mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Resubmit #40927 Closes https://github.com/pytorch/pytorch/issues/24679, closes https://github.com/pytorch/pytorch/issues/24678 `addbmm` depends on `addmm` so needed to be ported at the same time. I also removed `THTensor_(baddbmm)` which I noticed had already been ported so was just dead code. After having already written this code, I had to fix merge conflicts with https://github.com/pytorch/pytorch/issues/40354 which revealed there was already an established place for cpu blas routines in ATen. However, the version there doesn't make use of ATen's AVX dispatching so thought I'd wait for comment before migrating this into that style. Pull Request resolved: https://github.com/pytorch/pytorch/pull/40927 Reviewed By: ezyang Differential Revision: D22468490 Pulled By: ngimel fbshipit-source-id: f8a22be3216f67629420939455e31a88af20201d
19847 lines
907 KiB
Python
19847 lines
907 KiB
Python
import sys
|
|
import io
|
|
import inspect
|
|
import math
|
|
import random
|
|
import re
|
|
import copy
|
|
import torch
|
|
import torch.cuda
|
|
import torch.backends.cuda
|
|
import tempfile
|
|
import unittest
|
|
import warnings
|
|
import types
|
|
import pickle
|
|
import textwrap
|
|
import operator
|
|
from torch.utils.dlpack import from_dlpack, to_dlpack
|
|
from torch._six import inf, nan, string_classes, istuple
|
|
from itertools import product, combinations, combinations_with_replacement, permutations
|
|
from functools import reduce
|
|
from functools import partial
|
|
from random import randrange
|
|
from torch import multiprocessing as mp
|
|
from torch.testing._internal.common_methods_invocations import tri_tests_args, run_additional_tri_tests, \
|
|
_compare_trilu_indices
|
|
from torch.testing._internal.common_utils import TestCase, iter_indices, TEST_NUMPY, TEST_SCIPY, TEST_MKL, \
|
|
TEST_LIBROSA, TEST_WITH_ROCM, run_tests, skipIfNoLapack, suppress_warnings, \
|
|
IS_WINDOWS, NO_MULTIPROCESSING_SPAWN, do_test_dtypes, do_test_empty_full, \
|
|
IS_SANDCASTLE, load_tests, slowTest, skipCUDANonDefaultStreamIf, skipCUDAMemoryLeakCheckIf, \
|
|
BytesIOContext, skipIfRocm, torch_to_numpy_dtype_dict, skipIfNoSciPy, IS_MACOS, IS_PPC
|
|
from multiprocessing.reduction import ForkingPickler
|
|
from torch.testing._internal.common_device_type import instantiate_device_type_tests, \
|
|
skipCPUIfNoLapack, skipCPUIfNoMkl, skipCUDAIfNoMagma, skipCUDAIfRocm, skipCUDAIfNotRocm, onlyCUDA, onlyCPU, \
|
|
dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast, skipCUDAIf, precisionOverride, \
|
|
PYTORCH_CUDA_MEMCHECK, largeCUDATensorTest, largeTensorTest, onlyOnCPUAndCUDA
|
|
from typing import Dict, List, Tuple, Union
|
|
import torch.backends.quantized
|
|
import torch.testing._internal.data
|
|
|
|
|
|
# load_tests from torch.testing._internal.common_utils is used to automatically filter tests for
|
|
# sharding on sandcastle. This line silences flake warnings
|
|
load_tests = load_tests
|
|
|
|
if TEST_NUMPY:
|
|
import numpy as np
|
|
|
|
if TEST_SCIPY:
|
|
import scipy
|
|
from scipy import signal
|
|
|
|
if TEST_LIBROSA:
|
|
import librosa
|
|
|
|
SIZE = 100
|
|
|
|
# Wrap base test class into a class to hide it from testing
|
|
# See https://stackoverflow.com/a/25695512
|
|
class AbstractTestCases:
|
|
# This is intentionally prefixed by an underscore. Otherwise pytest will try to
|
|
# run its methods as test cases.
|
|
class _TestTorchMixin(TestCase):
|
|
def _make_tensors(self, shape, val_range=(-100, 100), use_floating=True, use_integral=True,
|
|
use_complex=False) -> Dict[str, List[torch.Tensor]]:
|
|
float_types = [torch.double,
|
|
torch.float]
|
|
int_types = [torch.int64,
|
|
torch.int32,
|
|
torch.int16]
|
|
|
|
complex_types = [torch.complex64,
|
|
torch.complex128]
|
|
|
|
def make_contiguous(shape, dtype) -> torch.Tensor:
|
|
if dtype in float_types:
|
|
val = torch.randn(shape, dtype=dtype)
|
|
val = val * ((val_range[1] - val_range[0]) / (math.pi * 2.0))
|
|
val = val + ((val_range[1] - val_range[0]) / 2.0)
|
|
val = torch.clamp(val, min=val_range[0], max=val_range[1])
|
|
return val
|
|
result = torch.zeros(shape, dtype=dtype)
|
|
result.apply_(lambda x: random.randint(val_range[0], val_range[1]))
|
|
return result
|
|
|
|
def make_non_contiguous(shape, dtype) -> torch.Tensor:
|
|
contig = make_contiguous(shape, dtype)
|
|
non_contig = torch.empty(shape + (2, 2), dtype=dtype)[..., 0]
|
|
non_contig = non_contig.select(-1, -1)
|
|
non_contig.copy_(contig)
|
|
self.assertFalse(non_contig.is_contiguous())
|
|
return non_contig
|
|
|
|
def make_contiguous_slice(size, dtype) -> torch.Tensor:
|
|
contig = make_contiguous((1, size), dtype)
|
|
non_contig = contig[:1, 1:size - 1]
|
|
self.assertTrue(non_contig.is_contiguous())
|
|
return contig
|
|
|
|
types = []
|
|
if use_floating:
|
|
types += float_types
|
|
if use_integral:
|
|
types += int_types
|
|
if use_complex:
|
|
types += complex_types
|
|
tensors: Dict[str, List[torch.Tensor]] = {"cont": [], "noncont": [], "slice": []}
|
|
for dtype in types:
|
|
tensors["cont"].append(make_contiguous(shape, dtype))
|
|
tensors["noncont"].append(make_non_contiguous(shape, dtype))
|
|
tensors["slice"].append(make_contiguous_slice(sum(list(shape)), dtype))
|
|
|
|
return tensors
|
|
|
|
def test_dir(self):
|
|
dir(torch)
|
|
|
|
def test_deterministic_flag(self):
|
|
deterministic_restore = torch.is_deterministic()
|
|
|
|
for deterministic in [True, False]:
|
|
torch.set_deterministic(deterministic)
|
|
self.assertEqual(deterministic, torch.is_deterministic())
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"set_deterministic expects a bool, but got int"):
|
|
torch.set_deterministic(1)
|
|
|
|
torch.set_deterministic(deterministic_restore)
|
|
|
|
def test_type_conversion_via_dtype_name(self):
|
|
x = torch.tensor([1])
|
|
self.assertEqual(x.byte().dtype, torch.uint8)
|
|
self.assertEqual(x.bool().dtype, torch.bool)
|
|
self.assertEqual(x.char().dtype, torch.int8)
|
|
self.assertEqual(x.double().dtype, torch.float64)
|
|
self.assertEqual(x.float().dtype, torch.float32)
|
|
self.assertEqual(x.half().dtype, torch.float16)
|
|
self.assertEqual(x.int().dtype, torch.int32)
|
|
self.assertEqual(x.bfloat16().dtype, torch.bfloat16)
|
|
|
|
def test_doc_template(self) -> None:
|
|
from torch._torch_docs import __file__ as doc_file
|
|
from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args
|
|
|
|
with open(doc_file, "r") as f:
|
|
doc_strs = f.read()
|
|
|
|
for doc_str in re.findall(r'add_docstr\((.*?),.*?("""|\'\'\')(.*?)("""|\'\'\')\)', doc_strs, re.MULTILINE | re.DOTALL):
|
|
for common_args in [multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args]:
|
|
for k, v in common_args.items():
|
|
self.assertNotIn(v, doc_str[2], 'The argument description "{}" in {} can be '
|
|
'replaced by {{{}}}'.format(v, doc_str[0], k))
|
|
|
|
def test_doc(self):
|
|
checked_types = (types.MethodType, types.FunctionType,
|
|
types.BuiltinFunctionType, types.BuiltinMethodType)
|
|
|
|
def test_namespace(ns, *skips):
|
|
if isinstance(ns, object):
|
|
ns_name = ns.__class__.__name__
|
|
else:
|
|
ns_name = ns.__name__
|
|
skip_regexes = []
|
|
for r in skips:
|
|
if isinstance(r, string_classes):
|
|
skip_regexes.append(re.compile('^{}$'.format(re.escape(r))))
|
|
else:
|
|
skip_regexes.append(r)
|
|
|
|
for name in dir(ns):
|
|
if name.startswith('_'):
|
|
continue
|
|
if name in ['real', 'imag']:
|
|
y = torch.randn(1, dtype=torch.cfloat)
|
|
var = getattr(y, name)
|
|
else:
|
|
var = getattr(ns, name)
|
|
if not isinstance(var, checked_types):
|
|
continue
|
|
doc = var.__doc__
|
|
has_doc = doc is not None and len(doc.strip()) > 0
|
|
full_name = ns_name + '.' + name
|
|
if any(r.match(name) for r in skip_regexes):
|
|
self.assertFalse(has_doc,
|
|
'New docs have been added for {}, please remove '
|
|
'it from the skipped list in TestTorch.test_doc'.format(full_name))
|
|
else:
|
|
self.assertTrue(has_doc, '{} is missing documentation'.format(full_name))
|
|
|
|
# FIXME: All of the following should be marked as expected failures
|
|
# so that it is easier to tell when missing has been added.
|
|
# FIXME: fix all the skipped ones below!
|
|
test_namespace(torch.randn(1),
|
|
'as_strided_',
|
|
re.compile('^clamp_(min|max)_?$'),
|
|
'coalesce',
|
|
'is_coalesced',
|
|
'is_distributed',
|
|
'is_nonzero',
|
|
'is_same_size',
|
|
'log_softmax',
|
|
'map2_',
|
|
'new',
|
|
'reinforce',
|
|
'relu',
|
|
'relu_',
|
|
'prelu',
|
|
'resize',
|
|
'resize_as',
|
|
'smm',
|
|
'softmax',
|
|
'split_with_sizes',
|
|
'sspaddmm',
|
|
'to_dense',
|
|
'sparse_resize_',
|
|
'sparse_resize_and_clear_',
|
|
)
|
|
test_namespace(torch.nn)
|
|
test_namespace(torch.nn.functional, 'assert_int_or_pair')
|
|
# TODO: add torch.* tests when we have proper namespacing on ATen functions
|
|
# test_namespace(torch)
|
|
|
|
def test_linear_algebra_scalar_raises(self) -> None:
|
|
m = torch.randn(5, 5)
|
|
v = torch.randn(5)
|
|
s = torch.tensor(7)
|
|
self.assertRaises(RuntimeError, lambda: torch.mv(m, s))
|
|
self.assertRaises(RuntimeError, lambda: torch.addmv(v, m, s))
|
|
self.assertRaises(RuntimeError, lambda: torch.ger(v, s))
|
|
self.assertRaises(RuntimeError, lambda: torch.ger(s, v))
|
|
self.assertRaises(RuntimeError, lambda: torch.addr(m, v, s))
|
|
self.assertRaises(RuntimeError, lambda: torch.addr(m, s, v))
|
|
|
|
@unittest.skipIf(not TEST_SCIPY, "Scipy not found")
|
|
def test_mvlgamma(self):
|
|
from scipy.special import multigammaln
|
|
for d in range(1, 5):
|
|
input = torch.empty(10).uniform_(d, 10)
|
|
res_torch = torch.mvlgamma(input, d)
|
|
res_scipy = multigammaln(input.numpy(), d)
|
|
self.assertEqual(res_torch.numpy(), res_scipy, atol=1e-5, rtol=0)
|
|
|
|
def test_mvlgamma_argcheck(self):
|
|
def run_test(d):
|
|
input = torch.linspace((d - 2) / 2, 10, 10)
|
|
torch.mvlgamma(input, d)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"All elements must be greater than \(p-1\)/2"):
|
|
run_test(3)
|
|
|
|
def test_msnpu_error(self):
|
|
with self.assertRaisesRegex(RuntimeError, "support for msnpu"):
|
|
torch.zeros(1, device=torch.device('msnpu'))
|
|
|
|
def test_as_strided_neg(self):
|
|
error = r'as_strided: Negative strides are not supported at the ' \
|
|
r'moment, got strides: \[-?[0-9]+(, -?[0-9]+)*\]'
|
|
with self.assertRaisesRegex(RuntimeError, error):
|
|
torch.as_strided(torch.ones(3, 3), (1, 1), (2, -1))
|
|
with self.assertRaisesRegex(RuntimeError, error):
|
|
torch.as_strided(torch.ones(14), (2,), (-11,))
|
|
|
|
def test_polygamma_neg(self):
|
|
with self.assertRaisesRegex(RuntimeError, r'polygamma\(n, x\) does not support negative n\.'):
|
|
torch.polygamma(-1, torch.tensor([1.0, 2.0]))
|
|
|
|
|
|
def test_has_storage(self):
|
|
self.assertIsNotNone(torch.Tensor().storage())
|
|
self.assertIsNotNone(torch.Tensor(0).storage())
|
|
self.assertIsNotNone(torch.Tensor([]).storage())
|
|
self.assertIsNotNone(torch.Tensor().clone().storage())
|
|
self.assertIsNotNone(torch.Tensor([0, 0, 0]).nonzero().storage())
|
|
self.assertIsNotNone(torch.Tensor().new().storage())
|
|
|
|
def _testSelection(self, torchfn, mathfn):
|
|
# contiguous
|
|
m1 = torch.randn(100, 100)
|
|
res1 = torchfn(m1)
|
|
res2 = m1[0, 0]
|
|
for i, j in iter_indices(m1):
|
|
res2 = mathfn(res2, m1[i, j])
|
|
self.assertEqual(res1, res2)
|
|
|
|
# non-contiguous
|
|
m1 = torch.randn(10, 10, 10)
|
|
m2 = m1[:, 4]
|
|
res1 = torchfn(m2)
|
|
res2 = m2[0, 0]
|
|
for i, j in iter_indices(m2):
|
|
res2 = mathfn(res2, m2[i][j])
|
|
self.assertEqual(res1, res2)
|
|
|
|
# with indices
|
|
m1 = torch.randn(100, 100)
|
|
res1val, res1ind = torchfn(m1, 1, False)
|
|
res2val = m1[:, 0:1].clone().squeeze()
|
|
res2ind = res1ind.clone().fill_(0)
|
|
for i, j in iter_indices(m1):
|
|
if mathfn(res2val[i], m1[i, j]) != res2val[i]:
|
|
res2val[i] = m1[i, j]
|
|
res2ind[i] = j
|
|
|
|
maxerr = 0
|
|
for i in range(res1val.size(0)):
|
|
maxerr = max(maxerr, abs(res1val[i] - res2val[i]))
|
|
self.assertEqual(res1ind[i], res2ind[i])
|
|
self.assertLessEqual(abs(maxerr), 1e-5)
|
|
|
|
# NaNs
|
|
for index in (0, 4, 99):
|
|
m1 = torch.randn(100)
|
|
m1[index] = nan
|
|
res1val, res1ind = torch.max(m1, 0)
|
|
self.assertTrue(math.isnan(res1val))
|
|
self.assertEqual(res1ind, index)
|
|
res1val = torchfn(m1)
|
|
self.assertTrue(math.isnan(res1val))
|
|
|
|
# Bool
|
|
m1 = torch.tensor([True, False, True], dtype=torch.bool)
|
|
res1 = torchfn(m1)
|
|
res2 = m1[0]
|
|
for i in iter_indices(m1):
|
|
res2 = mathfn(res2, m1[i])
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_max(self):
|
|
self._testSelection(torch.max, max)
|
|
|
|
def test_min(self):
|
|
self._testSelection(torch.min, min)
|
|
|
|
def test_dim_reduction_uint8_overflow(self):
|
|
example = [[-1, 2, 1], [5, 3, 6]]
|
|
x = torch.tensor(example, dtype=torch.uint8)
|
|
self.assertEqual(x.sum(dtype=torch.uint8).item(), 16)
|
|
self.assertEqual(x.sum(0, dtype=torch.uint8), torch.tensor([4, 5, 7], dtype=torch.uint8))
|
|
self.assertEqual(x.sum(1, dtype=torch.uint8), torch.tensor([2, 14], dtype=torch.uint8))
|
|
y = torch.tensor(example, dtype=torch.uint8)
|
|
torch.sum(x, 0, out=y)
|
|
self.assertEqual(x.sum(0, dtype=torch.uint8), y)
|
|
|
|
def test_dim_reduction_less_than_64(self):
|
|
sizes = [1] * 65
|
|
x = torch.randn(sizes)
|
|
with self.assertRaisesRegex(RuntimeError, "PyTorch doesn't support reduction operations for dim>=64"):
|
|
torch.sum(x, 64)
|
|
with self.assertRaisesRegex(RuntimeError, "PyTorch doesn't support reduction operations for dim>=64"):
|
|
torch.sum(x, -1)
|
|
|
|
@unittest.skipIf(not TEST_SCIPY, "Scipy not found")
|
|
def test_logsumexp(self):
|
|
from scipy.special import logsumexp
|
|
a = torch.randn(5, 4)
|
|
a[0, 0] = inf
|
|
a[1, :] = -inf
|
|
actual = a.logsumexp(1)
|
|
expected = logsumexp(a.numpy(), 1)
|
|
self.assertEqual(expected.shape, actual.shape)
|
|
self.assertEqual(expected, actual)
|
|
# check that out is actually inplace
|
|
b = torch.zeros(5, 2)
|
|
c = b[:, 0]
|
|
torch.logsumexp(a, 1, out=c)
|
|
self.assertEqual(expected, b[:, 0])
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_cpu_parallel(self):
|
|
# To use parallel branches we'll need to compare on tensors
|
|
# that are relatively large. Even if this is run on a single
|
|
# core machine these tests will still give you signal on
|
|
# the correctness
|
|
|
|
def _run_test(size):
|
|
for dim in range(len(size) + 1):
|
|
nv = np.round(np.random.rand(*size)) # 0s and 1s
|
|
tv = torch.from_numpy(nv)
|
|
# Parallelisim is only used if numel is
|
|
# larger than grainsize defined in Parallel.h
|
|
self.assertTrue(tv.numel() > 32768)
|
|
if dim == len(size):
|
|
nvs = nv.sum()
|
|
tvs = tv.sum()
|
|
else:
|
|
nvs = nv.sum(dim)
|
|
tvs = tv.sum(dim)
|
|
diff = np.abs(nvs - tvs.numpy()).sum()
|
|
self.assertEqual(diff, 0)
|
|
|
|
_run_test([2, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3])
|
|
_run_test([4, 4, 4, 4, 4, 4, 4, 4, 4, 4])
|
|
_run_test([1, 32 * 8 * 32 * 8])
|
|
_run_test([1, 32770])
|
|
|
|
def _testCSelection(self, torchfn, mathfn):
|
|
# Two tensors
|
|
size = (100, 100)
|
|
a = torch.rand(*size)
|
|
b = torch.rand(*size)
|
|
c = torchfn(a, b)
|
|
expected_c = torch.zeros(*size)
|
|
expected_c.map2_(a, b, lambda _, a, b: mathfn(a, b))
|
|
self.assertEqual(expected_c, c, atol=0, rtol=0)
|
|
|
|
def test_max_elementwise(self):
|
|
self._testCSelection(torch.max, max)
|
|
|
|
def test_min_elementwise(self):
|
|
self._testCSelection(torch.min, min)
|
|
|
|
def test_all_any(self):
|
|
def test(size):
|
|
x = torch.ones(*size).byte()
|
|
self.assertTrue(x.all())
|
|
self.assertTrue(x.any())
|
|
|
|
x[3] = 0
|
|
self.assertFalse(x.all())
|
|
self.assertTrue(x.any())
|
|
|
|
x.zero_()
|
|
self.assertFalse(x.all())
|
|
self.assertFalse(x.any())
|
|
|
|
x.fill_(2)
|
|
self.assertTrue(x.all())
|
|
self.assertTrue(x.any())
|
|
|
|
x = torch.ones(*size).bool()
|
|
self.assertTrue(x.all())
|
|
self.assertTrue(x.any())
|
|
|
|
x[3] = False
|
|
self.assertFalse(x.all())
|
|
self.assertTrue(x.any())
|
|
|
|
test((10,))
|
|
test((5, 5))
|
|
|
|
def test_where_invalid_device(self):
|
|
if torch.cuda.is_available():
|
|
for devices in [('cpu', 'cuda', 'cuda'), ('cuda', 'cpu', 'cpu'),
|
|
('cuda', 'cpu', 'cuda'), ('cpu', 'cuda', 'cpu')]:
|
|
condition = torch.rand(16, device=devices[0])
|
|
x = torch.rand(16, device=devices[1])
|
|
y = torch.rand(16, device=devices[2])
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
"Expected condition, x and y to be on the same device"):
|
|
torch.where(condition, x, y)
|
|
|
|
def test_where_bool_tensor(self):
|
|
for d in torch.testing.get_all_device_types():
|
|
a = torch.tensor([True, False], device=d)
|
|
res = torch.where(a > 0)
|
|
self.assertEqual(1, len(res))
|
|
|
|
def test_where_tensor(self):
|
|
def rand_tensor(size, dtype, device):
|
|
if dtype.is_floating_point or dtype.is_complex:
|
|
return torch.rand(size=size, dtype=dtype, device=device)
|
|
elif dtype == torch.uint8:
|
|
return torch.randint(1, 5, size=size, dtype=dtype, device=device)
|
|
elif dtype == torch.bool:
|
|
return torch.randint(0, 1, size=size, dtype=dtype, device=device).bool()
|
|
else:
|
|
return torch.randint(-5, 5, size=size, dtype=dtype, device=device)
|
|
|
|
def get_tensor(size, dtype, device, contiguous):
|
|
if not contiguous and len(size) < 2:
|
|
raise RuntimeError("Unable to generate non contiguous tensor with size < 2")
|
|
t = rand_tensor(size, dtype, device)
|
|
if contiguous:
|
|
return t
|
|
else:
|
|
return t.transpose(0, 1)
|
|
|
|
height = 5
|
|
width = 5
|
|
for device in torch.testing.get_all_device_types():
|
|
for dt1 in torch.testing.get_all_math_dtypes(device):
|
|
for dt2 in torch.testing.get_all_math_dtypes(device):
|
|
for contiguous in [True, False]:
|
|
x1 = get_tensor((height, width), dt1, device, contiguous)
|
|
x2 = get_tensor((height, width), dt2, device, contiguous)
|
|
if dt1 != dt2:
|
|
self.assertRaisesRegex(RuntimeError, "expected scalar type", lambda: torch.where(x1 == 1, x1, x2))
|
|
else:
|
|
if x1.is_floating_point():
|
|
condition = (x1 < 0.5)
|
|
elif x1.is_complex():
|
|
condition = (x1.abs() < 0.5)
|
|
else:
|
|
condition = (x1 == 1)
|
|
expected = condition.to(x1.dtype) * x1 + (~condition).to(x2.dtype) * x2
|
|
result = torch.where(condition, x1, x2)
|
|
self.assertEqual(expected, result)
|
|
|
|
def test_all_any_with_dim(self):
|
|
def test(x):
|
|
r1 = x.prod(dim=0, keepdim=False).byte()
|
|
r2 = x.all(dim=0, keepdim=False)
|
|
self.assertEqual(r1.shape, r2.shape)
|
|
self.assertTrue((r1 == r2).all())
|
|
|
|
r3 = x.sum(dim=1, keepdim=True).clamp(0, 1).byte()
|
|
r4 = x.any(dim=1, keepdim=True)
|
|
self.assertEqual(r3.shape, r4.shape)
|
|
self.assertTrue((r3 == r4).all())
|
|
|
|
test(torch.ByteTensor([[0, 0, 0],
|
|
[0, 0, 1],
|
|
[0, 1, 1],
|
|
[1, 1, 1]]))
|
|
|
|
@slowTest
|
|
def test_mv(self) -> None:
|
|
def _test_mv(m1: torch.Tensor, v1: torch.Tensor) -> None:
|
|
res1 = torch.mv(m1, v1)
|
|
res2 = res1.clone().zero_()
|
|
for i, j in iter_indices(m1):
|
|
res2[i] += m1[i][j] * v1[j]
|
|
|
|
self.assertEqual(res1, res2, atol=1e-5, rtol=0)
|
|
|
|
_test_mv(torch.randn(100, 100, dtype=torch.float32), torch.randn(100, dtype=torch.float32))
|
|
_test_mv(torch.randn(100, 100, dtype=torch.float64), torch.randn(100, dtype=torch.float64))
|
|
_test_mv(torch.randint(0, 100, (100, 100), dtype=torch.int32), torch.randint(0, 100, (100, ), dtype=torch.int32))
|
|
_test_mv(torch.randint(0, 100, (100, 100), dtype=torch.int64), torch.randint(0, 100, (100, ), dtype=torch.int64))
|
|
_test_mv(torch.randn(100, 100, dtype=torch.float32).bfloat16(), torch.randn(100, dtype=torch.float32).bfloat16())
|
|
_test_mv(torch.randn(100, 100, dtype=torch.cfloat), torch.randn(100, dtype=torch.cfloat))
|
|
_test_mv(torch.randn(100, 100, dtype=torch.cdouble), torch.randn(100, dtype=torch.cdouble))
|
|
|
|
def test_numpy_args(self):
|
|
x1 = torch.randn(10)
|
|
x2 = torch.randn(10)
|
|
res1 = torch.add(input=x1, other=x2)
|
|
res2 = torch.add(x1=x1, x2=x2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
x1 = torch.randn(10, 10, 10)
|
|
res1 = x1.sum(dim=(0, 2), keepdim=True)
|
|
res2 = x1.sum(axis=(0, 2), keepdims=True)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def _assert_matches_numpy(self, t, n):
|
|
self.assertEqual(n.shape, t.shape)
|
|
if t.dtype == torch.float:
|
|
self.assertEqual(n, t, rtol=1e-03, atol=1e-05, equal_nan=True)
|
|
else:
|
|
self.assertEqual(n, t, equal_nan=True)
|
|
|
|
def _test_dim_ops(self, pytorch_op, numpy_op,
|
|
use_floating=True, use_integral=True, use_complex=False):
|
|
def do_one(tensors_dict, dim):
|
|
for category, tensors in tensors_dict.items():
|
|
if category == "slice":
|
|
dim = 0
|
|
for tensor in tensors:
