(),
|
|
" is special cased and cannot use explicit alias analysis.");
|
|
}
|
|
}
|
|
getRegistry().registerOperator(std::move(op));
|
|
}
|
|
|
|
const std::vector<std::shared_ptr<Operator>> getAllOperators() {
|
|
return getRegistry().getAllOperators();
|
|
}
|
|
|
|
const std::vector<std::shared_ptr<Operator>>& getAllOperatorsFor(Symbol name) {
|
|
return getRegistry().getOperators(name);
|
|
}
|
|
|
|
std::shared_ptr<Operator> findOperatorFor(const c10::OperatorName& full_name) {
|
|
for (const auto& op : getRegistry().getOperators(Symbol::fromQualString(full_name.name))) {
|
|
if (op->schema().overload_name() == full_name.overload_name) {
|
|
return op;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
std::vector<Symbol> findSimilarOperators(Symbol input_op) {
|
|
return getRegistry().findSimilarOperators(input_op);
|
|
}
|
|
|
|
std::shared_ptr<Operator> getOperatorForLiteral(const char* signature) {
|
|
return getRegistry().lookupByLiteral(signature);
|
|
}
|
|
|
|
std::string canonicalSchemaString(const FunctionSchema& schema) {
|
|
std::ostringstream out;
|
|
|
|
out << schema.name();
|
|
out << "(";
|
|
|
|
bool seen_kwarg_only = false;
|
|
for (size_t i = 0; i < schema.arguments().size(); ++i) {
|
|
if (i > 0)
|
|
out << ", ";
|
|
if (schema.arguments()[i].kwarg_only() && !seen_kwarg_only) {
|
|
out << "*, ";
|
|
seen_kwarg_only = true;
|
|
}
|
|
const auto& arg = schema.arguments()[i];
|
|
out << arg.type()->str() << " " << arg.name();
|
|
}
|
|
|
|
out << ") -> ";
|
|
if (schema.returns().size() == 1) {
|
|
out << schema.returns().at(0).type()->str();
|
|
} else if (schema.returns().size() > 1) {
|
|
out << "(";
|
|
for (size_t i = 0; i < schema.returns().size(); ++i) {
|
|
if (i > 0)
|
|
out << ", ";
|
|
out << schema.returns()[i].type()->str();
|
|
}
|
|
out << ")";
|
|
}
|
|
return out.str();
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|