|
|
# we have no control over NumPy warnings...
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
expected = numpy_op(tensor.numpy(), dim)
|
|
actual = pytorch_op(tensor, dim)
|
|
self._assert_matches_numpy(actual, expected)
|
|
if torch.cuda.is_available():
|
|
self._assert_matches_numpy(pytorch_op(tensor.cuda(),
|
|
dim).cpu(),
|
|
expected)
|
|
do_one(self._make_tensors((5, 400000), use_floating=use_floating,
|
|
use_integral=use_integral, use_complex=use_complex), 1)
|
|
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
|
|
use_integral=use_integral, use_complex=use_complex), 0)
|
|
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
|
|
use_integral=use_integral, use_complex=use_complex), 1)
|
|
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
|
|
use_integral=use_integral, use_complex=use_complex), 2)
|
|
do_one(self._make_tensors((100000, ), use_floating=use_floating,
|
|
use_integral=use_integral, use_complex=use_complex), -1)
|
|
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
|
|
use_integral=use_integral, use_complex=use_complex), 0)
|
|
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
|
|
use_integral=use_integral, use_complex=use_complex), 1)
|
|
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
|
|
use_integral=use_integral, use_complex=use_complex), 2)
|
|
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
|
|
use_integral=use_integral, use_complex=use_complex), (1, 2))
|
|
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
|
|
use_integral=use_integral, use_complex=use_complex), (1, -1))
|
|
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
|
|
use_integral=use_integral, use_complex=use_complex), (0, 2))
|
|
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
|
|
use_integral=use_integral, use_complex=use_complex), (0, 2, 1))
|
|
|
|
@slowTest
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
def test_sum_dim(self):
|
|
self._test_dim_ops(
|
|
lambda t, d: t.sum(d),
|
|
lambda n, d: n.sum(d),
|
|
use_floating=True, use_integral=True, use_complex=True)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
def test_mean_dim(self):
|
|
self._test_dim_ops(
|
|
lambda t, d: t.mean(d),
|
|
lambda n, d: n.mean(d),
|
|
use_integral=False)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
def test_std_dim(self):
|
|
for unbiased in [False, True]:
|
|
self._test_dim_ops(
|
|
lambda t, d: t.std(d, unbiased=unbiased),
|
|
lambda n, d: n.std(d, ddof=1 if unbiased else 0),
|
|
use_integral=False)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
def test_var_dim(self):
|
|
for unbiased in [False, True]:
|
|
self._test_dim_ops(
|
|
lambda t, d: t.var(d, unbiased=unbiased),
|
|
lambda n, d: n.var(d, ddof=1 if unbiased else 0),
|
|
use_integral=False)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
@unittest.skipIf(not TEST_SCIPY, 'Scipy not found')
|
|
def test_logsumexp_dim(self):
|
|
from scipy.special import logsumexp
|
|
self._test_dim_ops(
|
|
lambda t, d: t.logsumexp(d),
|
|
lambda n, d: logsumexp(n, d),
|
|
use_integral=False)
|
|
|
|
def _test_reduce_integer_upcast(self, fn, has_out=True, test_complex=True):
|
|
shape = (3, 4, 5)
|
|
reduced_shape = fn(torch.ones(shape)).shape
|
|
|
|
def _test_out(dtype, other_dtype):
|
|
out = torch.ones(reduced_shape, dtype=dtype)
|
|
result = fn(x, out=out)
|
|
self.assertIs(out.dtype, result.dtype)
|
|
self.assertEqual(fn(x.to(dtype)), result, exact_dtype=False)
|
|
result = fn(x, out=out, dtype=dtype)
|
|
self.assertIs(out.dtype, result.dtype)
|
|
self.assertEqual(fn(x.to(dtype)), result, exact_dtype=False)
|
|
# 'out' is favored over dtype, check error
|
|
self.assertRaises(RuntimeError, lambda: fn(x, out=out, dtype=other_dtype))
|
|
|
|
for dtype in [dtype for dtype in torch.testing.get_all_math_dtypes('cpu') if dtype != torch.float16]:
|
|
x = torch.ones(shape, dtype=dtype)
|
|
expected_dtype = dtype if dtype.is_floating_point or dtype.is_complex else torch.int64
|
|
self.assertIs(expected_dtype, fn(x).dtype)
|
|
self.assertEqual(fn(x.to(expected_dtype)), fn(x))
|
|
|
|
if dtype.is_floating_point:
|
|
other_dtype = torch.float32 if dtype == torch.float64 else torch.float64
|
|
elif dtype.is_complex:
|
|
other_dtype = torch.complex64 if dtype == torch.complex128 else torch.complex128
|
|
else:
|
|
other_dtype = torch.int32 if dtype != torch.int32 else torch.int16
|
|
self.assertIs(other_dtype, fn(x, dtype=other_dtype).dtype)
|
|
self.assertEqual(fn(x.to(other_dtype)), fn(x, dtype=other_dtype), exact_dtype=False)
|
|
|
|
# test mixed int/float/complex
|
|
if dtype.is_floating_point:
|
|
mixed_dtypes = [torch.int32, torch.complex64]
|
|
elif dtype.is_complex:
|
|
mixed_dtypes = [torch.int32, torch.float32]
|
|
else:
|
|
mixed_dtypes = [torch.float32, torch.complex64]
|
|
|
|
for mixed_dtype in mixed_dtypes:
|
|
self.assertIs(mixed_dtype, fn(x, dtype=mixed_dtype).dtype)
|
|
self.assertEqual(fn(x.to(mixed_dtype)), fn(x, dtype=mixed_dtype), exact_dtype=False)
|
|
|
|
if has_out:
|
|
_test_out(dtype, other_dtype)
|
|
_test_out(dtype, mixed_dtype)
|
|
|
|
def test_sum_integer_upcast(self):
|
|
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, **kwargs), False)
|
|
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, 0, **kwargs))
|
|
|
|
def test_prod_integer_upcast(self):
|
|
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, **kwargs), False)
|
|
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, 0, **kwargs))
|
|
|
|
def test_cumsum_integer_upcast(self):
|
|
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumsum(x, 0, **kwargs))
|
|
|
|
def test_cumprod_integer_upcast(self):
|
|
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumprod(x, 0, **kwargs))
|
|
|
|
def test_cross_validation(self):
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "inconsistent tensors dimensions",
|
|
lambda: torch.cross(torch.rand(100, 3), torch.rand(100, 3, 10)))
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "inconsistent tensors sizes",
|
|
lambda: torch.cross(torch.rand(5, 3), torch.rand(3, 5)))
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "no dimension of size 3 in input",
|
|
lambda: torch.cross(torch.rand(5, 4), torch.rand(5, 4)))
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "dimension 0 does not have size 3",
|
|
lambda: torch.cross(torch.rand(5, 4, 3), torch.rand(5, 4, 3), dim=0))
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "dimension -1 does not have size 3",
|
|
lambda: torch.cross(torch.rand(5, 3, 4), torch.rand(5, 3, 4), dim=-1))
|
|
self.assertRaisesRegex(
|
|
IndexError, "Dimension out of range",
|
|
lambda: torch.cross(torch.rand(5, 3, 4), torch.rand(5, 3, 4), dim=-5))
|
|
|
|
def test_zeros(self):
|
|
res1 = torch.zeros(100, 100)
|
|
res2 = torch.Tensor()
|
|
torch.zeros(100, 100, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
boolTensor = torch.zeros(2, 2, dtype=torch.bool)
|
|
expected = torch.tensor([[False, False], [False, False]], dtype=torch.bool)
|
|
self.assertEqual(boolTensor, expected)
|
|
|
|
halfTensor = torch.zeros(1, 1, dtype=torch.half)
|
|
expected = torch.tensor([[0.]], dtype=torch.float16)
|
|
self.assertEqual(halfTensor, expected)
|
|
|
|
bfloat16Tensor = torch.zeros(1, 1, dtype=torch.bfloat16)
|
|
expected = torch.tensor([[0.]], dtype=torch.bfloat16)
|
|
self.assertEqual(bfloat16Tensor, expected)
|
|
|
|
complexTensor = torch.zeros(2, 2, dtype=torch.complex64)
|
|
expected = torch.tensor([[0., 0.], [0., 0.]], dtype=torch.complex64)
|
|
self.assertEqual(complexTensor, expected)
|
|
|
|
def test_zeros_out(self):
|
|
shape = (3, 4)
|
|
out = torch.zeros(shape)
|
|
torch.zeros(shape, out=out)
|
|
|
|
# change the dtype, layout, device
|
|
self.assertRaises(RuntimeError, lambda: torch.zeros(shape, dtype=torch.int64, out=out))
|
|
self.assertRaises(RuntimeError, lambda: torch.zeros(shape, layout=torch.sparse_coo, out=out))
|
|
if torch.cuda.is_available():
|
|
self.assertRaises(RuntimeError, lambda: torch.zeros(shape, device='cuda', out=out))
|
|
|
|
# leave them the same
|
|
self.assertEqual(torch.zeros(shape), torch.zeros(shape, dtype=out.dtype, out=out))
|
|
self.assertEqual(torch.zeros(shape), torch.zeros(shape, layout=torch.strided, out=out))
|
|
self.assertEqual(torch.zeros(shape), torch.zeros(shape, device='cpu', out=out))
|
|
|
|
def test_ones(self):
|
|
res1 = torch.ones(100, 100)
|
|
res2 = torch.Tensor()
|
|
torch.ones(100, 100, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
# test boolean tensor
|
|
res1 = torch.ones(1, 2, dtype=torch.bool)
|
|
expected = torch.tensor([[True, True]], dtype=torch.bool)
|
|
self.assertEqual(res1, expected)
|
|
|
|
def test_ones_like(self):
|
|
expected = torch.ones(100, 100)
|
|
|
|
res1 = torch.ones_like(expected)
|
|
self.assertEqual(res1, expected)
|
|
|
|
# test boolean tensor
|
|
expected = torch.tensor([True, True], dtype=torch.bool)
|
|
res1 = torch.ones_like(expected)
|
|
self.assertEqual(res1, expected)
|
|
|
|
def test_dtypes(self):
|
|
all_dtypes = torch.testing.get_all_dtypes()
|
|
do_test_dtypes(self, all_dtypes, torch.strided, torch.device('cpu'))
|
|
if torch.cuda.is_available():
|
|
all_dtypes.remove(torch.bfloat16) # Remove once _th_zero_ is enabled on cuda for bfloat16
|
|
do_test_dtypes(self, all_dtypes, torch.strided, torch.device('cuda:0'))
|
|
|
|
def test_copy_dtypes(self):
|
|
all_dtypes = torch.testing.get_all_dtypes()
|
|
for dtype in all_dtypes:
|
|
copied_dtype = copy.deepcopy(dtype)
|
|
self.assertIs(dtype, copied_dtype)
|
|
|
|
def test_copy_transpose(self):
|
|
x = torch.arange(100 * 100, dtype=torch.float).reshape(100, 100).t()
|
|
y = torch.empty(100, 100, dtype=torch.float)
|
|
y.copy_(x)
|
|
self.assertEqual(y[:, 0], range(100))
|
|
self.assertEqual(y[:, 40], range(4000, 4100))
|
|
|
|
y = torch.empty(100, 100, dtype=torch.double)
|
|
y.copy_(x)
|
|
self.assertEqual(y[:, 0], range(100))
|
|
self.assertEqual(y[:, 40], range(4000, 4100))
|
|
|
|
def test_device(self):
|
|
cpu = torch.device('cpu')
|
|
self.assertEqual('cpu', str(cpu))
|
|
self.assertEqual('cpu', cpu.type)
|
|
self.assertEqual(None, cpu.index)
|
|
|
|
cpu0 = torch.device('cpu:0')
|
|
self.assertEqual('cpu:0', str(cpu0))
|
|
self.assertEqual('cpu', cpu0.type)
|
|
self.assertEqual(0, cpu0.index)
|
|
|
|
cpu0 = torch.device('cpu', 0)
|
|
self.assertEqual('cpu:0', str(cpu0))
|
|
self.assertEqual('cpu', cpu0.type)
|
|
self.assertEqual(0, cpu0.index)
|
|
|
|
cuda = torch.device('cuda')
|
|
self.assertEqual('cuda', str(cuda))
|
|
self.assertEqual('cuda', cuda.type)
|
|
self.assertEqual(None, cuda.index)
|
|
|
|
cuda1 = torch.device('cuda:1')
|
|
self.assertEqual('cuda:1', str(cuda1))
|
|
self.assertEqual('cuda', cuda1.type)
|
|
self.assertEqual(1, cuda1.index)
|
|
|
|
cuda1 = torch.device('cuda', 1)
|
|
self.assertEqual('cuda:1', str(cuda1))
|
|
self.assertEqual('cuda', cuda1.type)
|
|
self.assertEqual(1, cuda1.index)
|
|
|
|
cuda90 = torch.device('cuda', 90)
|
|
self.assertEqual('cuda:90', str(cuda90))
|
|
self.assertEqual('cuda', cuda90.type)
|
|
self.assertEqual(90, cuda90.index)
|
|
|
|
cuda23333 = torch.device('cuda', 23333)
|
|
self.assertEqual('cuda:23333', str(cuda23333))
|
|
self.assertEqual('cuda', cuda23333.type)
|
|
self.assertEqual(23333, cuda23333.index)
|
|
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cpu:-1'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cpu:1'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cpu', -1))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cpu', 1))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:-1'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2 '))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda: 2'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2 2'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2.'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2?'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:?2'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2.232'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2 cuda:3'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2+cuda:3'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2cuda:3'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda', -1))
|
|
self.assertRaises(RuntimeError, lambda: torch.device(-1))
|
|
|
|
self.assertRaises(RuntimeError, lambda: torch.device('other'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('other:0'))
|
|
|
|
device_set = {'cpu', 'cpu:0', 'cuda', 'cuda:0', 'cuda:1', 'cuda:10', 'cuda:100'}
|
|
device_hash_set = set()
|
|
for device in list(device_set):
|
|
device_hash_set.add(hash(torch.device(device)))
|
|
self.assertEqual(len(device_set), len(device_hash_set))
|
|
|
|
def test_tensor_device(self):
|
|
def assertEqual(device_str, fn):
|
|
self.assertEqual(torch.device(device_str), fn().device)
|
|
self.assertEqual(device_str, str(fn().device))
|
|
|
|
assertEqual('cpu', lambda: torch.tensor(5))
|
|
assertEqual('cpu', lambda: torch.ones((2, 3), dtype=torch.float32, device='cpu'))
|
|
# NOTE: 'cpu' is the canonical representation of 'cpu:0', but 'cuda:X' is the canonical
|
|
# representation of cuda devices.
|
|
assertEqual('cpu', lambda: torch.ones((2, 3), dtype=torch.float32, device='cpu:0'))
|
|
assertEqual('cpu', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cpu:0'))
|
|
if TEST_NUMPY:
|
|
assertEqual('cpu', lambda: torch.tensor(np.random.randn(2, 3), device='cpu'))
|
|
|
|
if torch.cuda.is_available():
|
|
assertEqual('cuda:0', lambda: torch.tensor(5).cuda(0))
|
|
assertEqual('cuda:0', lambda: torch.tensor(5).cuda('cuda:0'))
|
|
self.assertRaises(RuntimeError, lambda: torch.tensor(5).cuda('cpu'))
|
|
self.assertRaises(RuntimeError, lambda: torch.tensor(5).cuda('cpu:0'))
|
|
assertEqual('cuda:0', lambda: torch.tensor(5, dtype=torch.int64, device=0))
|
|
assertEqual('cuda:0', lambda: torch.tensor(5, dtype=torch.int64, device='cuda:0'))
|
|
assertEqual('cuda:' + str(torch.cuda.current_device()),
|
|
lambda: torch.tensor(5, dtype=torch.int64, device='cuda'))
|
|
assertEqual('cuda:0', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:0'))
|
|
if TEST_NUMPY:
|
|
assertEqual('cuda:0', lambda: torch.tensor(np.random.randn(2, 3), device='cuda:0'))
|
|
|
|
if torch.cuda.device_count() > 1:
|
|
assertEqual('cuda:1', lambda: torch.tensor(5).cuda(1))
|
|
assertEqual('cuda:1', lambda: torch.tensor(5).cuda('cuda:1'))
|
|
assertEqual('cuda:1', lambda: torch.tensor(5, dtype=torch.int64, device=1))
|
|
assertEqual('cuda:1', lambda: torch.tensor(5, dtype=torch.int64, device='cuda:1'))
|
|
assertEqual('cuda:1', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:1'))
|
|
if TEST_NUMPY:
|
|
assertEqual('cuda:1', lambda: torch.tensor(np.random.randn(2, 3), device='cuda:1'))
|
|
|
|
def test_to(self):
|
|
def test_copy_behavior(t, non_blocking=False):
|
|
self.assertIs(t, t.to(t, non_blocking=non_blocking))
|
|
self.assertIs(t, t.to(t.dtype, non_blocking=non_blocking))
|
|
self.assertIs(t, t.to(torch.empty_like(t), non_blocking=non_blocking))
|
|
self.assertIsNot(t, t.to(t, non_blocking=non_blocking, copy=True))
|
|
self.assertIsNot(t, t.to(t.dtype, non_blocking=non_blocking, copy=True))
|
|
self.assertIsNot(t, t.to(torch.empty_like(t), non_blocking=non_blocking, copy=True))
|
|
|
|
devices = [t.device]
|
|
if t.device.type == 'cuda':
|
|
if t.device.index == -1:
|
|
devices.append('cuda:{}'.format(torch.cuda.current_device()))
|
|
elif t.device.index == torch.cuda.current_device():
|
|
devices.append('cuda')
|
|
for device in devices:
|
|
self.assertIs(t, t.to(device, non_blocking=non_blocking))
|
|
self.assertIs(t, t.to(device, t.dtype, non_blocking=non_blocking))
|
|
self.assertIsNot(t, t.to(device, non_blocking=non_blocking, copy=True))
|
|
self.assertIsNot(t, t.to(device, t.dtype, non_blocking=non_blocking, copy=True))
|
|
|
|
a = torch.tensor(5)
|
|
test_copy_behavior(a)
|
|
self.assertEqual(a.device, a.to('cpu').device)
|
|
self.assertEqual(a.device, a.to('cpu', dtype=torch.float32).device)
|
|
self.assertIs(torch.float32, a.to('cpu', dtype=torch.float32).dtype)
|
|
self.assertEqual(a.device, a.to(torch.float32).device)
|
|
self.assertIs(torch.float32, a.to(dtype=torch.float32).dtype)
|
|
self.assertEqual(a.data_ptr(), a.to('cpu').data_ptr())
|
|
self.assertEqual(a.data_ptr(), a.to(dtype=a.dtype, device=a.device, copy=False).data_ptr())
|
|
self.assertEqual(a.data_ptr(), a.to('cpu', copy=False).data_ptr())
|
|
self.assertNotEqual(a.data_ptr(), a.to('cpu', copy=True).data_ptr())
|
|
|
|
if torch.cuda.is_available():
|
|
for non_blocking in [True, False]:
|
|
for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']:
|
|
b = torch.tensor(5., device=cuda)
|
|
test_copy_behavior(b, non_blocking)
|
|
self.assertEqual(b.device, b.to(cuda, non_blocking=non_blocking).device)
|
|
self.assertEqual(a.device, b.to('cpu', non_blocking=non_blocking).device)
|
|
self.assertEqual(b.device, a.to(cuda, non_blocking=non_blocking).device)
|
|
self.assertIs(torch.int32, b.to('cpu', dtype=torch.int32, non_blocking=non_blocking).dtype)
|
|
self.assertEqual(a.device, b.to('cpu', dtype=torch.int32, non_blocking=non_blocking).device)
|
|
self.assertIs(torch.int32, b.to(dtype=torch.int32).dtype)
|
|
self.assertEqual(b.device, b.to(dtype=torch.int32).device)
|
|
|
|
def test_to_with_tensor(self):
|
|
a = torch.tensor(5)
|
|
self.assertEqual(a.device, a.to(a).device)
|
|
|
|
if torch.cuda.is_available():
|
|
for non_blocking in [True, False]:
|
|
for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']:
|
|
b = torch.tensor(5., device=cuda)
|
|
self.assertEqual(b.device, b.to(b, non_blocking=non_blocking).device)
|
|
self.assertEqual(a.device, b.to(a, non_blocking=non_blocking).device)
|
|
self.assertEqual(b.device, a.to(b, non_blocking=non_blocking).device)
|
|
|
|
def test_empty_full(self):
|
|
do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, torch.device('cpu'))
|
|
if torch.cuda.device_count() > 0:
|
|
do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, None)
|
|
do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, torch.device('cuda:0'))
|
|
|
|
def test_dtype_out_match(self):
|
|
d = torch.autograd.Variable(torch.DoubleTensor(2, 3))
|
|
self.assertRaises(RuntimeError, lambda: torch.zeros((2, 3), out=d, dtype=torch.float32))
|
|
|
|
def test_as_subclass(self):
|
|
class SubTensor(torch.Tensor):
|
|
member_var = object()
|
|
|
|
t0 = torch.tensor(0)
|
|
t1 = torch.tensor([1, 2])
|
|
t2 = torch.tensor([[3, 4], [5, 6]])
|
|
|
|
s0 = t0.as_subclass(SubTensor)
|
|
s1 = t1.as_subclass(SubTensor)
|
|
s2 = t2.as_subclass(SubTensor)
|
|
|
|
# Check that the correct type is returned.
|
|
self.assertTrue(type(s0) is SubTensor)
|
|
self.assertTrue(type(s1) is SubTensor)
|
|
self.assertTrue(type(s2) is SubTensor)
|
|
|
|
# Check that the data is equal.
|
|
self.assertEqual(t0, s0)
|
|
self.assertEqual(t1, s1)
|
|
self.assertEqual(t2, s2)
|
|
|
|
t0[()] = 1
|
|
t1[1] = 3
|
|
t2[1, 1] = 7
|
|
|
|
# Check that the data is equal even after modification.
|
|
self.assertEqual(t0, s0)
|
|
self.assertEqual(t1, s1)
|
|
self.assertEqual(t2, s2)
|
|
|
|
# Check that member variables are passed through.
|
|
self.assertTrue(s0.member_var is SubTensor.member_var)
|
|
self.assertTrue(s1.member_var is SubTensor.member_var)
|
|
self.assertTrue(s2.member_var is SubTensor.member_var)
|
|
|
|
# Test that autograd is propagated.
|
|
t = torch.tensor(5, dtype=torch.float32, requires_grad=True)
|
|
|
|
# Run a calculation on the tensor.
|
|
exp_t = torch.exp(t)
|
|
|
|
# Cast exp_t to a subclass.
|
|
exp_s = exp_t.as_subclass(SubTensor)
|
|
|
|
# Make sure that t.grad was initially None
|
|
self.assertTrue(t.grad is None)
|
|
|
|
# Run the autograd calculation.
|
|
exp_s.backward()
|
|
|
|
# Make sure autograd was propagated to the original tensor
|
|
# declared with requires_grad.
|
|
self.assertTrue(t.grad is not None)
|
|
|
|
def test_constructor_dtypes(self):
|
|
default_type = torch.Tensor().type()
|
|
self.assertIs(torch.Tensor().dtype, torch.get_default_dtype())
|
|
|
|
self.assertIs(torch.uint8, torch.ByteTensor.dtype)
|
|
self.assertIs(torch.float32, torch.FloatTensor.dtype)
|
|
self.assertIs(torch.float64, torch.DoubleTensor.dtype)
|
|
|
|
torch.set_default_tensor_type('torch.FloatTensor')
|
|
self.assertIs(torch.float32, torch.get_default_dtype())
|
|
self.assertIs(torch.FloatStorage, torch.Storage)
|
|
|
|
torch.set_default_dtype(torch.float64)
|
|
self.assertIs(torch.float64, torch.get_default_dtype())
|
|
self.assertIs(torch.DoubleStorage, torch.Storage)
|
|
|
|
torch.set_default_tensor_type(torch.FloatTensor)
|
|
self.assertIs(torch.float32, torch.get_default_dtype())
|
|
self.assertIs(torch.FloatStorage, torch.Storage)
|
|
|
|
if torch.cuda.is_available():
|
|
torch.set_default_tensor_type(torch.cuda.FloatTensor)
|
|
self.assertIs(torch.float32, torch.get_default_dtype())
|
|
self.assertIs(torch.float32, torch.cuda.FloatTensor.dtype)
|
|
self.assertIs(torch.cuda.FloatStorage, torch.Storage)
|
|
|
|
torch.set_default_dtype(torch.float64)
|
|
self.assertIs(torch.float64, torch.get_default_dtype())
|
|
self.assertIs(torch.cuda.DoubleStorage, torch.Storage)
|
|
|
|
# don't support integral or sparse default types.
|
|
self.assertRaises(TypeError, lambda: torch.set_default_tensor_type('torch.IntTensor'))
|
|
self.assertRaises(TypeError, lambda: torch.set_default_dtype(torch.int64))
|
|
|
|
# don't allow passing dtype to set_default_tensor_type
|
|
self.assertRaises(TypeError, lambda: torch.set_default_tensor_type(torch.float32))
|
|
|
|
torch.set_default_tensor_type(default_type)
|
|
|
|
def test_constructor_device_legacy(self):
|
|
self.assertRaises(RuntimeError, lambda: torch.FloatTensor(device='cuda'))
|
|
self.assertRaises(RuntimeError, lambda: torch.FloatTensor(torch.Size([2, 3, 4]), device='cuda'))
|
|
self.assertRaises(RuntimeError, lambda: torch.FloatTensor((2.0, 3.0), device='cuda'))
|
|
|
|
self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cuda'))
|
|
self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cuda'))
|
|
self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cuda'))
|
|
|
|
x = torch.randn((3,), device='cpu')
|
|
self.assertRaises(RuntimeError, lambda: x.new(device='cuda'))
|
|
self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda'))
|
|
self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cuda'))
|
|
|
|
if torch.cuda.is_available():
|
|
self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(device='cpu'))
|
|
self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(torch.Size([2, 3, 4]), device='cpu'))
|
|
self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor((2.0, 3.0), device='cpu'))
|
|
|
|
default_type = torch.Tensor().type()
|
|
torch.set_default_tensor_type(torch.cuda.FloatTensor)
|
|
self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cpu'))
|
|
self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cpu'))
|
|
self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cpu'))
|
|
torch.set_default_tensor_type(torch.cuda.FloatTensor)
|
|
torch.set_default_tensor_type(default_type)
|
|
|
|
x = torch.randn((3,), device='cuda')
|
|
self.assertRaises(RuntimeError, lambda: x.new(device='cpu'))
|
|
self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu'))
|
|
self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cpu'))
|
|
|
|
def test_type(self):
|
|
x = torch.randn(3, 3).double()
|
|
self.assertEqual(x.type('torch.FloatTensor').dtype, torch.float32)
|
|
self.assertEqual(x.type(torch.FloatTensor).dtype, torch.float32)
|
|
self.assertEqual(x.int().type(torch.Tensor).dtype, torch.get_default_dtype())
|
|
self.assertEqual(x.type(torch.int32).dtype, torch.int32)
|
|
|
|
def test_tensor_factory(self):
|
|
# TODO: This test probably doesn't make too much sense now that
|
|
# torch.tensor has been established for a while; it makes more
|
|
# sense to test the legacy behavior in terms of the new behavior
|
|
expected = torch.Tensor([1, 1])
|
|
# test data
|
|
res1 = torch.tensor([1, 1])
|
|
self.assertEqual(res1, expected, exact_dtype=False)
|
|
|
|
res1 = torch.tensor([1, 1], dtype=torch.int)
|
|
self.assertEqual(res1, expected, exact_dtype=False)
|
|
self.assertIs(torch.int, res1.dtype)
|
|
|
|
# test copy
|
|
res2 = torch.tensor(expected)
|
|
self.assertEqual(res2, expected)
|
|
res2[1] = 2
|
|
self.assertEqual(expected, torch.ones_like(expected))
|
|
|
|
res2 = torch.tensor(expected, dtype=torch.int)
|
|
self.assertEqual(res1, expected, exact_dtype=False)
|
|
self.assertIs(torch.int, res1.dtype)
|
|
|
|
# test copy with numpy
|
|
if TEST_NUMPY:
|
|
for dtype in [np.float64, np.int64, np.int8, np.uint8]:
|
|
a = np.array([5.]).astype(dtype)
|
|
res1 = torch.tensor(a)
|
|
self.assertEqual(5., res1[0].item())
|
|
a[0] = 7.
|
|
self.assertEqual(5., res1[0].item())
|
|
|
|
# test boolean tensor
|
|
a = torch.tensor([True, True, False, True, True], dtype=torch.bool)
|
|
b = torch.tensor([-1, -1.1, 0, 1, 1.1], dtype=torch.bool)
|
|
self.assertEqual(a, b)
|
|
c = torch.tensor([-0.1, -1.1, 0, 1, 0.1], dtype=torch.bool)
|
|
self.assertEqual(a, c)
|
|
d = torch.tensor((-.3, 0, .3, 1, 3 / 7), dtype=torch.bool)
|
|
e = torch.tensor((True, False, True, True, True), dtype=torch.bool)
|
|
self.assertEqual(e, d)
|
|
f = torch.tensor((-1, 0, -1.1, 1, 1.1), dtype=torch.bool)
|
|
self.assertEqual(e, f)
|
|
|
|
int64_max = torch.iinfo(torch.int64).max
|
|
int64_min = torch.iinfo(torch.int64).min
|
|
float64_max = torch.finfo(torch.float64).max
|
|
float64_min = torch.finfo(torch.float64).min
|
|
g_1 = torch.tensor((float('nan'), 0, int64_min, int64_max, int64_min - 1), dtype=torch.bool)
|
|
self.assertEqual(e, g_1)
|
|
g_2 = torch.tensor((int64_max + 1, 0, (int64_max + 1) * 2, (int64_max + 1) * 2 + 1, float64_min), dtype=torch.bool)
|
|
self.assertEqual(e, g_2)
|
|
g_3 = torch.tensor((float64_max, 0, float64_max + 1, float64_min - 1, float64_max + 1e291), dtype=torch.bool)
|
|
self.assertEqual(e, g_3)
|
|
|
|
h = torch.tensor([True, False, False, True, False, True, True], dtype=torch.bool)
|
|
i = torch.tensor([1e-323, 1e-324, 0j, 1e-323j, 1e-324j, 1 + 2j, -1j], dtype=torch.bool)
|
|
self.assertEqual(h, i)
|
|
j = torch.tensor((True, True, True, True), dtype=torch.bool)
|
|
k = torch.tensor((1e323, -1e323, float('inf'), -float('inf')), dtype=torch.bool)
|
|
self.assertEqual(j, k)
|
|
|
|
def test_tensor_factory_copy_var(self):
|
|
|
|
def check_copy(copy, is_leaf, requires_grad, data_ptr=None):
|
|
if data_ptr is None:
|
|
data_ptr = copy.data_ptr
|
|
self.assertEqual(copy, source, exact_dtype=False)
|
|
self.assertTrue(copy.is_leaf == is_leaf)
|
|
self.assertTrue(copy.requires_grad == requires_grad)
|
|
self.assertTrue(copy.data_ptr == data_ptr)
|
|
|
|
source = torch.randn(5, 5, dtype=torch.double, requires_grad=True)
|
|
# test torch.tensor()
|
|
check_copy(torch.tensor(source), True, False)
|
|
check_copy(torch.tensor(source, requires_grad=False), True, False)
|
|
check_copy(torch.tensor(source, requires_grad=True), True, True)
|
|
|
|
# test tensor.new_tensor()
|
|
copy = torch.randn(1)
|
|
check_copy(copy.new_tensor(source), True, False)
|
|
check_copy(copy.new_tensor(source, requires_grad=False), True, False)
|
|
check_copy(copy.new_tensor(source, requires_grad=True), True, True)
|
|
|
|
# test torch.as_tensor()
|
|
check_copy(torch.as_tensor(source), source.is_leaf, source.requires_grad, source.data_ptr) # not copy
|
|
check_copy(torch.as_tensor(source, dtype=torch.float), False, True) # copy and keep the graph
|
|
|
|
def test_tensor_factory_type_inference(self):
|
|
def test_inference(default_dtype):
|
|
saved_dtype = torch.get_default_dtype()
|
|
torch.set_default_dtype(default_dtype)
|
|
default_complex_dtype = torch.complex64 if default_dtype == torch.float32 else torch.complex128
|
|
self.assertIs(default_dtype, torch.tensor(()).dtype)
|
|
self.assertIs(default_dtype, torch.tensor(5.).dtype)
|
|
self.assertIs(torch.int64, torch.tensor(5).dtype)
|
|
self.assertIs(torch.bool, torch.tensor(True).dtype)
|
|
self.assertIs(torch.int32, torch.tensor(5, dtype=torch.int32).dtype)
|
|
self.assertIs(default_dtype, torch.tensor(((7, 5), (9, 5.))).dtype)
|
|
self.assertIs(default_dtype, torch.tensor(((5., 5), (3, 5))).dtype)
|
|
self.assertIs(torch.int64, torch.tensor(((5, 3), (3, 5))).dtype)
|
|
self.assertIs(default_complex_dtype, torch.tensor(((5, 3 + 2j), (3, 5 + 4j))).dtype)
|
|
|
|
if TEST_NUMPY:
|
|
self.assertIs(torch.float64, torch.tensor(np.array(())).dtype)
|
|
self.assertIs(torch.float64, torch.tensor(np.array(5.)).dtype)
|
|
if np.array(5).dtype == np.int64: # np long, which can be 4 bytes (e.g. on windows)
|
|
self.assertIs(torch.int64, torch.tensor(np.array(5)).dtype)
|
|
else:
|
|
self.assertIs(torch.int32, torch.tensor(np.array(5)).dtype)
|
|
self.assertIs(torch.uint8, torch.tensor(np.array(3, dtype=np.uint8)).dtype)
|
|
self.assertIs(default_dtype, torch.tensor(((7, np.array(5)), (np.array(9), 5.))).dtype)
|
|
self.assertIs(torch.float64, torch.tensor(((7, 5), (9, np.array(5.)))).dtype)
|
|
self.assertIs(torch.int64, torch.tensor(((5, np.array(3)), (np.array(3), 5))).dtype)
|
|
torch.set_default_dtype(saved_dtype)
|
|
|
|
test_inference(torch.float64)
|
|
test_inference(torch.float32)
|
|
|
|
def test_qengine(self):
|
|
qengines = torch.backends.quantized.supported_engines
|
|
original_qe = torch.backends.quantized.engine
|
|
for qe in qengines:
|
|
torch.backends.quantized.engine = qe
|
|
assert torch.backends.quantized.engine == qe, 'qengine not set successfully'
|
|
torch.backends.quantized.engine = original_qe
|
|
|
|
def test_new_tensor(self):
|
|
expected = torch.autograd.Variable(torch.ByteTensor([1, 1]))
|
|
# test data
|
|
res1 = expected.new_tensor([1, 1])
|
|
self.assertEqual(res1, expected)
|
|
res1 = expected.new_tensor([1, 1], dtype=torch.int)
|
|
self.assertEqual(res1, expected, exact_dtype=False)
|
|
self.assertIs(torch.int, res1.dtype)
|
|
|
|
# test copy
|
|
res2 = expected.new_tensor(expected)
|
|
self.assertEqual(res2, expected)
|
|
res2[1] = 2
|
|
self.assertEqual(expected, torch.ones_like(expected))
|
|
res2 = expected.new_tensor(expected, dtype=torch.int)
|
|
self.assertEqual(res2, expected, exact_dtype=False)
|
|
self.assertIs(torch.int, res2.dtype)
|
|
|
|
# test copy with numpy
|
|
if TEST_NUMPY:
|
|
a = np.array([5.])
|
|
res1 = torch.tensor(a)
|
|
res1 = res1.new_tensor(a)
|
|
self.assertEqual(5., res1[0].item())
|
|
a[0] = 7.
|
|
self.assertEqual(5., res1[0].item())
|
|
|
|
if torch.cuda.device_count() >= 2:
|
|
expected = expected.cuda(1)
|
|
res1 = expected.new_tensor([1, 1])
|
|
self.assertEqual(res1.get_device(), expected.get_device())
|
|
res1 = expected.new_tensor([1, 1], dtype=torch.int)
|
|
self.assertIs(torch.int, res1.dtype)
|
|
self.assertEqual(res1.get_device(), expected.get_device())
|
|
|
|
res2 = expected.new_tensor(expected)
|
|
self.assertEqual(res2.get_device(), expected.get_device())
|
|
res2 = expected.new_tensor(expected, dtype=torch.int)
|
|
self.assertIs(torch.int, res1.dtype)
|
|
self.assertEqual(res2.get_device(), expected.get_device())
|
|
res2 = expected.new_tensor(expected, dtype=torch.int, device=0)
|
|
self.assertIs(torch.int, res1.dtype)
|
|
self.assertEqual(res2.get_device(), 0)
|
|
|
|
res1 = expected.new_tensor(1)
|
|
self.assertEqual(res1.get_device(), expected.get_device())
|
|
res1 = expected.new_tensor(1, dtype=torch.int)
|
|
self.assertIs(torch.int, res1.dtype)
|
|
self.assertEqual(res1.get_device(), expected.get_device())
|
|
|
|
def test_as_tensor(self):
|
|
# from python data
|
|
x = [[0, 1], [2, 3]]
|
|
self.assertEqual(torch.tensor(x), torch.as_tensor(x))
|
|
self.assertEqual(torch.tensor(x, dtype=torch.float32), torch.as_tensor(x, dtype=torch.float32))
|
|
|
|
# python data with heterogeneous types
|
|
z = [0, 'torch']
|
|
with self.assertRaisesRegex(TypeError, "invalid data type"):
|
|
torch.tensor(z)
|
|
torch.as_tensor(z)
|
|
|
|
# python data with self-referential lists
|
|
z = [0]
|
|
z += [z]
|
|
with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"):
|
|
torch.tensor(z)
|
|
torch.as_tensor(z)
|
|
|
|
z = [[1, 2], z]
|
|
with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"):
|
|
torch.tensor(z)
|
|
torch.as_tensor(z)
|
|
|
|
# from tensor (doesn't copy unless type is different)
|
|
y = torch.tensor(x)
|
|
self.assertIs(y, torch.as_tensor(y))
|
|
self.assertIsNot(y, torch.as_tensor(y, dtype=torch.float32))
|
|
if torch.cuda.is_available():
|
|
self.assertIsNot(y, torch.as_tensor(y, device='cuda'))
|
|
y_cuda = y.to('cuda')
|
|
self.assertIs(y_cuda, torch.as_tensor(y_cuda))
|
|
self.assertIs(y_cuda, torch.as_tensor(y_cuda, device='cuda'))
|
|
|
|
if TEST_NUMPY:
|
|
# doesn't copy
|
|
for dtype in [np.float64, np.int64, np.int8, np.uint8]:
|
|
n = np.random.rand(5, 6).astype(dtype)
|
|
n_astensor = torch.as_tensor(n)
|
|
self.assertEqual(torch.tensor(n), n_astensor)
|
|
n_astensor[0][0] = 25.7
|
|
self.assertEqual(torch.tensor(n), n_astensor)
|
|
|
|
# changing dtype causes copy
|
|
n = np.random.rand(5, 6).astype(np.float32)
|
|
n_astensor = torch.as_tensor(n, dtype=torch.float64)
|
|
self.assertEqual(torch.tensor(n, dtype=torch.float64), n_astensor)
|
|
n_astensor[0][1] = 250.8
|
|
self.assertNotEqual(torch.tensor(n, dtype=torch.float64), n_astensor)
|
|
|
|
# changing device causes copy
|
|
if torch.cuda.is_available():
|
|
n = np.random.randn(5, 6)
|
|
n_astensor = torch.as_tensor(n, device='cuda')
|
|
self.assertEqual(torch.tensor(n, device='cuda'), n_astensor)
|
|
n_astensor[0][2] = 250.9
|
|
self.assertNotEqual(torch.tensor(n, device='cuda'), n_astensor)
|
|
|
|
def test_renorm(self):
|
|
m1 = torch.randn(10, 5)
|
|
res1 = torch.Tensor()
|
|
|
|
def renorm(matrix, value, dim, max_norm):
|
|
m1 = matrix.transpose(dim, 0).contiguous()
|
|
# collapse non-dim dimensions.
|
|
m2 = m1.clone().resize_(m1.size(0), int(math.floor(m1.nelement() / m1.size(0))))
|
|
norms = m2.norm(value, 1, True)
|
|
# clip
|
|
new_norms = norms.clone()
|
|
new_norms[torch.gt(norms, max_norm)] = max_norm
|
|
new_norms.div_(norms.add_(1e-7))
|
|
# renormalize
|
|
m1.mul_(new_norms.expand_as(m1))
|
|
return m1.transpose(dim, 0)
|
|
|
|
# note that the axis fed to torch.renorm is different (2~=1)
|
|
maxnorm = m1.norm(2, 1).mean()
|
|
m2 = renorm(m1, 2, 1, maxnorm)
|
|
m1.renorm_(2, 1, maxnorm)
|
|
self.assertEqual(m1, m2, atol=1e-5, rtol=0)
|
|
self.assertEqual(m1.norm(2, 0), m2.norm(2, 0), atol=1e-5, rtol=0)
|
|
|
|
m1 = torch.randn(3, 4, 5)
|
|
m2 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
|
|
maxnorm = m2.norm(2, 0).mean()
|
|
m2 = renorm(m2, 2, 1, maxnorm)
|
|
m1.renorm_(2, 1, maxnorm)
|
|
m3 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
|
|
self.assertEqual(m3, m2)
|
|
self.assertEqual(m3.norm(2, 0), m2.norm(2, 0))
|
|
|
|
def _spawn_method(self, method, arg):
|
|
try:
|
|
mp.set_start_method('spawn')
|
|
except RuntimeError:
|
|
pass
|
|
with mp.Pool(1) as pool:
|
|
out: list = pool.map(method, [arg])
|
|
self.assertTrue(out[0])
|
|
|
|
@staticmethod
|
|
def _test_multinomial_invalid_probs(probs):
|
|
try:
|
|
# n_sample = 1 is a special case, test n_sample=2 which is more general
|
|
torch.multinomial(probs.to('cpu'), 2)
|
|
return False # Should not be reached
|
|
except RuntimeError as e:
|
|
return 'probability tensor contains either `inf`, `nan` or element < 0' in str(e)
|
|
|
|
@slowTest
|
|
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
|
|
don't support multiprocessing with spawn start method")
|
|
@unittest.skipIf(IS_WINDOWS, 'FIXME: CUDA OOM error on Windows')
|
|
def test_multinomial_invalid_probs(self):
|
|
test_method = AbstractTestCases._TestTorchMixin._test_multinomial_invalid_probs
|
|
self._spawn_method(test_method, torch.Tensor([1, -1, 1]))
|
|
self._spawn_method(test_method, torch.Tensor([1, inf, 1]))
|
|
self._spawn_method(test_method, torch.Tensor([1, -inf, 1]))
|
|
self._spawn_method(test_method, torch.Tensor([1, 1, nan]))
|
|
|
|
@suppress_warnings
|
|
def test_range(self):
|
|
res1 = torch.range(0, 1)
|
|
res2 = torch.Tensor()
|
|
torch.range(0, 1, out=res2)
|
|
self.assertEqual(res1, res2, atol=0, rtol=0)
|
|
|
|
# Check range for non-contiguous tensors.
|
|
x = torch.zeros(2, 3)
|
|
torch.range(0, 3, out=x.narrow(1, 1, 2))
|
|
res2 = torch.Tensor(((0, 0, 1), (0, 2, 3)))
|
|
self.assertEqual(x, res2, atol=1e-16, rtol=0)
|
|
|
|
# Check negative
|
|
res1 = torch.Tensor((1, 0))
|
|
res2 = torch.Tensor()
|
|
torch.range(1, 0, -1, out=res2)
|
|
self.assertEqual(res1, res2, atol=0, rtol=0)
|
|
|
|
# Equal bounds
|
|
res1 = torch.ones(1)
|
|
res2 = torch.Tensor()
|
|
torch.range(1, 1, -1, out=res2)
|
|
self.assertEqual(res1, res2, atol=0, rtol=0)
|
|
torch.range(1, 1, 1, out=res2)
|
|
self.assertEqual(res1, res2, atol=0, rtol=0)
|
|
|
|
# FloatTensor
|
|
res1 = torch.range(0.6, 0.9, 0.1, out=torch.FloatTensor())
|
|
self.assertEqual(res1.size(0), 4)
|
|
res1 = torch.range(1, 10, 0.3, out=torch.FloatTensor())
|
|
self.assertEqual(res1.size(0), 31)
|
|
|
|
# DoubleTensor
|
|
res1 = torch.range(0.6, 0.9, 0.1, out=torch.DoubleTensor())
|
|
self.assertEqual(res1.size(0), 4)
|
|
res1 = torch.range(1, 10, 0.3, out=torch.DoubleTensor())
|
|
self.assertEqual(res1.size(0), 31)
|
|
|
|
def test_range_warning(self):
|
|
with warnings.catch_warnings(record=True) as w:
|
|
torch.range(0, 10)
|
|
self.assertEqual(len(w), 1)
|
|
|
|
def test_arange(self):
|
|
res1 = torch.arange(0, 1)
|
|
res2 = torch.tensor([], dtype=torch.int64)
|
|
torch.arange(0, 1, out=res2)
|
|
self.assertEqual(res1, res2, atol=0, rtol=0)
|
|
|
|
# Check arange with only one argument
|
|
res1 = torch.arange(10)
|
|
res2 = torch.arange(0, 10)
|
|
self.assertEqual(res1, res2, atol=0, rtol=0)
|
|
|
|
# Check arange for non-contiguous tensors.
|
|
x = torch.zeros(2, 3)
|
|
torch.arange(0, 4, out=x.narrow(1, 1, 2))
|
|
res2 = torch.Tensor(((0, 0, 1), (0, 2, 3)))
|
|
self.assertEqual(x, res2, atol=1e-16, rtol=0)
|
|
|
|
# Check negative
|
|
res1 = torch.Tensor((1, 0))
|
|
res2 = torch.Tensor()
|
|
torch.arange(1, -1, -1, out=res2)
|
|
self.assertEqual(res1, res2, atol=0, rtol=0)
|
|
|
|
# Equal bounds
|
|
res1 = torch.ones(1)
|
|
res2 = torch.Tensor()
|
|
torch.arange(1, 0, -1, out=res2)
|
|
self.assertEqual(res1, res2, atol=0, rtol=0)
|
|
torch.arange(1, 2, 1, out=res2)
|
|
self.assertEqual(res1, res2, atol=0, rtol=0)
|
|
|
|
# FloatTensor
|
|
res1 = torch.arange(0.6, 0.89, 0.1, out=torch.FloatTensor())
|
|
self.assertEqual(res1, [0.6, 0.7, 0.8])
|
|
res1 = torch.arange(1, 10, 0.3, out=torch.FloatTensor())
|
|
self.assertEqual(res1.size(0), 30)
|
|
self.assertEqual(res1[0], 1)
|
|
self.assertEqual(res1[29], 9.7)
|
|
|
|
# DoubleTensor
|
|
res1 = torch.arange(0.6, 0.89, 0.1, out=torch.DoubleTensor())
|
|
self.assertEqual(res1, [0.6, 0.7, 0.8])
|
|
res1 = torch.arange(1, 10, 0.3, out=torch.DoubleTensor())
|
|
self.assertEqual(res1.size(0), 30)
|
|
self.assertEqual(res1[0], 1)
|
|
self.assertEqual(res1[29], 9.7)
|
|
|
|
# Bool Input matching numpy semantics
|
|
r = torch.arange(True)
|
|
self.assertEqual(r[0], 0)
|
|
r2 = torch.arange(False)
|
|
self.assertEqual(len(r2), 0)
|
|
self.assertEqual(r.dtype, torch.int64)
|
|
self.assertEqual(r2.dtype, torch.int64)
|
|
|
|
# Check that it's exclusive
|
|
r = torch.arange(0, 5)
|
|
self.assertEqual(r.min(), 0)
|
|
self.assertEqual(r.max(), 4)
|
|
self.assertEqual(r.numel(), 5)
|
|
|
|
r = torch.arange(0, 5, 2)
|
|
self.assertEqual(r.min(), 0)
|
|
self.assertEqual(r.max(), 4)
|
|
self.assertEqual(r.numel(), 3)
|
|
|
|
r1 = torch.arange(0, 5 + 1e-6)
|
|
# NB: without the dtype, we'll infer output type to be int64
|
|
r2 = torch.arange(0, 5, dtype=torch.float32)
|
|
r3 = torch.arange(0, 5 - 1e-6)
|
|
self.assertEqual(r1[:-1], r2, atol=0, rtol=0)
|
|
self.assertEqual(r2, r3, atol=0, rtol=0)
|
|
|
|
r1 = torch.arange(10, -1 + 1e-6, -1)
|
|
# NB: without the dtype, we'll infer output type to be int64
|
|
r2 = torch.arange(10, -1, -1, dtype=torch.float32)
|
|
r3 = torch.arange(10, -1 - 1e-6, -1)
|
|
self.assertEqual(r1, r2, atol=0, rtol=0)
|
|
self.assertEqual(r2, r3[:-1], atol=0, rtol=0)
|
|
|
|
# Test Rounding Errors
|
|
line = torch.zeros(size=(1, 49))
|
|
self.assertWarnsRegex(UserWarning, 'The out tensor will be resized',
|
|
lambda: torch.arange(-1, 1, 2. / 49, dtype=torch.float32, out=line))
|
|
self.assertEqual(line.shape, [50])
|
|
|
|
x = torch.empty(1).expand(10)
|
|
self.assertRaises(RuntimeError, lambda: torch.arange(10, out=x))
|
|
msg = "unsupported range"
|
|
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf')))
|
|
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf')))
|
|
|
|
for device in torch.testing.get_all_device_types():
|
|
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(-5, float('nan'), device=device))
|
|
# check with step size
|
|
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('-inf'), -1, device=device))
|
|
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf'), device=device))
|
|
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('-inf'), 10, device=device))
|
|
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), 10, device=device))
|
|
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf'), device=device))
|
|
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), device=device))
|
|
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "overflow",
|
|
lambda: torch.arange(1.175494351e-38, 3.402823466e+38, device=device))
|
|
|
|
# check that it holds a consistent output shape on precision-cornered step sizes
|
|
d = torch.arange(-4.0, 4.0, 0.01, dtype=torch.float32, device=device)
|
|
self.assertEqual(d.shape[0], 800)
|
|
|
|
def test_arange_inference(self):
|
|
saved_dtype = torch.get_default_dtype()
|
|
torch.set_default_dtype(torch.float32)
|
|
# end only
|
|
self.assertIs(torch.float32, torch.arange(1.).dtype)
|
|
self.assertIs(torch.float32, torch.arange(torch.tensor(1.)).dtype)
|
|
self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64)).dtype)
|
|
|
|
self.assertIs(torch.int64, torch.arange(1).dtype)
|
|
self.assertIs(torch.int64, torch.arange(torch.tensor(1)).dtype)
|
|
self.assertIs(torch.int64, torch.arange(torch.tensor(1, dtype=torch.int16)).dtype)
|
|
|
|
# start, end, [step]
|
|
self.assertIs(torch.float32, torch.arange(1., 3).dtype)
|
|
self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64), 3).dtype)
|
|
self.assertIs(torch.float32, torch.arange(1, 3.).dtype)
|
|
self.assertIs(torch.float32, torch.arange(torch.tensor(1, dtype=torch.int16), torch.tensor(3.)).dtype)
|
|
self.assertIs(torch.float32, torch.arange(1, 3, 1.).dtype)
|
|
self.assertIs(torch.float32,
|
|
torch.arange(torch.tensor(1),
|
|
torch.tensor(3, dtype=torch.int16),
|
|
torch.tensor(1., dtype=torch.float64)).dtype)
|
|
|
|
self.assertIs(torch.int64, torch.arange(1, 3).dtype)
|
|
self.assertIs(torch.int64, torch.arange(torch.tensor(1), 3).dtype)
|
|
self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16)).dtype)
|
|
self.assertIs(torch.int64, torch.arange(1, 3, 1).dtype)
|
|
self.assertIs(torch.int64,
|
|
torch.arange(torch.tensor(1),
|
|
torch.tensor(3),
|
|
torch.tensor(1, dtype=torch.int16)).dtype)
|
|
torch.set_default_dtype(saved_dtype)
|
|
|
|
def test_randint_inference(self):
|
|
size = (2, 1)
|
|
for args in [(3,), (1, 3)]: # (low,) and (low, high)
|
|
self.assertIs(torch.int64, torch.randint(*args, size=size).dtype)
|
|
self.assertIs(torch.int64, torch.randint(*args, size=size, layout=torch.strided).dtype)
|
|
self.assertIs(torch.int64, torch.randint(*args, size=size, generator=torch.default_generator).dtype)
|
|
self.assertIs(torch.float32, torch.randint(*args, size=size, dtype=torch.float32).dtype)
|
|
out = torch.empty(size, dtype=torch.float32)
|
|
self.assertIs(torch.float32, torch.randint(*args, size=size, out=out).dtype)
|
|
self.assertIs(torch.float32, torch.randint(*args, size=size, out=out, dtype=torch.float32).dtype)
|
|
out = torch.empty(size, dtype=torch.int64)
|
|
self.assertIs(torch.int64, torch.randint(*args, size=size, out=out).dtype)
|
|
self.assertIs(torch.int64, torch.randint(*args, size=size, out=out, dtype=torch.int64).dtype)
|
|
|
|
def test_broadcast_empty(self):
|
|
# empty + empty
|
|
self.assertRaises(RuntimeError, lambda: torch.randn(5, 0) + torch.randn(0, 5))
|
|
self.assertEqual(torch.randn(5, 0), torch.randn(0) + torch.randn(5, 0))
|
|
self.assertEqual(torch.randn(5, 0, 0), torch.randn(0) + torch.randn(5, 0, 1))
|
|
|
|
# scalar + empty
|
|
self.assertEqual(torch.randn(5, 0, 6), torch.randn(()) + torch.randn(5, 0, 6))
|
|
|
|
# non-empty, empty
|
|
self.assertEqual(torch.randn(0), torch.randn(0) + torch.randn(1))
|
|
self.assertEqual(torch.randn(0, 7, 0, 6, 5, 0, 7),
|
|
torch.randn(0, 7, 0, 6, 5, 0, 1) + torch.randn(1, 1, 5, 1, 7))
|
|
self.assertRaises(RuntimeError, lambda: torch.randn(7, 0) + torch.randn(2, 1))
|
|
|
|
def test_scalars_as_floats(self):
|
|
"zero-dim variables that don't require grad should bind to scalar arguments"
|
|
x = torch.tensor(2.)
|
|
y = torch.tensor(3.)
|
|
# 3 + (3 * 3) * 2
|
|
self.assertEqual(y.addcmul(y, y, value=x), 21)
|
|
|
|
x = torch.tensor(2., requires_grad=True)
|
|
self.assertRaises(Exception, lambda: y.addcmul(y, y, value=x))
|
|
|
|
def test_copy_broadcast(self):
|
|
torch.zeros(5, 6).copy_(torch.zeros(6))
|
|
self.assertRaises(RuntimeError, lambda: torch.zeros(5, 6).copy_(torch.zeros(30)))
|
|
|
|
def test_copy_many_to_one(self):
|
|
# Testing in-place copy where it attempt to write from many memory
|
|
# storage to a single storage would cause RuntimeError to be thrown
|
|
self.assertRaises(RuntimeError, lambda: torch.zeros(1, 6).expand(5, 6).copy_(torch.zeros(5, 6)))
|
|
|
|
def assertIsOrdered(self, order, x, mxx, ixx, task):
|
|
SIZE = 4
|
|
if order == 'descending':
|
|
def check_order(a, b):
|
|
# `a != a` because we put NaNs
|
|
# at the end of ascending sorted lists,
|
|
# and the beginning of descending ones.
|
|
return a != a or a >= b
|
|
elif order == 'ascending':
|
|
def check_order(a, b):
|
|
# see above
|
|
return b != b or a <= b
|
|
else:
|
|
error('unknown order "{}", must be "ascending" or "descending"'.format(order))
|
|
|
|
are_ordered = True
|
|
for j, k in product(range(SIZE), range(1, SIZE)):
|
|
self.assertTrue(check_order(mxx[j][k - 1], mxx[j][k]),
|
|
'torch.sort ({}) values unordered for {}'.format(order, task))
|
|
|
|
seen = set()
|
|
indicesCorrect = True
|
|
size = x.size(x.dim() - 1)
|
|
for k in range(size):
|
|
seen.clear()
|
|
for j in range(size):
|
|
self.assertEqual(x[k][ixx[k][j]], mxx[k][j],
|
|
msg='torch.sort ({}) indices wrong for {}'.format(order, task))
|
|
seen.add(ixx[k][j])
|
|
self.assertEqual(len(seen), size)
|
|
|
|
def test_sort(self):
|
|
SIZE = 4
|
|
x = torch.rand(SIZE, SIZE)
|
|
res1val, res1ind = torch.sort(x)
|
|
|
|
# Test use of result tensor
|
|
res2val = torch.Tensor()
|
|
res2ind = torch.LongTensor()
|
|
torch.sort(x, out=(res2val, res2ind))
|
|
self.assertEqual(res1val, res2val, atol=0, rtol=0)
|
|
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
|
|
self.assertEqual(torch.argsort(x), res1ind)
|
|
self.assertEqual(x.argsort(), res1ind)
|
|
|
|
# Test sorting of random numbers
|
|
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random')
|
|
|
|
# Test simple sort
|
|
self.assertEqual(
|
|
torch.sort(torch.Tensor((50, 40, 30, 20, 10)))[0],
|
|
torch.Tensor((10, 20, 30, 40, 50)),
|
|
atol=0, rtol=0
|
|
)
|
|
|
|
# Test that we still have proper sorting with duplicate keys
|
|
x = torch.floor(torch.rand(SIZE, SIZE) * 10)
|
|
torch.sort(x, out=(res2val, res2ind))
|
|
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random with duplicate keys')
|
|
|
|
# DESCENDING SORT
|
|
x = torch.rand(SIZE, SIZE)
|
|
res1val, res1ind = torch.sort(x, x.dim() - 1, True)
|
|
|
|
# Test use of result tensor
|
|
res2val = torch.Tensor()
|
|
res2ind = torch.LongTensor()
|
|
torch.sort(x, x.dim() - 1, True, out=(res2val, res2ind))
|
|
self.assertEqual(res1val, res2val, atol=0, rtol=0)
|
|
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
|
|
self.assertEqual(torch.argsort(x, x.dim() - 1, True), res1ind)
|
|
self.assertEqual(x.argsort(x.dim() - 1, True), res1ind)
|
|
|
|
# Test sorting of random numbers
|
|
self.assertIsOrdered('descending', x, res2val, res2ind, 'random')
|
|
|
|
# Test simple sort task
|
|
self.assertEqual(
|
|
torch.sort(torch.Tensor((10, 20, 30, 40, 50)), 0, True)[0],
|
|
torch.Tensor((50, 40, 30, 20, 10)),
|
|
atol=0, rtol=0
|
|
)
|
|
|
|
# Test that we still have proper sorting with duplicate keys
|
|
self.assertIsOrdered('descending', x, res2val, res2ind, 'random with duplicate keys')
|
|
|
|
# Test sorting with NaNs
|
|
x = torch.rand(SIZE, SIZE)
|
|
x[1][2] = float('NaN')
|
|
x[3][0] = float('NaN')
|
|
torch.sort(x, out=(res2val, res2ind))
|
|
self.assertIsOrdered('ascending', x, res2val, res2ind,
|
|
'random with NaNs')
|
|
torch.sort(x, out=(res2val, res2ind), descending=True)
|
|
self.assertIsOrdered('descending', x, res2val, res2ind,
|
|
'random with NaNs')
|
|
|
|
def test_topk(self):
|
|
def topKViaSort(t, k, dim, dir):
|
|
sorted, indices = t.sort(dim, dir)
|
|
return sorted.narrow(dim, 0, k), indices.narrow(dim, 0, k)
|
|
|
|
def compareTensors(t, res1, ind1, res2, ind2, dim):
|
|
# Values should be exactly equivalent
|
|
self.assertEqual(res1, res2, atol=0, rtol=0)
|
|
|
|
# Indices might differ based on the implementation, since there is
|
|
# no guarantee of the relative order of selection
|
|
if not ind1.eq(ind2).all():
|
|
# To verify that the indices represent equivalent elements,
|
|
# gather from the input using the topk indices and compare against
|
|
# the sort indices
|
|
vals = t.gather(dim, ind2)
|
|
self.assertEqual(res1, vals, atol=0, rtol=0)
|
|
|
|
def compare(t, k, dim, dir):
|
|
topKVal, topKInd = t.topk(k, dim, dir, True)
|
|
sortKVal, sortKInd = topKViaSort(t, k, dim, dir)
|
|
compareTensors(t, sortKVal, sortKInd, topKVal, topKInd, dim)
|
|
|
|
t = torch.rand(random.randint(1, SIZE),
|
|
random.randint(1, SIZE),
|
|
random.randint(1, SIZE))
|
|
|
|
for _kTries in range(3):
|
|
for _dimTries in range(3):
|
|
for transpose in (True, False):
|
|
for dir in (True, False):
|
|
testTensor = t
|
|
if transpose:
|
|
dim1 = random.randrange(t.ndimension())
|
|
dim2 = dim1
|
|
while dim1 == dim2:
|
|
dim2 = random.randrange(t.ndimension())
|
|
|
|
testTensor = t.transpose(dim1, dim2)
|
|
|
|
dim = random.randrange(testTensor.ndimension())
|
|
k = random.randint(1, testTensor.size(dim))
|
|
compare(testTensor, k, dim, dir)
|
|
|
|
def test_topk_arguments(self):
|
|
q = torch.randn(10, 2, 10)
|
|
# Make sure True isn't mistakenly taken as the 2nd dimension (interpreted as 1)
|
|
self.assertRaises(TypeError, lambda: q.topk(4, True))
|
|
|
|
def test_median(self):
|
|
for size in (155, 156):
|
|
x = torch.rand(size, size)
|
|
x0 = x.clone()
|
|
|
|
nelem = x.nelement()
|
|
res1val = torch.median(x)
|
|
res2val, _ = torch.sort(x.view(nelem))
|
|
ind = int(math.floor((nelem + 1) / 2) - 1)
|
|
|
|
self.assertEqual(res2val[ind], res1val, atol=0, rtol=0)
|
|
|
|
res1val, res1ind = torch.median(x, dim=1, keepdim=False)
|
|
res2val, res2ind = torch.sort(x)
|
|
ind = int(math.floor((size + 1) / 2) - 1)
|
|
|
|
self.assertEqual(res2val.select(1, ind), res1val, atol=0, rtol=0)
|
|
self.assertEqual(res2val.select(1, ind), res1val, atol=0, rtol=0)
|
|
|
|
# Test use of result tensor
|
|
res2val = torch.Tensor()
|
|
res2ind = torch.LongTensor()
|
|
torch.median(x, dim=-1, keepdim=False, out=(res2val, res2ind))
|
|
self.assertEqual(res2val, res1val, atol=0, rtol=0)
|
|
self.assertEqual(res2ind, res1ind, atol=0, rtol=0)
|
|
|
|
# Test non-default dim
|
|
res1val, res1ind = torch.median(x, 0, keepdim=False)
|
|
res2val, res2ind = torch.sort(x, 0)
|
|
self.assertEqual(res1val, res2val[ind], atol=0, rtol=0)
|
|
self.assertEqual(res1ind, res2ind[ind], atol=0, rtol=0)
|
|
|
|
# input unchanged
|
|
self.assertEqual(x, x0, atol=0, rtol=0)
|
|
|
|
def test_mode(self):
|
|
x = torch.arange(1., SIZE * SIZE + 1).clone().resize_(SIZE, SIZE)
|
|
x[:2] = 1
|
|
x[:, :2] = 1
|
|
x0 = x.clone()
|
|
|
|
# Pre-calculated results.
|
|
res1val = torch.Tensor(SIZE).fill_(1)
|
|
# The indices are the position of the last appearance of the mode element.
|
|
res1ind = torch.LongTensor(SIZE).fill_(1)
|
|
res1ind[0] = SIZE - 1
|
|
res1ind[1] = SIZE - 1
|
|
|
|
res2val, res2ind = torch.mode(x, keepdim=False)
|
|
self.assertEqual(res1val, res2val, atol=0, rtol=0)
|
|
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
|
|
|
|
# Test use of result tensor
|
|
res2val = torch.Tensor()
|
|
res2ind = torch.LongTensor()
|
|
torch.mode(x, keepdim=False, out=(res2val, res2ind))
|
|
self.assertEqual(res1val, res2val, atol=0, rtol=0)
|
|
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
|
|
|
|
# Test non-default dim
|
|
res2val, res2ind = torch.mode(x, 0, False)
|
|
self.assertEqual(res1val, res2val, atol=0, rtol=0)
|
|
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
|
|
|
|
# input unchanged
|
|
self.assertEqual(x, x0, atol=0, rtol=0)
|
|
|
|
def test_trilu_indices(self):
|
|
for test_args in tri_tests_args:
|
|
_compare_trilu_indices(self, *test_args)
|
|
run_additional_tri_tests(self, 'cpu')
|
|
|
|
# test default options
|
|
x = torch.ones(
|
|
3, 3, dtype=torch.long, device='cpu', layout=torch.strided)
|
|
self.assertEqual(
|
|
x.tril(0).nonzero().transpose(0, 1), torch.tril_indices(3, 3))
|
|
self.assertEqual(
|
|
x.triu(0).nonzero().transpose(0, 1), torch.triu_indices(3, 3))
|
|
|
|
# test stride 0 cases
|
|
x = torch.ones(
|
|
3, 1, 3, 3, dtype=torch.long, device='cpu', layout=torch.strided)
|
|
output = x.triu(2).expand(3, 3, 3, 3)
|
|
b = x.clone().expand(3, 3, 3, 3)
|
|
self.assertEqual(b.triu(2), output)
|
|
self.assertRaises(RuntimeError, lambda: b.triu_(2))
|
|
|
|
def test_narrow(self):
|
|
x = torch.Tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
|
|
self.assertEqual(x.narrow(0, 0, 1), torch.Tensor([[0, 1, 2]]))
|
|
self.assertEqual(x.narrow(0, 0, 2), torch.Tensor([[0, 1, 2], [3, 4, 5]]))
|
|
self.assertEqual(x.narrow(0, 1, 1), torch.Tensor([[3, 4, 5]]))
|
|
self.assertEqual(x.narrow(0, -1, 1), torch.Tensor([[6, 7, 8]]))
|
|
self.assertEqual(x.narrow(0, -2, 2), torch.Tensor([[3, 4, 5], [6, 7, 8]]))
|
|
self.assertEqual(x.narrow(0, -3, 3), torch.Tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]))
|
|
self.assertEqual(x.narrow(-1, -1, 1), torch.Tensor([[2], [5], [8]]))
|
|
self.assertEqual(x.narrow(-2, -1, 1), torch.Tensor([[6, 7, 8]]))
|
|
|
|
def test_narrow_tensor(self):
|
|
x = torch.Tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
|
|
self.assertEqual(x.narrow(0, torch.tensor(0), 1), torch.Tensor([[0, 1, 2]]))
|
|
with self.assertRaises(Exception):
|
|
x.narrow(0, torch.tensor(0.), 1)
|
|
with self.assertRaises(Exception):
|
|
x.narrow(0, torch.tensor([0]), 1)
|
|
with self.assertRaises(Exception):
|
|
x.narrow(0, torch.tensor([0, 1]), 1)
|
|
|
|
def test_stack(self):
|
|
for dtype in (torch.half, torch.double, torch.int):
|
|
x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
|
|
y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
|
|
z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
|
|
for dim in range(4):
|
|
res = torch.stack((x, y, z), dim)
|
|
res_neg = torch.stack((x, y, z), dim - 4)
|
|
expected_size = x.size()[:dim] + (3,) + x.size()[dim:]
|
|
self.assertEqual(res, res_neg)
|
|
self.assertEqual(res.size(), expected_size)
|
|
self.assertEqual(res.select(dim, 0), x, atol=0, rtol=0)
|
|
self.assertEqual(res.select(dim, 1), y, atol=0, rtol=0)
|
|
self.assertEqual(res.select(dim, 2), z, atol=0, rtol=0)
|
|
|
|
def test_stack_out(self):
|
|
for dtype in (torch.half, torch.double, torch.int):
|
|
x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
|
|
y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
|
|
z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
|
|
for dim in range(4):
|
|
expected_size = x.size()[:dim] + (3,) + x.size()[dim:]
|
|
res_out = x.new(expected_size)
|
|
res_neg_out = x.new(expected_size)
|
|
res_out_dp = res_out.data_ptr()
|
|
res_out_neg_dp = res_neg_out.data_ptr()
|
|
torch.stack((x, y, z), dim, out=res_out)
|
|
torch.stack((x, y, z), dim - 4, out=res_neg_out)
|
|
self.assertEqual(res_out, res_neg_out)
|
|
self.assertEqual(res_out.size(), expected_size)
|
|
self.assertEqual(res_out_dp, res_out.data_ptr())
|
|
self.assertEqual(res_out_neg_dp, res_neg_out.data_ptr())
|
|
self.assertEqual(res_out.select(dim, 0), x, atol=0, rtol=0)
|
|
self.assertEqual(res_out.select(dim, 1), y, atol=0, rtol=0)
|
|
self.assertEqual(res_out.select(dim, 2), z, atol=0, rtol=0)
|
|
|
|
def test_unbind(self):
|
|
x = torch.rand(2, 3, 4, 5)
|
|
for dim in range(4):
|
|
res = torch.unbind(x, dim)
|
|
res2 = x.unbind(dim)
|
|
self.assertEqual(x.size(dim), len(res))
|
|
self.assertEqual(x.size(dim), len(res2))
|
|
for i in range(dim):
|
|
self.assertEqual(x.select(dim, i), res[i])
|
|
self.assertEqual(x.select(dim, i), res2[i])
|
|
|
|
def test_randint(self):
|
|
def seed(generator):
|
|
if generator is None:
|
|
torch.manual_seed(123456)
|
|
else:
|
|
generator.manual_seed(123456)
|
|
return generator
|
|
|
|
for generator in (None, torch.Generator()):
|
|
generator = seed(generator)
|
|
res1 = torch.randint(0, 6, (SIZE, SIZE), generator=generator)
|
|
res2 = torch.empty((), dtype=torch.int64)
|
|
generator = seed(generator)
|
|
torch.randint(0, 6, (SIZE, SIZE), generator=generator, out=res2)
|
|
generator = seed(generator)
|
|
res3 = torch.randint(6, (SIZE, SIZE), generator=generator)
|
|
res4 = torch.empty((), dtype=torch.int64)
|
|
generator = seed(generator)
|
|
torch.randint(6, (SIZE, SIZE), out=res4, generator=generator)
|
|
self.assertEqual(res1, res2)
|
|
self.assertEqual(res1, res3)
|
|
self.assertEqual(res1, res4)
|
|
self.assertEqual(res2, res3)
|
|
self.assertEqual(res2, res4)
|
|
self.assertEqual(res3, res4)
|
|
self.assertTrue((res1 < 6).all().item())
|
|
self.assertTrue((res1 >= 0).all().item())
|
|
|
|
def test_slice(self):
|
|
empty = torch.empty(0, 4)
|
|
x = torch.arange(0., 16).view(4, 4)
|
|
self.assertEqual(x[:], x)
|
|
self.assertEqual(x[:4], x)
|
|
# start and stop are clamped to the size of dim
|
|
self.assertEqual(x[:5], x)
|
|
# if start >= stop then the result is empty
|
|
self.assertEqual(x[2:1], empty)
|
|
self.assertEqual(x[2:2], empty)
|
|
# out of bounds is also empty
|
|
self.assertEqual(x[10:12], empty)
|
|
# additional correctness checks
|
|
self.assertEqual(x[:1].tolist(), [[0, 1, 2, 3]])
|
|
self.assertEqual(x[:-3].tolist(), [[0, 1, 2, 3]])
|
|
self.assertEqual(x[:, -2:3].tolist(), [[2], [6], [10], [14]])
|
|
self.assertEqual(x[0:-1:2].tolist(), [[0, 1, 2, 3], [8, 9, 10, 11]])
|
|
|
|
@skipIfNoLapack
|
|
def test_ormqr(self):
|
|
mat1 = torch.randn(7, 7)
|
|
mat2 = torch.randn(7, 7)
|
|
q, r = torch.qr(mat1)
|
|
m, tau = torch.geqrf(mat1)
|
|
out_holder = torch.empty_like(mat1)
|
|
|
|
res1 = torch.mm(q, mat2)
|
|
res2 = torch.ormqr(m, tau, mat2, left=True, transpose=False)
|
|
torch.ormqr(m, tau, mat2, out=out_holder)
|
|
self.assertEqual(res1, res2)
|
|
self.assertEqual(res2, out_holder)
|
|
|
|
res1 = torch.mm(mat2, q)
|
|
res2 = torch.ormqr(m, tau, mat2, left=False, transpose=False)
|
|
torch.ormqr(m, tau, mat2, left=False, transpose=False, out=out_holder)
|
|
self.assertEqual(res1, res2)
|
|
self.assertEqual(res2, out_holder)
|
|
|
|
res1 = torch.mm(q.t(), mat2)
|
|
res2 = torch.ormqr(m, tau, mat2, left=True, transpose=True)
|
|
torch.ormqr(m, tau, mat2, left=True, transpose=True, out=out_holder)
|
|
self.assertEqual(res1, res2)
|
|
self.assertEqual(res2, out_holder)
|
|
|
|
res1 = torch.mm(mat2, q.t())
|
|
res2 = torch.ormqr(m, tau, mat2, left=False, transpose=True)
|
|
torch.ormqr(m, tau, mat2, left=False, transpose=True, out=out_holder)
|
|
self.assertEqual(res1, res2)
|
|
self.assertEqual(res2, out_holder)
|
|
|
|
@staticmethod
|
|
def _test_fft_ifft_rfft_irfft(self, device='cpu', dtype=torch.double):
|
|
def _test_complex(sizes, signal_ndim, prepro_fn=lambda x: x):
|
|
x = prepro_fn(torch.randn(*sizes, dtype=dtype, device=device))
|
|
for normalized in (True, False):
|
|
res = x.fft(signal_ndim, normalized=normalized)
|
|
rec = res.ifft(signal_ndim, normalized=normalized)
|
|
self.assertEqual(x, rec, atol=1e-8, rtol=0, msg='fft and ifft')
|
|
res = x.ifft(signal_ndim, normalized=normalized)
|
|
rec = res.fft(signal_ndim, normalized=normalized)
|
|
self.assertEqual(x, rec, atol=1e-8, rtol=0, msg='ifft and fft')
|
|
|
|
def _test_real(sizes, signal_ndim, prepro_fn=lambda x: x):
|
|
x = prepro_fn(torch.randn(*sizes, dtype=dtype, device=device))
|
|
signal_numel = 1
|
|
signal_sizes = x.size()[-signal_ndim:]
|
|
for normalized, onesided in product((True, False), repeat=2):
|
|
res = x.rfft(signal_ndim, normalized=normalized, onesided=onesided)
|
|
if not onesided: # check Hermitian symmetry
|
|
def test_one_sample(res, test_num=10):
|
|
idxs_per_dim = [torch.LongTensor(test_num).random_(s).tolist() for s in signal_sizes]
|
|
for idx in zip(*idxs_per_dim):
|
|
reflected_idx = tuple((s - i) % s for i, s in zip(idx, res.size()))
|
|
idx_val = res.__getitem__(idx)
|
|
reflected_val = res.__getitem__(reflected_idx)
|
|
self.assertEqual(idx_val[0], reflected_val[0], msg='rfft hermitian symmetry on real part')
|
|
self.assertEqual(idx_val[1], -reflected_val[1], msg='rfft hermitian symmetry on imaginary part')
|
|
if len(sizes) == signal_ndim:
|
|
test_one_sample(res)
|
|
else:
|
|
output_non_batch_shape = res.size()[-(signal_ndim + 1):]
|
|
flatten_batch_res = res.view(-1, *output_non_batch_shape)
|
|
nb = flatten_batch_res.size(0)
|
|
test_idxs = torch.LongTensor(min(nb, 4)).random_(nb)
|
|
for test_idx in test_idxs.tolist():
|
|
test_one_sample(flatten_batch_res[test_idx])
|
|
# compare with C2C
|
|
xc = torch.stack([x, torch.zeros_like(x)], -1)
|
|
xc_res = xc.fft(signal_ndim, normalized=normalized)
|
|
self.assertEqual(res, xc_res)
|
|
test_input_signal_sizes = [signal_sizes]
|
|
rec = res.irfft(signal_ndim, normalized=normalized,
|
|
onesided=onesided, signal_sizes=signal_sizes)
|
|
self.assertEqual(x, rec, atol=1e-8, rtol=0, msg='rfft and irfft')
|
|
if not onesided: # check that we can use C2C ifft
|
|
rec = res.ifft(signal_ndim, normalized=normalized)
|
|
self.assertEqual(x, rec.select(-1, 0), atol=1e-8, rtol=0, msg='twosided rfft and ifft real')
|
|
self.assertEqual(rec.select(-1, 1).abs().mean(), 0, atol=1e-8,
|
|
rtol=0, msg='twosided rfft and ifft imaginary')
|
|
|
|
# contiguous case
|
|
_test_real((100,), 1)
|
|
_test_real((10, 1, 10, 100), 1)
|
|
_test_real((100, 100), 2)
|
|
_test_real((2, 2, 5, 80, 60), 2)
|
|
_test_real((50, 40, 70), 3)
|
|
_test_real((30, 1, 50, 25, 20), 3)
|
|
|
|
_test_complex((100, 2), 1)
|
|
_test_complex((100, 100, 2), 1)
|
|
_test_complex((100, 100, 2), 2)
|
|
_test_complex((1, 20, 80, 60, 2), 2)
|
|
_test_complex((50, 40, 70, 2), 3)
|
|
_test_complex((6, 5, 50, 25, 20, 2), 3)
|
|
|
|
# non-contiguous case
|
|
_test_real((165,), 1, lambda x: x.narrow(0, 25, 100)) # input is not aligned to complex type
|
|
_test_real((100, 100, 3), 1, lambda x: x[:, :, 0])
|
|
_test_real((100, 100), 2, lambda x: x.t())
|
|
_test_real((20, 100, 10, 10), 2, lambda x: x.view(20, 100, 100)[:, :60])
|
|
_test_real((65, 80, 115), 3, lambda x: x[10:60, 13:53, 10:80])
|
|
_test_real((30, 20, 50, 25), 3, lambda x: x.transpose(1, 2).transpose(2, 3))
|
|
|
|
_test_complex((2, 100), 1, lambda x: x.t())
|
|
_test_complex((100, 2), 1, lambda x: x.expand(100, 100, 2))
|
|
_test_complex((300, 200, 3), 2, lambda x: x[:100, :100, 1:]) # input is not aligned to complex type
|
|
_test_complex((20, 90, 110, 2), 2, lambda x: x[:, 5:85].narrow(2, 5, 100))
|
|
_test_complex((40, 60, 3, 80, 2), 3, lambda x: x.transpose(2, 0).select(0, 2)[5:55, :, 10:])
|
|
_test_complex((30, 55, 50, 22, 2), 3, lambda x: x[:, 3:53, 15:40, 1:21])
|
|
|
|
# non-contiguous with strides not representable as aligned with complex type
|
|
_test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [3, 2, 1]))
|
|
_test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [4, 2, 2]))
|
|
_test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [4, 3, 1]))
|
|
_test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [3, 3, 1]))
|
|
_test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [4, 2, 2]))
|
|
_test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [4, 3, 1]))
|
|
|
|
@unittest.skipIf(not TEST_MKL, "PyTorch is built without MKL support")
|
|
def test_fft_ifft_rfft_irfft(self):
|
|
self._test_fft_ifft_rfft_irfft(self)
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def test_conv2(self):
|
|
x = torch.rand(math.floor(torch.uniform(50, 100)), math.floor(torch.uniform(50, 100)))
|
|
k = torch.rand(math.floor(torch.uniform(10, 20)), math.floor(torch.uniform(10, 20)))
|
|
imvc = torch.conv2(x, k)
|
|
imvc2 = torch.conv2(x, k, 'V')
|
|
imfc = torch.conv2(x, k, 'F')
|
|
|
|
ki = k.clone()
|
|
ks = k.storage()
|
|
kis = ki.storage()
|
|
for i in range(ks.size() - 1, 0, -1):
|
|
kis[ks.size() - i + 1] = ks[i]
|
|
# for i=ks.size(), 1, -1 do kis[ks.size()-i+1]=ks[i] end
|
|
imvx = torch.xcorr2(x, ki)
|
|
imvx2 = torch.xcorr2(x, ki, 'V')
|
|
imfx = torch.xcorr2(x, ki, 'F')
|
|
|
|
self.assertEqual(imvc, imvc2, atol=0, rtol=0, msg='torch.conv2')
|
|
self.assertEqual(imvc, imvx, atol=0, rtol=0, msg='torch.conv2')
|
|
self.assertEqual(imvc, imvx2, atol=0, rtol=0, msg='torch.conv2')
|
|
self.assertEqual(imfc, imfx, atol=0, rtol=0, msg='torch.conv2')
|
|
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr2(x, x)[0][0]), 1e-10, 'torch.conv2')
|
|
|
|
xx = torch.Tensor(2, x.size(1), x.size(2))
|
|
xx[1].copy_(x)
|
|
xx[2].copy_(x)
|
|
kk = torch.Tensor(2, k.size(1), k.size(2))
|
|
kk[1].copy_(k)
|
|
kk[2].copy_(k)
|
|
|
|
immvc = torch.conv2(xx, kk)
|
|
immvc2 = torch.conv2(xx, kk, 'V')
|
|
immfc = torch.conv2(xx, kk, 'F')
|
|
|
|
self.assertEqual(immvc[0], immvc[1], atol=0, rtol=0, msg='torch.conv2')
|
|
self.assertEqual(immvc[0], imvc, atol=0, rtol=0, msg='torch.conv2')
|
|
self.assertEqual(immvc2[0], imvc2, atol=0, rtol=0, msg='torch.conv2')
|
|
self.assertEqual(immfc[0], immfc[1], atol=0, rtol=0, msg='torch.conv2')
|
|
self.assertEqual(immfc[0], imfc, atol=0, rtol=0, msg='torch.conv2')
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def test_conv3(self):
|
|
x = torch.rand(math.floor(torch.uniform(20, 40)),
|
|
math.floor(torch.uniform(20, 40)),
|
|
math.floor(torch.uniform(20, 40)))
|
|
k = torch.rand(math.floor(torch.uniform(5, 10)),
|
|
math.floor(torch.uniform(5, 10)),
|
|
math.floor(torch.uniform(5, 10)))
|
|
imvc = torch.conv3(x, k)
|
|
imvc2 = torch.conv3(x, k, 'V')
|
|
imfc = torch.conv3(x, k, 'F')
|
|
|
|
ki = k.clone()
|
|
ks = k.storage()
|
|
kis = ki.storage()
|
|
for i in range(ks.size() - 1, 0, -1):
|
|
kis[ks.size() - i + 1] = ks[i]
|
|
imvx = torch.xcorr3(x, ki)
|
|
imvx2 = torch.xcorr3(x, ki, 'V')
|
|
imfx = torch.xcorr3(x, ki, 'F')
|
|
|
|
self.assertEqual(imvc, imvc2, atol=0, rtol=0, msg='torch.conv3')
|
|
self.assertEqual(imvc, imvx, atol=0, rtol=0, msg='torch.conv3')
|
|
self.assertEqual(imvc, imvx2, atol=0, rtol=0, msg='torch.conv3')
|
|
self.assertEqual(imfc, imfx, atol=0, rtol=0, msg='torch.conv3')
|
|
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3')
|
|
|
|
xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3))
|
|
xx[1].copy_(x)
|
|
xx[2].copy_(x)
|
|
kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3))
|
|
kk[1].copy_(k)
|
|
kk[2].copy_(k)
|
|
|
|
immvc = torch.conv3(xx, kk)
|
|
immvc2 = torch.conv3(xx, kk, 'V')
|
|
immfc = torch.conv3(xx, kk, 'F')
|
|
|
|
self.assertEqual(immvc[0], immvc[1], atol=0, rtol=0, msg='torch.conv3')
|
|
self.assertEqual(immvc[0], imvc, atol=0, rtol=0, msg='torch.conv3')
|
|
self.assertEqual(immvc2[0], imvc2, atol=0, rtol=0, msg='torch.conv3')
|
|
self.assertEqual(immfc[0], immfc[1], atol=0, rtol=0, msg='torch.conv3')
|
|
self.assertEqual(immfc[0], imfc, atol=0, rtol=0, msg='torch.conv3')
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def _test_conv_corr_eq(self, fn, fn_2_to_3):
|
|
ix = math.floor(random.randint(20, 40))
|
|
iy = math.floor(random.randint(20, 40))
|
|
iz = math.floor(random.randint(20, 40))
|
|
kx = math.floor(random.randint(5, 10))
|
|
ky = math.floor(random.randint(5, 10))
|
|
kz = math.floor(random.randint(5, 10))
|
|
|
|
x = torch.rand(ix, iy, iz)
|
|
k = torch.rand(kx, ky, kz)
|
|
|
|
o3 = fn(x, k)
|
|
o32 = torch.zeros(o3.size())
|
|
fn_2_to_3(x, k, o3, o32)
|
|
self.assertEqual(o3, o32)
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def test_xcorr3_xcorr2_eq(self):
|
|
def reference(x, k, o3, o32):
|
|
for i in range(o3.size(1)):
|
|
for j in range(k.size(1)):
|
|
o32[i].add(torch.xcorr2(x[i + j - 1], k[j]))
|
|
self._test_conv_corr_eq(torch.xcorr3, reference)
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def test_xcorr3_xcorr2_eq_full(self):
|
|
def reference(x, k, o3, o32):
|
|
for i in range(x.size(1)):
|
|
for j in range(k.size(1)):
|
|
o32[i].add(torch.xcorr2(x[i], k[k.size(1) - j + 1], 'F'))
|
|
self._test_conv_corr_eq(lambda x, k: torch.xcorr3(x, k, 'F'), reference)
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def test_conv3_conv2_eq_valid(self):
|
|
def reference(x, k, o3, o32):
|
|
for i in range(o3.size(1)):
|
|
for j in range(k.size(1)):
|
|
o32[i].add(torch.conv2(x[i + j - 1], k[k.size(1) - j + 1]))
|
|
self._test_conv_corr_eq(torch.conv3, reference)
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def test_fconv3_fconv2_eq(self):
|
|
def reference(x, k, o3, o32):
|
|
for i in range(o3.size(1)):
|
|
for j in range(k.size(1)):
|
|
o32[i + j - 1].add(torch.conv2(x[i], k[j], 'F'))
|
|
self._test_conv_corr_eq(lambda x, k: torch.conv3(x, k, 'F'), reference)
|
|
|
|
def test_dtype_is_signed(self):
|
|
for dtype in torch.testing.get_all_dtypes():
|
|
self.assertEqual(dtype.is_signed, torch.is_signed(torch.tensor(0, dtype=dtype)))
|
|
|
|
self.assertRaisesRegex(RuntimeError, 'not supported for quantized', lambda: torch.quint8.is_signed)
|
|
self.assertRaisesRegex(RuntimeError, 'not supported for quantized', lambda: torch.qint8.is_signed)
|
|
self.assertRaisesRegex(RuntimeError, 'not supported for quantized', lambda: torch.qint32.is_signed)
|
|
|
|
def test_RNGState(self):
|
|
state = torch.get_rng_state()
|
|
stateCloned = state.clone()
|
|
before = torch.rand(1000)
|
|
|
|
self.assertEqual(state.ne(stateCloned).long().sum(), 0, atol=0, rtol=0)
|
|
|
|
torch.set_rng_state(state)
|
|
after = torch.rand(1000)
|
|
self.assertEqual(before, after, atol=0, rtol=0)
|
|
|
|
def test_RNGStateAliasing(self):
|
|
# Fork the random number stream at this point
|
|
gen = torch.Generator()
|
|
gen.set_state(torch.get_rng_state())
|
|
self.assertEqual(gen.get_state(), torch.get_rng_state())
|
|
|
|
target_value = torch.rand(1000)
|
|
# Dramatically alter the internal state of the main generator
|
|
_ = torch.rand(100000)
|
|
forked_value = torch.rand(1000, generator=gen)
|
|
self.assertEqual(target_value, forked_value, atol=0, rtol=0, msg="RNG has not forked correctly.")
|
|
|
|
def test_RNG_after_pickle(self):
|
|
torch.random.manual_seed(100)
|
|
before = torch.rand(10)
|
|
|
|
torch.random.manual_seed(100)
|
|
buf = io.BytesIO()
|
|
tensor = torch.Tensor([1, 2, 3])
|
|
ForkingPickler(buf, pickle.HIGHEST_PROTOCOL).dump(tensor)
|
|
after = torch.rand(10)
|
|
|
|
self.assertEqual(before, after, atol=0, rtol=0)
|
|
|
|
def test_boxMullerState(self):
|
|
torch.manual_seed(123)
|
|
odd_number = 101
|
|
seeded = torch.randn(odd_number)
|
|
state = torch.get_rng_state()
|
|
midstream = torch.randn(odd_number)
|
|
torch.set_rng_state(state)
|
|
repeat_midstream = torch.randn(odd_number)
|
|
torch.manual_seed(123)
|
|
reseeded = torch.randn(odd_number)
|
|
self.assertEqual(midstream, repeat_midstream, atol=0, rtol=0,
|
|
msg='get_rng_state/set_rng_state not generating same sequence of normally distributed numbers')
|
|
self.assertEqual(seeded, reseeded, atol=0, rtol=0,
|
|
msg='repeated calls to manual_seed not generating same sequence of normally distributed numbers')
|
|
|
|
def test_manual_seed(self):
|
|
rng_state = torch.get_rng_state()
|
|
torch.manual_seed(2)
|
|
x = torch.randn(100)
|
|
self.assertEqual(torch.initial_seed(), 2)
|
|
torch.manual_seed(2)
|
|
y = torch.randn(100)
|
|
self.assertEqual(x, y)
|
|
torch.set_rng_state(rng_state)
|
|
|
|
def test_numel(self):
|
|
b = torch.ByteTensor(3, 100, 100)
|
|
self.assertEqual(b.nelement(), 3 * 100 * 100)
|
|
self.assertEqual(b.numel(), 3 * 100 * 100)
|
|
|
|
# Note: the warning this tests for only appears once per program, so
|
|
# other instances of this warning should be addressed to avoid
|
|
# the tests depending on the order in which they're run.
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_numpy_non_writeable(self):
|
|
arr = np.zeros(5)
|
|
arr.flags['WRITEABLE'] = False
|
|
self.assertWarns(UserWarning, lambda: torch.from_numpy(arr))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_empty_storage_view(self):
|
|
# we should be able to "modify" slices of a 0-element
|
|
# array without an error being raised due to
|
|
# trying to resize its storage
|
|
t = torch.from_numpy(np.empty((0, 4)))
|
|
t[:, 1::2] *= 1
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_newaxis_numpy_comparison(self):
|
|
def run_test(tensor, *idx):
|
|
npt = tensor.numpy()
|
|
self.assertEqual(tensor[idx], npt[idx])
|
|
|
|
# 1D Tensor Tests
|
|
x = torch.arange(0, 10)
|
|
cases = [
|
|
[None],
|
|
[None, None],
|
|
[Ellipsis, None],
|
|
[None, Ellipsis],
|
|
[2, None],
|
|
[None, 2],
|
|
[Ellipsis, None, 2],
|
|
[Ellipsis, 2, None],
|
|
[2, Ellipsis, None],
|
|
[2, None, Ellipsis],
|
|
[None, 2, Ellipsis],
|
|
[None, Ellipsis, 2],
|
|
]
|
|
|
|
for case in cases:
|
|
run_test(x, *case)
|
|
|
|
# 2D Tensor Tests
|
|
x = torch.arange(0, 12).view(3, 4)
|
|
cases = [
|
|
[None],
|
|
[None, None],
|
|
[None, None, None],
|
|
[Ellipsis, None],
|
|
[Ellipsis, None, None],
|
|
[None, Ellipsis],
|
|
[None, Ellipsis, None],
|
|
[None, None, Ellipsis],
|
|
[2, None],
|
|
[2, None, Ellipsis],
|
|
[2, Ellipsis, None],
|
|
[None, 2, Ellipsis],
|
|
[Ellipsis, 2, None],
|
|
[Ellipsis, None, 2],
|
|
[None, Ellipsis, 2],
|
|
[1, 2, None],
|
|
[1, 2, Ellipsis, None],
|
|
[1, Ellipsis, 2, None],
|
|
[Ellipsis, 1, None, 2],
|
|
[Ellipsis, 1, 2, None],
|
|
[1, None, 2, Ellipsis],
|
|
[None, 1, Ellipsis, 2],
|
|
[None, 1, 2, Ellipsis],
|
|
]
|
|
|
|
for case in cases:
|
|
run_test(x, *case)
|
|
|
|
def _consecutive(self, size, start=1):
|
|
sequence = torch.ones(int(torch.Tensor(size).prod(0))).cumsum(0)
|
|
sequence.add_(start - 1)
|
|
return sequence.resize_(*size)
|
|
|
|
def test_newindex(self):
|
|
reference = self._consecutive((3, 3, 3))
|
|
# This relies on __index__() being correct - but we have separate tests for that
|
|
|
|
def checkPartialAssign(index):
|
|
reference = torch.zeros(3, 3, 3)
|
|
reference[index] = self._consecutive((3, 3, 3))[index]
|
|
self.assertEqual(reference[index], self._consecutive((3, 3, 3))[index], atol=0, rtol=0)
|
|
reference[index] = 0
|
|
self.assertEqual(reference, torch.zeros(3, 3, 3), atol=0, rtol=0)
|
|
|
|
checkPartialAssign(0)
|
|
checkPartialAssign(1)
|
|
checkPartialAssign(2)
|
|
checkPartialAssign((0, 1))
|
|
checkPartialAssign((1, 2))
|
|
checkPartialAssign((0, 2))
|
|
checkPartialAssign(torch.LongTensor((0, 2)))
|
|
|
|
with self.assertRaises(IndexError):
|
|
reference[1, 1, 1, 1] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[1, 1, 1, (1, 1)] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[3, 3, 3, 3, 3, 3, 3, 3] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[0.0] = 1
|
|
with self.assertRaises(TypeError):
|
|
reference[0.0:2.0] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[0.0, 0.0:2.0] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[0.0, :, 0.0:2.0] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[0.0, ..., 0.0:2.0] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[0.0, :, 0.0] = 1
|
|
|
|
def test_index_add(self):
|
|
for dest_contig, src_contig, index_contig in product([True, False], repeat=3):
|
|
for other_sizes in ((), (4, 5)):
|
|
num_copy, num_dest = 3, 3
|
|
dest = torch.randn(num_dest, *other_sizes)
|
|
if not dest_contig:
|
|
dest = torch.testing.make_non_contiguous(dest)
|
|
src = torch.randn(num_copy, *other_sizes)
|
|
if not src_contig:
|
|
src = torch.testing.make_non_contiguous(src)
|
|
idx = torch.randperm(num_dest).narrow(0, 0, num_copy)
|
|
if not index_contig:
|
|
idx = torch.testing.make_non_contiguous(idx)
|
|
dest2 = dest.clone()
|
|
dest.index_add_(0, idx, src)
|
|
for i in range(idx.size(0)):
|
|
dest2[idx[i]] += src[i]
|
|
self.assertEqual(dest, dest2)
|
|
|
|
# add coverage for issue with atomic add that appeared only for
|
|
# specific dtypes on cuda:
|
|
# https://github.com/pytorch/pytorch/issues/29153
|
|
def test_index_add_all_dtypes(self):
|
|
for device in torch.testing.get_all_device_types():
|
|
for dtype in torch.testing.get_all_math_dtypes(device):
|
|
size = [5, 5]
|
|
if dtype.is_floating_point or dtype.is_complex:
|
|
tensor = torch.rand(size, dtype=dtype, device=device)
|
|
elif dtype.is_signed:
|
|
tensor = torch.randint(-5, 15, size, dtype=dtype, device=device)
|
|
else:
|
|
tensor = torch.randint(0, 10, size, dtype=dtype, device=device)
|
|
|
|
# index_add calls atomicAdd on cuda.
|
|
zeros = torch.zeros(size, dtype=dtype, device=device)
|
|
|
|
# index_add is not supported for complex dtypes on cuda yet
|
|
if device.startswith('cuda') and dtype.is_complex:
|
|
continue
|
|
|
|
added = zeros.index_add(0, torch.arange(0, size[0], dtype=torch.long, device=device), tensor)
|
|
self.assertEqual(added, tensor)
|
|
|
|
def test_t(self):
|
|
# Test 0D tensors
|
|
x = torch.randn(())
|
|
self.assertEqual(x, x.t())
|
|
x = x.to_sparse()
|
|
self.assertEqual(x, x.t())
|
|
|
|
# Test 1D tensors
|
|
x = torch.arange(4)
|
|
self.assertEqual(x, x.t())
|
|
x = x.to_sparse()
|
|
self.assertEqual(x, x.t())
|
|
|
|
# Test 2D tensors
|
|
x = torch.rand((2, 2))
|
|
self.assertEqual(x.t(), x.transpose(0, 1))
|
|
x = x.to_sparse()
|
|
self.assertEqual(x.t(), x.transpose(0, 1))
|
|
|
|
# Test 3D tensor
|
|
x = torch.rand((2, 2, 2))
|
|
with self.assertRaisesRegex(RuntimeError, 'expects a tensor with <= 2 dimensions, but self is 3D'):
|
|
x.t()
|
|
x = x.to_sparse()
|
|
with self.assertRaisesRegex(RuntimeError, 'expects a tensor with <= 2 sparse and 0 dense dimensions'):
|
|
x.t()
|
|
|
|
def test_take(self):
|
|
def check(src, idx):
|
|
expected = src.contiguous().view(-1).index_select(
|
|
0, idx.contiguous().view(-1)).view_as(idx)
|
|
actual = src.take(idx)
|
|
self.assertEqual(actual.size(), idx.size())
|
|
self.assertEqual(expected, actual)
|
|
|
|
src = torch.randn(2, 3, 5)
|
|
idx = torch.LongTensor([[0, 2], [3, 4]])
|
|
check(src, idx)
|
|
check(src.transpose(1, 2), idx)
|
|
check(src.bool(), idx)
|
|
|
|
def test_put_(self):
|
|
def check(dst, idx, value):
|
|
expected = dst.clone(memory_format=torch.contiguous_format).view(-1).index_copy_(
|
|
0, idx.contiguous().view(-1), value.contiguous().view(-1))
|
|
expected = expected.view_as(dst)
|
|
dst.put_(idx, value)
|
|
self.assertEqual(expected, dst)
|
|
|
|
dst = torch.randn(2, 3, 5)
|
|
idx = torch.LongTensor([[0, 2], [3, 4]])
|
|
values = torch.randn(2, 2)
|
|
check(dst, idx, values)
|
|
check(dst.transpose(1, 2), idx, values)
|
|
|
|
values = torch.tensor([[False, False], [False, False]])
|
|
check(dst.bool(), idx, values)
|
|
|
|
def test_put_accumulate(self):
|
|
dst = torch.ones(2, 2)
|
|
idx = torch.LongTensor([[0, 1], [0, 1]])
|
|
src = torch.Tensor([1, 2, 3, 4])
|
|
dst.put_(idx, src, accumulate=True)
|
|
self.assertEqual(dst.tolist(), [[5, 7], [1, 1]])
|
|
|
|
# Fill idx with valid indices.
|
|
@staticmethod
|
|
def _fill_indices(self, idx, dim, dim_size, elems_per_row, m, n, o):
|
|
for i in range(1 if dim == 0 else m):
|
|
for j in range(1 if dim == 1 else n):
|
|
for k in range(1 if dim == 2 else o):
|
|
ii = [i, j, k]
|
|
ii[dim] = slice(0, idx.size(dim) + 1)
|
|
idx[tuple(ii)] = torch.randperm(dim_size)[0:elems_per_row]
|
|
|
|
def test_flatten(self):
|
|
# Test that flatten returns 1-dim tensor when given a 0-dim tensor
|
|
zero_dim_tensor = torch.tensor(123)
|
|
flat0 = zero_dim_tensor.flatten()
|
|
one_dim_tensor = torch.tensor([123])
|
|
flat1 = zero_dim_tensor.flatten()
|
|
|
|
self.assertEqual(zero_dim_tensor.shape, torch.Size([]))
|
|
self.assertEqual(flat0.shape, torch.Size([1]))
|
|
self.assertEqual(one_dim_tensor.shape, torch.Size([1]))
|
|
self.assertEqual(flat1.shape, torch.Size([1]))
|
|
self.assertEqual(flat0, one_dim_tensor)
|
|
self.assertEqual(flat0, flat1)
|
|
self.assertEqual(flat0.shape, flat1.shape)
|
|
|
|
# Test both float tensor and quantized tensor
|
|
tensors = [torch.randn(5, 5, 5, 5),
|
|
torch._empty_affine_quantized([5, 5, 5, 5],
|
|
scale=2,
|
|
zero_point=3,
|
|
dtype=torch.quint8)]
|
|
for src in tensors:
|
|
flat = src.flatten(0, -1)
|
|
self.assertEqual(flat.shape, torch.Size([625]))
|
|
self.assertEqual(src.view(-1), flat.view(-1))
|
|
|
|
flat = src.flatten(0, 2)
|
|
self.assertEqual(flat.shape, torch.Size([125, 5]))
|
|
self.assertEqual(src.view(-1), flat.view(-1))
|
|
|
|
flat = src.flatten(0, 1)
|
|
self.assertEqual(flat.shape, torch.Size([25, 5, 5]))
|
|
self.assertEqual(src.view(-1), flat.view(-1))
|
|
|
|
flat = src.flatten(1, 2)
|
|
self.assertEqual(flat.shape, torch.Size([5, 25, 5]))
|
|
self.assertEqual(src.view(-1), flat.view(-1))
|
|
|
|
flat = src.flatten(2, 3)
|
|
self.assertEqual(flat.shape, torch.Size([5, 5, 25]))
|
|
self.assertEqual(src.view(-1), flat.view(-1))
|
|
|
|
flat = src.flatten(-2, -1)
|
|
self.assertEqual(flat.shape, torch.Size([5, 5, 25]))
|
|
self.assertEqual(src.view(-1), flat.view(-1))
|
|
|
|
flat = src.flatten(2, 2)
|
|
self.assertEqual(flat, src)
|
|
|
|
# out of bounds index
|
|
with self.assertRaisesRegex(IndexError, 'Dimension out of range'):
|
|
src.flatten(5, 10)
|
|
|
|
# invalid start and end
|
|
with self.assertRaisesRegex(RuntimeError, 'start_dim cannot come after end_dim'):
|
|
src.flatten(2, 0)
|
|
|
|
@staticmethod
|
|
def _test_gather(self, cast, test_bounds=True):
|
|
m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
|
|
elems_per_row = random.randint(1, 10)
|
|
dim = random.randrange(3)
|
|
|
|
for dtype in {torch.float32, torch.complex64, torch.complex128}:
|
|
src = torch.randn(m, n, o, dtype=dtype)
|
|
idx_size = [m, n, o]
|
|
idx_size[dim] = elems_per_row
|
|
idx = torch.LongTensor().resize_(*idx_size)
|
|
AbstractTestCases._TestTorchMixin._fill_indices(self, idx, dim, src.size(dim), elems_per_row, m, n, o)
|
|
|
|
src = cast(src)
|
|
idx = cast(idx)
|
|
|
|
actual = torch.gather(src, dim, idx)
|
|
expected = cast(torch.zeros(idx_size, dtype=dtype))
|
|
for i in range(idx_size[0]):
|
|
for j in range(idx_size[1]):
|
|
for k in range(idx_size[2]):
|
|
ii = [i, j, k]
|
|
ii[dim] = idx[i, j, k]
|
|
expected[i, j, k] = src[tuple(ii)]
|
|
self.assertEqual(actual, expected, atol=0, rtol=0)
|
|
|
|
bad_src = torch.randn(*[i - 1 for i in idx_size])
|
|
self.assertRaises(RuntimeError, lambda: torch.gather(bad_src, dim, idx))
|
|
|
|
# should throw an error when index dtype is not long
|
|
with self.assertRaisesRegex(RuntimeError, 'Expected dtype int64 for index'):
|
|
torch.gather(src, dim, idx.to(torch.int))
|
|
|
|
# should throw an error when out.dtype != src.dtype.
|
|
with self.assertRaisesRegex(RuntimeError, 'Expected self.dtype to be equal to src.dtype'):
|
|
torch.gather(src, dim, idx, out=expected.to(torch.int))
|
|
|
|
if test_bounds:
|
|
idx[0][0][0] = 23
|
|
self.assertRaises(RuntimeError, lambda: torch.gather(src, dim, idx))
|
|
|
|
src = cast(torch.randn(3, 4, 5))
|
|
expected, idx = src.max(2, True)
|
|
expected = cast(expected)
|
|
idx = cast(idx)
|
|
actual = torch.gather(src, 2, idx)
|
|
self.assertEqual(actual, expected, atol=0, rtol=0)
|
|
|
|
# Bool test case
|
|
t = torch.tensor([[False, True], [True, True]])
|
|
self.assertEqual(torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]])), torch.tensor([[False, False], [True, True]]))
|
|
|
|
def test_gather(self):
|
|
self._test_gather(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_scatter_add_mult_index_base(self, cast):
|
|
m, n = 30, 40
|
|
idx = torch.zeros(m, n).long()
|
|
src = torch.ones(m, n)
|
|
res0 = torch.zeros(m, n).scatter_add_(0, idx, src)
|
|
res1 = torch.zeros(m, n).scatter_add_(1, idx, src)
|
|
|
|
self.assertEqual(res0[0, :], m * torch.ones(n), atol=0, rtol=0)
|
|
self.assertEqual(res1[:, 0], n * torch.ones(m), atol=0, rtol=0)
|
|
|
|
def test_scatter_add_mult_index(self):
|
|
self._test_scatter_add_mult_index_base(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_scatter_base(self, cast, method, is_scalar=False, test_bounds=True, reduction=None, *, test_complex=False):
|
|
if test_complex:
|
|
dtypes = [torch.complex64, torch.complex128]
|
|
else:
|
|
dtypes = [torch.float16, torch.float32, torch.float64]
|
|
|
|
for dtype in dtypes:
|
|
m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
|
|
elems_per_row = random.randint(1, 10)
|
|
dim = random.randrange(3)
|
|
|
|
idx_size = [m, n, o]
|
|
idx_size[dim] = elems_per_row
|
|
idx = cast(torch.LongTensor().resize_(*idx_size))
|
|
AbstractTestCases._TestTorchMixin._fill_indices(self, idx, dim, ([m, n, o])[dim], elems_per_row, m, n, o)
|
|
|
|
src_size = [random.randint(1, 5) + s for s in idx_size]
|
|
if is_scalar:
|
|
src = random.random()
|
|
else:
|
|
src = cast(torch.randn(src_size, dtype=dtype))
|
|
|
|
base = cast(torch.randn(m, n, o, dtype=dtype))
|
|
if reduction:
|
|
actual = getattr(base.clone(), method)(dim, idx, src, reduce=reduction)
|
|
else:
|
|
actual = getattr(base.clone(), method)(dim, idx, src)
|
|
expected = base.clone()
|
|
for i in range(idx_size[0]):
|
|
for j in range(idx_size[1]):
|
|
for k in range(idx_size[2]):
|
|
ii = [i, j, k]
|
|
ii[dim] = idx[i, j, k]
|
|
if method == 'scatter_' and not is_scalar:
|
|
if reduction:
|
|
if reduction == "add":
|
|
expected[tuple(ii)] += src[i, j, k]
|
|
elif reduction == "subtract":
|
|
expected[tuple(ii)] -= src[i, j, k]
|
|
elif reduction == "multiply":
|
|
expected[tuple(ii)] *= src[i, j, k]
|
|
elif reduction == "divide":
|
|
expected[tuple(ii)] /= src[i, j, k]
|
|
else:
|
|
expected[tuple(ii)] = src[i, j, k]
|
|
elif method == 'scatter_add_':
|
|
expected[tuple(ii)] += src[i, j, k]
|
|
else:
|
|
expected[tuple(ii)] = src
|
|
self.assertEqual(actual, expected, atol=0, rtol=0)
|
|
|
|
# should throw an error when self.dtype != src.dtype.
|
|
# we ignore the case when src is Scalar, as it gets
|
|
# cast via src.to<scalar_t>.
|
|
if not is_scalar:
|
|
with self.assertRaisesRegex(RuntimeError, 'Expected self.dtype to be equal to src.dtype'):
|
|
getattr(base.clone().type(torch.int), method)(dim, idx, src)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, 'Expected self.dtype to be equal to src.dtype'):
|
|
getattr(base.clone(), method)(dim, idx, src.type(torch.int))
|
|
|
|
# should throw an error when index dtype is not long
|
|
with self.assertRaisesRegex(IndexError, 'Expected dtype int64 for index'):
|
|
getattr(base.clone(), method)(dim, idx.type(torch.int), src)
|
|
|
|
if test_bounds:
|
|
idx[0][0][0] = 34
|
|
with self.assertRaises(RuntimeError):
|
|
if reduction:
|
|
getattr(base.clone(), method)(dim, idx, src, reduce=reduction)
|
|
else:
|
|
getattr(base.clone(), method)(dim, idx, src)
|
|
|
|
# test for empty index, should be a no-op
|
|
idx = cast(torch.LongTensor())
|
|
if reduction:
|
|
actual = getattr(base.clone(), method)(dim, idx, src, reduce=reduction)
|
|
else:
|
|
actual = getattr(base.clone(), method)(dim, idx, src)
|
|
self.assertEqual(actual, base, atol=0, rtol=0)
|
|
|
|
def test_scatter(self):
|
|
self._test_scatter_base(self, lambda t: t, 'scatter_')
|
|
|
|
def test_scatterAdd(self):
|
|
self._test_scatter_base(self, lambda t: t, 'scatter_add_')
|
|
|
|
def test_scatterFill(self):
|
|
self._test_scatter_base(self, lambda t: t, 'scatter_', True)
|
|
|
|
def test_scatterReduce(self):
|
|
for method in ["add", "subtract", "multiply", "divide"]:
|
|
self._test_scatter_base(self, lambda t: t, 'scatter_', reduction=method)
|
|
|
|
def test_masked_scatter(self):
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.simplefilter("always")
|
|
for maskType in [torch.uint8, torch.bool]:
|
|
for dt in torch.testing.get_all_dtypes():
|
|
num_copy, num_dest = 3, 10
|
|
dest = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dt)
|
|
dest2 = dest.clone()
|
|
src = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=dt)
|
|
mask = torch.tensor((0, 0, 0, 0, 1, 0, 1, 0, 1, 0), dtype=maskType)
|
|
|
|
if dt == torch.bool:
|
|
# torch.bool is a special case and is being tested
|
|
# in a separate test
|
|
continue
|
|
|
|
# TODO: update test when masked scatter is supported for complex
|
|
if dt == torch.half or dt.is_complex:
|
|
self.assertRaises(RuntimeError, lambda: dest.masked_scatter_(mask, src))
|
|
continue
|
|
|
|
dest.masked_scatter_(mask, src)
|
|
j = 0
|
|
for i in range(num_dest):
|
|
if mask[i]:
|
|
dest2[i] = src[j]
|
|
j += 1
|
|
self.assertEqual(dest, dest2, atol=0, rtol=0)
|
|
|
|
# make source bigger than number of 1s in mask
|
|
src = torch.tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=dt)
|
|
dest.masked_scatter_(mask, src)
|
|
|
|
# make src smaller. this should fail
|
|
src = torch.randn(num_copy - 1)
|
|
with self.assertRaises(RuntimeError):
|
|
dest.masked_scatter_(mask, src)
|
|
self.assertEqual(len(w), 27)
|
|
|
|
warn = 'masked_scatter_ received a mask with dtype torch.uint8,'
|
|
for wi in w:
|
|
self.assertEqual(str(wi.message)[0:55], str(warn))
|
|
|
|
def test_masked_fill(self):
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.simplefilter("always")
|
|
for dt in torch.testing.get_all_dtypes():
|
|
for dtype in [torch.uint8, torch.bool]:
|
|
num_dest = 10
|
|
dst = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=dt)
|
|
mask = torch.rand(num_dest).mul(2).floor().to(dtype)
|
|
val = random.random()
|
|
dst2 = dst.clone()
|
|
|
|
if dt == torch.half:
|
|
self.assertRaises(RuntimeError, lambda: dst.masked_fill_(mask, val))
|
|
continue
|
|
|
|
dst.masked_fill_(mask, val)
|
|
for i in range(num_dest):
|
|
if mask[i]:
|
|
dst2[i] = val
|
|
self.assertEqual(dst, dst2, atol=0, rtol=0)
|
|
|
|
# test non-contiguous case
|
|
dst = torch.randn(num_dest, num_dest, num_dest).permute((2, 0, 1))
|
|
dst2 = dst.clone()
|
|
dst.masked_fill_((dst > 0).to(dtype), val)
|
|
dst2.masked_fill_((dst2 > 0).to(dtype), val)
|
|
self.assertEqual(dst, dst2, atol=0, rtol=0)
|
|
|
|
self.assertEqual(len(w), 34)
|
|
|
|
warn = 'masked_fill_ received a mask with dtype torch.uint8,'
|
|
for wi in w:
|
|
self.assertEqual(str(wi.message)[0:52], str(warn))
|
|
|
|
|
|
def test_unbiased(self):
|
|
tensor = torch.randn(100)
|
|
self.assertEqual(tensor.var(0), tensor.var(0, unbiased=True))
|
|
self.assertEqual(tensor.var(), tensor.var(unbiased=True))
|
|
self.assertEqual(tensor.var(unbiased=False), tensor.var(0, unbiased=False))
|
|
|
|
tensor = torch.FloatTensor([1.0, 2.0])
|
|
self.assertEqual(tensor.var(unbiased=True), 0.5)
|
|
self.assertEqual(tensor.var(unbiased=False), 0.25)
|
|
|
|
tensor = torch.FloatTensor([1.0, 2.0, 3.0])
|
|
self.assertEqual(tensor.var(unbiased=True), 1.0)
|
|
self.assertEqual(tensor.var(unbiased=False), 2.0 / 3.0)
|
|
|
|
tensor = torch.randn(100)
|
|
self.assertEqual(tensor.std(0), tensor.std(0, unbiased=True))
|
|
self.assertEqual(tensor.std(), tensor.std(unbiased=True))
|
|
self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False))
|
|
|
|
def test_structseq_repr(self):
|
|
a = torch.arange(250).reshape(5, 5, 10)
|
|
expected = """
|
|
torch.return_types.max(
|
|
values=tensor([[ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
|
|
[ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99],
|
|
[140, 141, 142, 143, 144, 145, 146, 147, 148, 149],
|
|
[190, 191, 192, 193, 194, 195, 196, 197, 198, 199],
|
|
[240, 241, 242, 243, 244, 245, 246, 247, 248, 249]]),
|
|
indices=tensor([[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
|
|
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
|
|
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
|
|
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
|
|
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4]]))"""
|
|
self.assertEqual(repr(a.max(1)), textwrap.dedent(expected).strip())
|
|
|
|
def test_var_stability(self):
|
|
tensor = torch.FloatTensor([2281.5, 2281.25])
|
|
self.assertEqual(tensor.var(dim=0), 0.03125)
|
|
self.assertEqual(tensor.var(), 0.03125)
|
|
|
|
def test_view_empty(self):
|
|
x = torch.randn(0, 6)
|
|
self.assertEqual((1, 0, 6, 1, 1), x.view(1, 0, 6, 1, 1).shape)
|
|
|
|
def test_reshape(self):
|
|
x = torch.randn(3, 3)
|
|
self.assertEqual(x.data_ptr(), x.reshape(-1).data_ptr())
|
|
self.assertEqual(x.data_ptr(), x.reshape(1, 9, 1).data_ptr())
|
|
self.assertEqual(torch.reshape(x, (9,)), x.reshape(9))
|
|
self.assertRaises(RuntimeError, lambda: x.reshape(-1, -1))
|
|
|
|
y = torch.randn(4, 4, 4)[:, 0, :]
|
|
self.assertNotEqual(y.data_ptr(), y.reshape(-1).data_ptr())
|
|
self.assertEqual(y.contiguous().view(-1), y.reshape(-1))
|
|
self.assertEqual(y.reshape(2, 2, 4).data_ptr(), y.data_ptr())
|
|
|
|
s = torch.randn(())
|
|
self.assertEqual(s.data_ptr(), s.reshape(()).data_ptr())
|
|
self.assertEqual(s.reshape(-1).shape, (1,))
|
|
self.assertRaises(RuntimeError, lambda: s.reshape(2))
|
|
|
|
empty = torch.tensor([])
|
|
self.assertEqual(empty, empty.reshape(-1))
|
|
self.assertEqual(empty, empty.reshape([0]))
|
|
# TODO: fix these once we have multi-dimensional empty tensors
|
|
self.assertEqual(empty.reshape([0, 1]).shape, (0, 1))
|
|
self.assertEqual(empty.reshape([1, -1]).shape, (1, 0))
|
|
self.assertRaises(RuntimeError, lambda: empty.reshape(1))
|
|
|
|
x = torch.randn(3, 3)
|
|
self.assertEqual(x.data_ptr(), x.reshape_as(torch.rand(9)).data_ptr())
|
|
self.assertEqual(x.data_ptr(), x.reshape_as(torch.rand(1, 9, 1)).data_ptr())
|
|
self.assertRaises(RuntimeError, lambda: x.reshape_as(torch.rand(10)))
|
|
|
|
def test_empty_reshape(self):
|
|
x = torch.randn(0, 6)
|
|
self.assertEqual((1, 0, 6, 1, 1), x.reshape(1, 0, 6, 1, 1).shape)
|
|
# should be viewable -- i.e. data_ptr is the same.
|
|
self.assertEqual(x.data_ptr(), x.reshape(1, 0, 6, 1, 1).data_ptr())
|
|
|
|
# match NumPy semantics -- don't infer the size of dimension with a degree of freedom
|
|
self.assertRaises(RuntimeError, lambda: x.reshape(0, -1))
|
|
|
|
def check_single_matmul(self, x, y, shape):
|
|
a = np.array(x, copy=False)
|
|
b = np.array(y, copy=False)
|
|
expected = np.matmul(a, b)
|
|
|
|
ans = torch.matmul(x, y)
|
|
self.assertTrue(ans.is_contiguous())
|
|
self.assertTrue(np.array_equal(ans, expected))
|
|
|
|
out = torch.zeros(*shape, dtype=torch.int64)
|
|
ans = torch.matmul(x, y, out=out)
|
|
self.assertIs(ans, out)
|
|
self.assertTrue(ans.is_contiguous())
|
|
self.assertTrue(np.array_equal(ans, expected))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_matmul_small_brute_force_1d_Nd(self):
|
|
# Issue #20452: range(0, 10) does not work.
|
|
n = 1
|
|
for m in range(1, 8):
|
|
for p in range(1, 8):
|
|
for o in range(1, 5):
|
|
# 1d, 3d, inner dimensions C
|
|
x = torch.arange(m)
|
|
y = torch.arange(o * m * p).reshape(o, m, p)
|
|
self.check_single_matmul(x, y, (o, n, p))
|
|
|
|
# 1d, 3d, inner dimensions Fortran
|
|
x = torch.arange(m)
|
|
y = torch.arange(o * p * m).reshape(o, p, m).transpose(-1, -2)
|
|
self.check_single_matmul(x, y, (o, n, p))
|
|
|
|
# 1d, 3d, inner dimensions non-contiguous
|
|
x = torch.arange(2 * m)[::2]
|
|
y = torch.arange(o * m * 2 * p).reshape(o, m, 2 * p)[:, :, ::2]
|
|
self.check_single_matmul(x, y, (o, n, p))
|
|
|
|
for r in range(1, 5):
|
|
# 1d, 4d, inner dimensions C
|
|
x = torch.arange(m)
|
|
y = torch.arange(r * o * m * p).reshape(r, o, m, p)
|
|
self.check_single_matmul(x, y, (r, o, n, p))
|
|
|
|
# 1d, 4d, inner dimensions Fortran
|
|
x = torch.arange(m)
|
|
y = torch.arange(r * o * p * m).reshape(r, o, p, m).transpose(-1, -2)
|
|
self.check_single_matmul(x, y, (r, o, n, p))
|
|
|
|
# 1d, 4d, inner dimensions non-contiguous
|
|
x = torch.arange(2 * m)[::2]
|
|
y = torch.arange(r * o * m * 2 * p).reshape(r, o, m, 2 * p)[:, :, :, ::2]
|
|
self.check_single_matmul(x, y, (r, o, n, p))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_matmul_small_brute_force_2d_Nd(self):
|
|
# Issue #20452: range(0, 10) does not work.
|
|
for n in range(1, 5):
|
|
for m in range(1, 5):
|
|
for p in range(1, 5):
|
|
for o in range(1, 3):
|
|
# 2d, 3d, inner dimensions C
|
|
x = torch.arange(n * m).reshape(n, m)
|
|
y = torch.arange(o * m * p).reshape(o, m, p)
|
|
self.check_single_matmul(x, y, (o, n, p))
|
|
|
|
# 2d, 3d, inner dimensions Fortran
|
|
x = torch.arange(m * n).reshape(m, n).transpose(-1, -2)
|
|
y = torch.arange(o * p * m).reshape(o, p, m).transpose(-1, -2)
|
|
self.check_single_matmul(x, y, (o, n, p))
|
|
|
|
# 2d, 3d, inner dimensions non-contiguous
|
|
x = torch.arange(n * 2 * m).reshape(n, 2 * m)[:, ::2]
|
|
y = torch.arange(o * m * 2 * p).reshape(o, m, 2 * p)[:, :, ::2]
|
|
self.check_single_matmul(x, y, (o, n, p))
|
|
|
|
for r in range(1, 2):
|
|
# 2d, 4d, inner dimensions C
|
|
x = torch.arange(n * m).reshape(n, m)
|
|
y = torch.arange(r * o * m * p).reshape(r, o, m, p)
|
|
self.check_single_matmul(x, y, (r, o, n, p))
|
|
|
|
# 2d, 4d, inner dimensions Fortran
|
|
x = torch.arange(m * n).reshape(m, n).transpose(-1, -2)
|
|
y = torch.arange(r * o * p * m).reshape(r, o, p, m).transpose(-1, -2)
|
|
self.check_single_matmul(x, y, (r, o, n, p))
|
|
|
|
# 2d, 4d, inner dimensions non-contiguous
|
|
x = torch.arange(n * 2 * m).reshape(n, 2 * m)[:, ::2]
|
|
y = torch.arange(r * o * m * 2 * p).reshape(r, o, m, 2 * p)[:, :, :, ::2]
|
|
self.check_single_matmul(x, y, (r, o, n, p))
|
|
|
|
def test_expand(self):
|
|
tensor = torch.rand(1, 8, 1)
|
|
tensor2 = torch.rand(5)
|
|
template = torch.rand(4, 8, 5)
|
|
target = template.size()
|
|
self.assertEqual(tensor.expand_as(template).size(), target)
|
|
self.assertEqual(tensor.expand(4, 8, 5).size(), target)
|
|
self.assertEqual(tensor.expand(target).size(), target)
|
|
self.assertEqual(tensor2.expand_as(template).size(), target)
|
|
self.assertEqual(tensor2.expand(4, 8, 5).size(), target)
|
|
self.assertEqual(tensor2.expand(target).size(), target)
|
|
|
|
# test double expand
|
|
self.assertEqual(tensor2.expand(1, 5).expand(2, 2, 5), tensor2.repeat(2, 2, 1))
|
|
|
|
# test non-contiguous
|
|
noncontig = torch.randn(5, 2, 1, 3)[:, 0]
|
|
self.assertFalse(noncontig.is_contiguous())
|
|
self.assertEqual(noncontig.expand(2, 5, 4, 3), noncontig.contiguous().repeat(2, 1, 4, 1))
|
|
|
|
# make sure it's compatible with unsqueeze
|
|
expanded = tensor2.expand(1, 1, 5)
|
|
unsqueezed = tensor2.unsqueeze(0).unsqueeze(1)
|
|
self.assertEqual(expanded, unsqueezed)
|
|
self.assertEqual(expanded.stride(), unsqueezed.stride())
|
|
|
|
# test -1 as target size
|
|
self.assertEqual(tensor.expand(4, -1, 5), tensor.expand(4, 8, 5))
|
|
self.assertRaises(RuntimeError, lambda: tensor2.expand(-1, -1))
|
|
|
|
# test expanding empty to empty
|
|
self.assertEqual(torch.zeros(0).expand((0,)), torch.zeros(0))
|
|
|
|
def test_repeat(self):
|
|
initial_shape = (8, 4)
|
|
tensor = torch.rand(*initial_shape)
|
|
|
|
size = (3, 1, 1)
|
|
torchSize = torch.Size(size)
|
|
target = [3, 8, 4]
|
|
self.assertEqual(tensor.repeat(*size).size(), target, msg='Error in repeat')
|
|
self.assertEqual(tensor.repeat(torchSize).size(), target,
|
|
msg='Error in repeat using LongStorage')
|
|
result = tensor.repeat(*size)
|
|
self.assertEqual(result.size(), target, msg='Error in repeat using result')
|
|
result = tensor.repeat(torchSize)
|
|
self.assertEqual(result.size(), target, msg='Error in repeat using result and LongStorage')
|
|
self.assertEqual(result.mean(0).view(8, 4), tensor, msg='Error in repeat (not equal)')
|
|
|
|
zeroDimTarget = torch.Size([24, 0])
|
|
self.assertEqual(tensor.repeat((3, 0)).size(), zeroDimTarget, msg="Error when calling with 0 repeats")
|
|
|
|
def test_repeat_interleave(self):
|
|
x = torch.tensor([0, 1, 2, 3])
|
|
expected = torch.tensor([1, 2, 2, 3, 3, 3])
|
|
self.assertEqual(torch.repeat_interleave(x), expected)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
torch.repeat_interleave(torch.arange(4).reshape(2, 2))
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
torch.repeat_interleave(torch.arange(4.0))
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
torch.repeat_interleave(torch.tensor([1, 2, -1, 3, 4]))
|
|
|
|
y = torch.tensor([[1, 2], [3, 4]])
|
|
|
|
y1_v1 = torch.repeat_interleave(y, 2)
|
|
y1_v2 = torch.repeat_interleave(y, torch.tensor(2))
|
|
y1_v3 = torch.repeat_interleave(y, torch.tensor([2]))
|
|
y1_expect = torch.tensor([1, 1, 2, 2, 3, 3, 4, 4])
|
|
self.assertEqual(y1_v1, y1_expect)
|
|
self.assertEqual(y1_v2, y1_expect)
|
|
self.assertEqual(y1_v3, y1_expect)
|
|
|
|
y2 = torch.repeat_interleave(y, 3, dim=1)
|
|
y2_expect = torch.tensor([[1, 1, 1, 2, 2, 2],
|
|
[3, 3, 3, 4, 4, 4]])
|
|
self.assertEqual(y2, y2_expect)
|
|
|
|
y3 = torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0)
|
|
y3_expect = torch.tensor([[1, 2],
|
|
[3, 4],
|
|
[3, 4]])
|
|
self.assertEqual(y3, y3_expect)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
torch.repeat_interleave(y, torch.tensor([1, 2, 3]), dim=0)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
torch.repeat_interleave(y, torch.arange(9).reshape(3, 3), dim=0)
|
|
|
|
# test zero sized dimension
|
|
x = torch.zeros((5, 0))
|
|
y = torch.repeat_interleave(x, repeats=3, dim=1)
|
|
self.assertEqual(y, x.new_zeros(5, 0))
|
|
|
|
x = torch.tensor([], dtype=torch.int64)
|
|
y = torch.repeat_interleave(x, x)
|
|
self.assertEqual(y, x)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_repeat_tile(self):
|
|
|
|
initial_shape = (8, 4)
|
|
|
|
repeats = ((3, 1, 1),
|
|
(3, 3, 3),
|
|
(1, 2, 1),
|
|
(2, 2, 2, 2))
|
|
|
|
def _generate_noncontiguous_input():
|
|
|
|
out = np.broadcast_to(np.random.random((1, 4)),
|
|
initial_shape)
|
|
# Note: non-writeable NumPy arrays will warn if converted to tensors
|
|
out.setflags(write=True)
|
|
|
|
assert not (out.flags.c_contiguous or out.flags.f_contiguous)
|
|
|
|
return out
|
|
|
|
for repeat in repeats:
|
|
for tensor in (torch.from_numpy(np.random.random(initial_shape)),
|
|
torch.from_numpy(_generate_noncontiguous_input()),):
|
|
|
|
self.assertEqual(tensor.repeat(*repeat).numpy(),
|
|
np.tile(tensor.numpy(), repeat))
|
|
|
|
def test_is_same_size(self):
|
|
t1 = torch.Tensor(3, 4, 9, 10)
|
|
t2 = torch.Tensor(3, 4)
|
|
t3 = torch.Tensor(1, 9, 3, 3)
|
|
t4 = torch.Tensor(3, 4, 9, 10)
|
|
|
|
self.assertFalse(t1.is_same_size(t2))
|
|
self.assertFalse(t1.is_same_size(t3))
|
|
self.assertTrue(t1.is_same_size(t4))
|
|
|
|
def test_tensor_set(self):
|
|
t1 = torch.Tensor()
|
|
t2 = torch.Tensor(3, 4, 9, 10).uniform_()
|
|
t1.set_(t2)
|
|
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
|
|
size = torch.Size([9, 3, 4, 10])
|
|
t1.set_(t2.storage(), 0, size)
|
|
self.assertEqual(t1.size(), size)
|
|
t1.set_(t2.storage(), 0, tuple(size))
|
|
self.assertEqual(t1.size(), size)
|
|
self.assertEqual(t1.stride(), (120, 40, 10, 1))
|
|
stride = (10, 360, 90, 1)
|
|
t1.set_(t2.storage(), 0, size, stride)
|
|
self.assertEqual(t1.stride(), stride)
|
|
t1.set_(t2.storage(), 0, size=size, stride=stride)
|
|
self.assertEqual(t1.size(), size)
|
|
self.assertEqual(t1.stride(), stride)
|
|
|
|
# test argument names
|
|
t1 = torch.Tensor()
|
|
# 1. case when source is tensor
|
|
t1.set_(source=t2)
|
|
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
|
|
# 2. case when source is storage
|
|
t1.set_(source=t2.storage())
|
|
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
|
|
# 3. case when source is storage, and other args also specified
|
|
t1.set_(source=t2.storage(), storage_offset=0, size=size, stride=stride)
|
|
self.assertEqual(t1.size(), size)
|
|
self.assertEqual(t1.stride(), stride)
|
|
|
|
t1 = torch.tensor([True, True], dtype=torch.bool)
|
|
t2 = torch.tensor([False, False], dtype=torch.bool)
|
|
t1.set_(t2)
|
|
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
|
|
|
|
def test_tensor_set_errors(self):
|
|
f_cpu = torch.randn((2, 3), dtype=torch.float32)
|
|
d_cpu = torch.randn((2, 3), dtype=torch.float64)
|
|
|
|
# change dtype
|
|
self.assertRaises(RuntimeError, lambda: f_cpu.set_(d_cpu.storage()))
|
|
self.assertRaises(RuntimeError,
|
|
lambda: f_cpu.set_(d_cpu.storage(), 0, d_cpu.size(), d_cpu.stride()))
|
|
self.assertRaises(RuntimeError, lambda: f_cpu.set_(d_cpu))
|
|
|
|
# change device
|
|
if torch.cuda.is_available():
|
|
f_cuda = torch.randn((2, 3), dtype=torch.float32, device='cuda')
|
|
|
|
# cpu -> cuda
|
|
self.assertRaises(RuntimeError, lambda: f_cpu.set_(f_cuda.storage()))
|
|
self.assertRaises(RuntimeError,
|
|
lambda: f_cpu.set_(f_cuda.storage(), 0, f_cuda.size(), f_cuda.stride()))
|
|
self.assertRaises(RuntimeError, lambda: f_cpu.set_(f_cuda))
|
|
|
|
# cuda -> cpu
|
|
self.assertRaises(RuntimeError, lambda: f_cuda.set_(f_cpu.storage()))
|
|
self.assertRaises(RuntimeError,
|
|
lambda: f_cuda.set_(f_cpu.storage(), 0, f_cpu.size(), f_cpu.stride()))
|
|
self.assertRaises(RuntimeError, lambda: f_cuda.set_(f_cpu))
|
|
|
|
def test_equal(self):
|
|
# Contiguous, 1D
|
|
t1 = torch.Tensor((3, 4, 9, 10))
|
|
t2 = t1.contiguous()
|
|
t3 = torch.Tensor((1, 9, 3, 10))
|
|
t4 = torch.Tensor((3, 4, 9))
|
|
t5 = torch.Tensor()
|
|
self.assertTrue(t1.equal(t2))
|
|
self.assertFalse(t1.equal(t3))
|
|
self.assertFalse(t1.equal(t4))
|
|
self.assertFalse(t1.equal(t5))
|
|
self.assertTrue(torch.equal(t1, t2))
|
|
self.assertFalse(torch.equal(t1, t3))
|
|
self.assertFalse(torch.equal(t1, t4))
|
|
self.assertFalse(torch.equal(t1, t5))
|
|
|
|
# Non contiguous, 2D
|
|
s = torch.Tensor(((1, 2, 3, 4), (5, 6, 7, 8)))
|
|
s1 = s[:, 1:3]
|
|
s2 = s1.clone()
|
|
s3 = torch.Tensor(((2, 3), (6, 7)))
|
|
s4 = torch.Tensor(((0, 0), (0, 0)))
|
|
|
|
self.assertFalse(s1.is_contiguous())
|
|
self.assertTrue(s1.equal(s2))
|
|
self.assertTrue(s1.equal(s3))
|
|
self.assertFalse(s1.equal(s4))
|
|
self.assertTrue(torch.equal(s1, s2))
|
|
self.assertTrue(torch.equal(s1, s3))
|
|
self.assertFalse(torch.equal(s1, s4))
|
|
|
|
def test_element_size(self):
|
|
byte = torch.ByteStorage().element_size()
|
|
char = torch.CharStorage().element_size()
|
|
short = torch.ShortStorage().element_size()
|
|
int = torch.IntStorage().element_size()
|
|
long = torch.LongStorage().element_size()
|
|
float = torch.FloatStorage().element_size()
|
|
double = torch.DoubleStorage().element_size()
|
|
bool = torch.BoolStorage().element_size()
|
|
bfloat16 = torch.BFloat16Storage().element_size()
|
|
complexfloat = torch.ComplexFloatStorage().element_size()
|
|
complexdouble = torch.ComplexDoubleStorage().element_size()
|
|
|
|
self.assertEqual(byte, torch.ByteTensor().element_size())
|
|
self.assertEqual(char, torch.CharTensor().element_size())
|
|
self.assertEqual(short, torch.ShortTensor().element_size())
|
|
self.assertEqual(int, torch.IntTensor().element_size())
|
|
self.assertEqual(long, torch.LongTensor().element_size())
|
|
self.assertEqual(float, torch.FloatTensor().element_size())
|
|
self.assertEqual(double, torch.DoubleTensor().element_size())
|
|
self.assertEqual(bool, torch.BoolTensor().element_size())
|
|
self.assertEqual(bfloat16, torch.tensor([], dtype=torch.bfloat16).element_size())
|
|
self.assertEqual(complexfloat, torch.tensor([], dtype=torch.complex64).element_size())
|
|
self.assertEqual(complexdouble, torch.tensor([], dtype=torch.complex128).element_size())
|
|
|
|
self.assertGreater(byte, 0)
|
|
self.assertGreater(char, 0)
|
|
self.assertGreater(short, 0)
|
|
self.assertGreater(int, 0)
|
|
self.assertGreater(long, 0)
|
|
self.assertGreater(float, 0)
|
|
self.assertGreater(double, 0)
|
|
self.assertGreater(bool, 0)
|
|
self.assertGreater(bfloat16, 0)
|
|
self.assertGreater(complexfloat, 0)
|
|
self.assertGreater(complexdouble, 0)
|
|
|
|
# These tests are portable, not necessarily strict for your system.
|
|
self.assertEqual(byte, 1)
|
|
self.assertEqual(char, 1)
|
|
self.assertEqual(bool, 1)
|
|
self.assertGreaterEqual(short, 2)
|
|
self.assertGreaterEqual(int, 2)
|
|
self.assertGreaterEqual(int, short)
|
|
self.assertGreaterEqual(long, 4)
|
|
self.assertGreaterEqual(long, int)
|
|
self.assertGreaterEqual(double, float)
|
|
|
|
def test_split(self):
|
|
tensor = torch.rand(7, 4)
|
|
split_size = 3
|
|
dim = 0
|
|
target_sizes = ([3, 4], [3, 4], [1, 4])
|
|
splits = tensor.split(split_size, dim)
|
|
start = 0
|
|
for target_size, split in zip(target_sizes, splits):
|
|
self.assertEqual(split.size(), target_size)
|
|
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split,
|
|
atol=0, rtol=0)
|
|
start = start + target_size[dim]
|
|
|
|
# Variable sections split
|
|
tensor = torch.randn(20, 10)
|
|
dim = 0
|
|
split_sizes = [5, 5, 10]
|
|
target_sizes = ([[5, 10], [5, 10], [10, 10]])
|
|
splits = tensor.split(split_sizes, dim)
|
|
start = 0
|
|
for target_size, split in zip(target_sizes, splits):
|
|
self.assertEqual(split.size(), target_size)
|
|
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split,
|
|
atol=0, rtol=0)
|
|
start = start + target_size[dim]
|
|
|
|
split_sizes = [2, 2, 6]
|
|
target_sizes = ([20, 2], [20, 2], [20, 6])
|
|
dim = 1
|
|
splits = tensor.split(split_sizes, dim)
|
|
start = 0
|
|
for target_size, split in zip(target_sizes, splits):
|
|
self.assertEqual(split.size(), target_size)
|
|
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split,
|
|
atol=0, rtol=0)
|
|
start = start + target_size[dim]
|
|
|
|
def test_chunk(self):
|
|
tensor = torch.rand(4, 7)
|
|
num_chunks = 3
|
|
dim = 1
|
|
target_sizes = ([4, 3], [4, 3], [4, 1])
|
|
splits = tensor.chunk(num_chunks, dim)
|
|
start = 0
|
|
for target_size, split in zip(target_sizes, splits):
|
|
self.assertEqual(split.size(), target_size)
|
|
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split,
|
|
atol=0, rtol=0)
|
|
start = start + target_size[dim]
|
|
|
|
# Invalid chunk sizes
|
|
error_regex = 'chunk expects.*greater than 0'
|
|
with self.assertRaisesRegex(RuntimeError, error_regex):
|
|
tensor.chunk(0)
|
|
with self.assertRaisesRegex(RuntimeError, error_regex):
|
|
tensor.chunk(-2)
|
|
|
|
def test_tolist(self):
|
|
list0D = []
|
|
tensor0D = torch.Tensor(list0D)
|
|
self.assertEqual(tensor0D.tolist(), list0D)
|
|
|
|
table1D = [1, 2, 3]
|
|
tensor1D = torch.Tensor(table1D)
|
|
storage = torch.Storage(table1D)
|
|
self.assertEqual(tensor1D.tolist(), table1D)
|
|
self.assertEqual(storage.tolist(), table1D)
|
|
self.assertEqual(tensor1D.tolist(), table1D)
|
|
self.assertEqual(storage.tolist(), table1D)
|
|
|
|
table2D = [[1, 2], [3, 4]]
|
|
tensor2D = torch.Tensor(table2D)
|
|
self.assertEqual(tensor2D.tolist(), table2D)
|
|
|
|
tensor3D = torch.Tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
|
|
tensorNonContig = tensor3D.select(1, 1)
|
|
self.assertFalse(tensorNonContig.is_contiguous())
|
|
self.assertEqual(tensorNonContig.tolist(), [[3, 4], [7, 8]])
|
|
|
|
def test_permute(self):
|
|
orig = [1, 2, 3, 4, 5, 6, 7]
|
|
perm = torch.randperm(7).tolist()
|
|
x = torch.Tensor(*orig).fill_(0)
|
|
new = list(map(lambda x: x - 1, x.permute(*perm).size()))
|
|
self.assertEqual(perm, new)
|
|
self.assertEqual(x.size(), orig)
|
|
|
|
def test_reversed(self):
|
|
val = torch.arange(0, 10)
|
|
self.assertEqual(reversed(val), torch.arange(9, -1, -1))
|
|
|
|
val = torch.arange(1, 10).view(3, 3)
|
|
self.assertEqual(reversed(val), torch.tensor([[7, 8, 9], [4, 5, 6], [1, 2, 3]]))
|
|
|
|
val = torch.tensor(42)
|
|
self.assertEqual(reversed(val), torch.tensor(42))
|
|
|
|
def test_contains(self):
|
|
x = torch.arange(0, 10)
|
|
self.assertEqual(4 in x, True)
|
|
self.assertEqual(12 in x, False)
|
|
|
|
x = torch.arange(1, 10).view(3, 3)
|
|
val = torch.arange(1, 4)
|
|
self.assertEqual(val in x, True)
|
|
val += 10
|
|
self.assertEqual(val in x, False)
|
|
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Tensor.__contains__ only supports Tensor or scalar, but you passed in a {}.".format(type("foo")),
|
|
lambda: "foo" in x)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Tensor.__contains__ only supports Tensor or scalar, but you passed in a {}.".format(type([1, 2])),
|
|
lambda: [1, 2] in x)
|
|
|
|
def test_deepcopy_parameter(self):
|
|
from copy import deepcopy
|
|
l = torch.nn.Linear(10, 1)
|
|
s = l.state_dict(keep_vars=True)
|
|
self.assertEqual(torch.nn.Parameter, type(s['weight']))
|
|
self.assertEqual(torch.nn.Parameter, type(s['bias']))
|
|
|
|
s2 = deepcopy(s)
|
|
self.assertEqual(torch.nn.Parameter, type(s2['weight']))
|
|
self.assertEqual(torch.nn.Parameter, type(s2['bias']))
|
|
|
|
def test_pickle(self):
|
|
import pickle
|
|
a = torch.randn(5, 5)
|
|
serialized = pickle.dumps(a)
|
|
b = pickle.loads(serialized)
|
|
self.assertEqual(a, b)
|
|
|
|
def test_pickle_parameter(self):
|
|
import pickle
|
|
a = torch.nn.Parameter(torch.randn(5, 5))
|
|
serialized = pickle.dumps(a)
|
|
b = pickle.loads(serialized)
|
|
self.assertTrue(isinstance(b, torch.nn.Parameter))
|
|
self.assertEqual(a.requires_grad, b.requires_grad)
|
|
self.assertEqual(a, b)
|
|
|
|
def test_pickle_parameter_no_requires_grad(self):
|
|
import pickle
|
|
a = torch.nn.Parameter(torch.randn(5, 5), requires_grad=False)
|
|
serialized = pickle.dumps(a)
|
|
b = pickle.loads(serialized)
|
|
self.assertTrue(isinstance(b, torch.nn.Parameter))
|
|
self.assertEqual(a.requires_grad, b.requires_grad)
|
|
self.assertEqual(a, b)
|
|
|
|
def test_pickle_dtype(self):
|
|
t = torch.float32
|
|
serialized = pickle.dumps(t)
|
|
b = pickle.loads(serialized)
|
|
self.assertTrue(isinstance(b, torch.dtype))
|
|
self.assertEqual(id(b), id(t))
|
|
|
|
def test_pickle_size(self):
|
|
a = torch.rand(10).size()
|
|
serialized = pickle.dumps(a)
|
|
b = pickle.loads(serialized)
|
|
self.assertTrue(isinstance(b, torch.Size))
|
|
self.assertEqual(a, b)
|
|
|
|
def test_pickle_function(self):
|
|
# https://github.com/pytorch/pytorch/issues/37703
|
|
a = torch.tanh
|
|
serialized = pickle.dumps(a)
|
|
b = pickle.loads(serialized)
|
|
self.assertEqual(a, b)
|
|
|
|
def test_norm_fastpaths(self):
|
|
x = torch.randn(3, 5)
|
|
|
|
# slow path
|
|
result = torch.norm(x, 4.5, 1)
|
|
expected = torch.pow(x.abs().pow(4.5).sum(1), 1.0 / 4.5)
|
|
self.assertEqual(result, expected)
|
|
|
|
# fast 0-norm
|
|
result = torch.norm(x, 0, 1)
|
|
expected = (x != 0).type_as(x).sum(1)
|
|
self.assertEqual(result, expected)
|
|
|
|
# fast 1-norm
|
|
result = torch.norm(x, 1, 1)
|
|
expected = x.abs().sum(1)
|
|
self.assertEqual(result, expected)
|
|
|
|
# fast 2-norm
|
|
result = torch.norm(x, 2, 1)
|
|
expected = torch.sqrt(x.pow(2).sum(1))
|
|
self.assertEqual(result, expected)
|
|
|
|
# fast 3-norm
|
|
result = torch.norm(x, 3, 1)
|
|
expected = torch.pow(x.pow(3).abs().sum(1), 1.0 / 3.0)
|
|
self.assertEqual(result, expected)
|
|
|
|
def test_generator_cpu(self):
|
|
# test default generators are equal
|
|
self.assertEqual(torch.default_generator, torch.default_generator)
|
|
|
|
# tests Generator API
|
|
# manual_seed, seed, initial_seed, get_state, set_state
|
|
g1 = torch.Generator()
|
|
g2 = torch.Generator()
|
|
g1.manual_seed(12345)
|
|
g2.manual_seed(12345)
|
|
self.assertEqual(g1.initial_seed(), g2.initial_seed())
|
|
|
|
g1.seed()
|
|
g2.seed()
|
|
self.assertNotEqual(g1.initial_seed(), g2.initial_seed())
|
|
|
|
g1 = torch.Generator()
|
|
g2_state = g2.get_state()
|
|
g2_randn = torch.randn(1, generator=g2)
|
|
g1.set_state(g2_state)
|
|
g1_randn = torch.randn(1, generator=g1)
|
|
self.assertEqual(g1_randn, g2_randn)
|
|
|
|
default_state = torch.default_generator.get_state()
|
|
q = torch.Tensor(100)
|
|
g1_normal = q.normal_()
|
|
g2 = torch.Generator()
|
|
g2.set_state(default_state)
|
|
g2_normal = q.normal_(generator=g2)
|
|
self.assertEqual(g1_normal, g2_normal)
|
|
|
|
def test_sobolengine_unscrambled_lowdim(self):
|
|
engine_1d = torch.quasirandom.SobolEngine(1)
|
|
expected_1d = torch.tensor([0.5, 0.75, 0.25, 0.375, 0.875, 0.625, 0.125, 0.1875, 0.6875, 0.9375])
|
|
actual_1d = engine_1d.draw(10)
|
|
self.assertEqual(actual_1d.view(-1), expected_1d)
|
|
self.assertEqual(actual_1d.size(), torch.Size([10, 1]))
|
|
|
|
# Test out kwarg
|
|
engine_1d.reset()
|
|
actual_1d_out = torch.Tensor().float()
|
|
engine_1d.draw(10, out=actual_1d_out)
|
|
self.assertEqual(actual_1d.view(-1), expected_1d)
|
|
|
|
engine_3d = torch.quasirandom.SobolEngine(3)
|
|
expected_3d = torch.tensor([0.5, 0.75, 0.25, 0.625, 0.125, 0.375, 0.875, 0.3125, 0.8125, 0.5625])
|
|
actual_3d = engine_3d.draw(10)
|
|
self.assertEqual(actual_3d[:, 2], expected_3d)
|
|
self.assertEqual(actual_3d[:, 0], expected_1d)
|
|
self.assertEqual(actual_3d.size(), torch.Size([10, 3]))
|
|
|
|
engine_3d = torch.quasirandom.SobolEngine(3)
|
|
draws = torch.cat([engine_3d.draw() for _ in range(0, 10)])
|
|
self.assertEqual(draws, actual_3d)
|
|
|
|
engine_3d = torch.quasirandom.SobolEngine(3).fast_forward(5)
|
|
draws = engine_3d.draw(5)
|
|
self.assertEqual(draws, actual_3d[5:])
|
|
engine_3d.reset()
|
|
self.assertEqual(engine_3d.draw(3), actual_3d[:3])
|
|
engine_3d.fast_forward(2)
|
|
self.assertEqual(engine_3d.draw(5), actual_3d[5:])
|
|
|
|
def test_sobolengine_unscrambled_highdim(self):
|
|
from collections import Counter
|
|
engine = torch.quasirandom.SobolEngine(1111)
|
|
count1 = dict(Counter(engine.draw().view(-1).tolist()))
|
|
count2 = dict(Counter(engine.draw().view(-1).tolist()))
|
|
count3 = dict(Counter(engine.draw().view(-1).tolist()))
|
|
self.assertTrue(count1 == {0.5: 1111})
|
|
self.assertTrue(count2 == {0.25: 580, 0.75: 531})
|
|
self.assertTrue(count3 == {0.25: 531, 0.75: 580})
|
|
|
|
engine = torch.quasirandom.SobolEngine(1111)
|
|
draws = engine.draw(1000)
|
|
self.assertTrue(torch.all(draws <= 1))
|
|
self.assertTrue(torch.all(draws >= 0))
|
|
|
|
def test_sobolengine_scrambled_lowdim(self):
|
|
engine_1d = torch.quasirandom.SobolEngine(1, scramble=True, seed=1729)
|
|
expected_1d = [0.16478512, 0.43221009, 0.84261382, 0.99750268, 0.27460563,
|
|
0.01084163, 0.73373985, 0.65039611, 0.12329865, 0.35587373]
|
|
actual_1d = engine_1d.draw(10)
|
|
self.assertEqual(actual_1d.flatten(), torch.tensor(expected_1d), atol=1e-5, rtol=0)
|
|
self.assertEqual(actual_1d.size(), torch.Size([10, 1]))
|
|
# make sure random seed if chosen if none is provided
|
|
engine_1d_a = torch.quasirandom.SobolEngine(1, scramble=True)
|
|
engine_1d_b = torch.quasirandom.SobolEngine(1, scramble=True)
|
|
self.assertNotEqual(engine_1d_a.draw(2), engine_1d_b.draw(2))
|
|
|
|
engine_3d = torch.quasirandom.SobolEngine(3, scramble=True, seed=1729)
|
|
expected_3d = [0.32642800, 0.17881306, 0.68837059, 0.46492538, 0.91789097,
|
|
0.58075899, 0.03642474, 0.68229187, 0.20051685, 0.30083340]
|
|
actual_3d = engine_3d.draw(10)
|
|
self.assertEqual(actual_3d[:, 2], torch.tensor(expected_3d))
|
|
self.assertEqual(actual_3d.size(), torch.Size([10, 3]))
|
|
|
|
engine_3d = torch.quasirandom.SobolEngine(3, scramble=True, seed=1729)
|
|
draws = torch.cat([engine_3d.draw() for _ in range(0, 10)])
|
|
self.assertEqual(draws, actual_3d)
|
|
|
|
engine_3d = torch.quasirandom.SobolEngine(3, scramble=True, seed=1729)
|
|
engine_3d.fast_forward(5)
|
|
draws = engine_3d.draw(5)
|
|
self.assertEqual(draws, actual_3d[5:])
|
|
engine_3d.reset()
|
|
self.assertEqual(engine_3d.draw(3), actual_3d[:3])
|
|
engine_3d.fast_forward(2)
|
|
self.assertEqual(engine_3d.draw(5), actual_3d[5:])
|
|
|
|
def test_sobolengine_scrambled_lowdim_default_rng(self):
|
|
expected_1d = [0.039826, 0.484409, 0.953192, 0.799275, 0.267996]
|
|
torch.manual_seed(123456)
|
|
engine_1d = torch.quasirandom.SobolEngine(1, scramble=True)
|
|
actual_1d = engine_1d.draw(5)
|
|
self.assertEqual(actual_1d[:, 0], expected_1d)
|
|
torch.manual_seed(123456)
|
|
expected_3d = [0.133490, 0.480183, 0.855304, 0.970967, 0.345844]
|
|
engine_3d = torch.quasirandom.SobolEngine(3, scramble=True)
|
|
actual_3d = engine_3d.draw(5)
|
|
self.assertEqual(actual_3d[:, 0], expected_3d)
|
|
|
|
def test_sobolengine_scrambled_highdim(self):
|
|
engine = torch.quasirandom.SobolEngine(1111, scramble=True)
|
|
draws = engine.draw(1000)
|
|
self.assertTrue(torch.all(draws <= 1))
|
|
self.assertTrue(torch.all(draws >= 0))
|
|
|
|
def test_parsing_int64(self):
|
|
# accepts integer arguments
|
|
x = torch.cumsum(torch.ones(5, 5), 0)
|
|
self.assertEqual(x, torch.cumsum(torch.ones(5, 5), torch.tensor(0)))
|
|
# doesn't accept floating point variables
|
|
self.assertRaises(TypeError, lambda: torch.cumsum(torch.ones(5, 5), torch.tensor(0.)))
|
|
|
|
def test_parsing_double(self):
|
|
# accepts floating point and integer arguments
|
|
x = torch.randn(2, 3)
|
|
torch.isclose(x, x, 1, 1)
|
|
self.assertTrue(torch.isclose(x, x, 1, 1).all())
|
|
self.assertTrue(torch.isclose(x, x, 1.5, 1.).all())
|
|
# accepts floating point and integer tensors
|
|
self.assertTrue(torch.isclose(x, x, torch.tensor(1), torch.tensor(1)).all())
|
|
self.assertTrue(torch.isclose(x, x, torch.tensor(1.5), torch.tensor(1.)).all())
|
|
# doesn't accept variables with requires_grad
|
|
self.assertRaises(TypeError,
|
|
lambda: torch.isclose(x, x, torch.tensor(1.5), torch.tensor(1., requires_grad=True)).all())
|
|
|
|
def test_parsing_intlist(self):
|
|
# parse with integer variables
|
|
self.assertEqual(torch.Size([3, 4]), torch.ones((torch.tensor(3), torch.tensor(4))).shape)
|
|
self.assertEqual(torch.Size([3, 4]), torch.ones(torch.tensor(3), torch.tensor(4)).shape)
|
|
# parse with numpy integers
|
|
if TEST_NUMPY:
|
|
self.assertEqual(torch.Size([3, 4]), torch.ones((np.array(3), np.int64(4))).shape)
|
|
self.assertEqual(torch.Size([3, 4]), torch.ones(np.array(3), np.int64(4)).shape)
|
|
self.assertEqual(torch.Size([3, 4]), torch.ones((np.int64(3), np.array(4))).shape)
|
|
self.assertEqual(torch.Size([3, 4]), torch.ones(np.int64(3), np.array(4)).shape)
|
|
|
|
# fail parse with float variables
|
|
self.assertRaises(TypeError, lambda: torch.ones((torch.tensor(3.), torch.tensor(4))))
|
|
# fail parse with numpy floats
|
|
if TEST_NUMPY:
|
|
self.assertRaises(TypeError, lambda: torch.ones((np.float(3.), torch.tensor(4))))
|
|
self.assertRaises(TypeError, lambda: torch.ones((np.array(3.), torch.tensor(4))))
|
|
|
|
# fail parse with > 1 element variables
|
|
self.assertRaises(TypeError, lambda: torch.ones(torch.tensor(3, 3)))
|
|
self.assertRaises(TypeError, lambda: torch.ones((torch.tensor(3, 3))))
|
|
if TEST_NUMPY:
|
|
self.assertRaises(TypeError, lambda: torch.ones(np.array(3, 3)))
|
|
self.assertRaises(TypeError, lambda: torch.ones((np.array(3, 3))))
|
|
|
|
# fail parse with additional positional args after intlist arg
|
|
self.assertRaisesRegex(TypeError,
|
|
"received an invalid combination of arguments",
|
|
lambda: torch.LongTensor((6, 0), 1, 1, 0))
|
|
self.assertRaisesRegex(TypeError,
|
|
"missing 1 required positional arguments",
|
|
lambda: torch.tensor().new_zeros((5, 5), 0))
|
|
|
|
def test_half_tensor(self):
|
|
x = torch.randn(5, 5).float()
|
|
y = torch.randn(5, 5).float()
|
|
xh, yh = x.half(), y.half()
|
|
|
|
self.assertEqual(x.half().float(), x, atol=1e-3, rtol=0)
|
|
|
|
z = torch.Tensor(5, 5)
|
|
self.assertEqual(z.copy_(xh), x, atol=1e-3, rtol=0)
|
|
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
torch.save(xh, f)
|
|
f.seek(0)
|
|
xh2 = torch.load(f)
|
|
self.assertEqual(xh.float(), xh2.float())
|
|
|
|
def test_from_buffer(self):
|
|
a = bytearray([1, 2, 3, 4])
|
|
self.assertEqual(torch.ByteStorage.from_buffer(a).tolist(), [1, 2, 3, 4])
|
|
shorts = torch.ShortStorage.from_buffer(a, 'big')
|
|
self.assertEqual(shorts.size(), 2)
|
|
self.assertEqual(shorts.tolist(), [258, 772])
|
|
ints = torch.IntStorage.from_buffer(a, 'little')
|
|
self.assertEqual(ints.size(), 1)
|
|
self.assertEqual(ints[0], 67305985)
|
|
f = bytearray([0x40, 0x10, 0x00, 0x00])
|
|
floats = torch.FloatStorage.from_buffer(f, 'big')
|
|
self.assertEqual(floats.size(), 1)
|
|
self.assertEqual(floats[0], 2.25)
|
|
|
|
f = bytearray([0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x10, 0x40])
|
|
bools = torch.BoolStorage.from_buffer(f, 'big')
|
|
self.assertEqual(bools.size(), 8)
|
|
self.assertEqual(bools.tolist(), [False, True, True, True, True, True, True, True])
|
|
self.assertEqual(bools.type(), 'torch.BoolStorage')
|
|
|
|
f = bytearray(b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9')
|
|
bools = torch.BoolStorage.from_buffer(f, 'big')
|
|
self.assertEqual(bools.size(), 19)
|
|
|
|
f = bytearray(b'\0x4A')
|
|
bools = torch.BoolStorage.from_buffer(f, 'big')
|
|
self.assertEqual(bools.size(), 4)
|
|
self.assertEqual(bools.tolist(), [False, True, True, True])
|
|
|
|
def test_storage_casts(self):
|
|
storage = torch.IntStorage([-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(storage.size(), 6)
|
|
self.assertEqual(storage.tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(storage.type(), 'torch.IntStorage')
|
|
self.assertIs(storage.dtype, torch.int32)
|
|
|
|
floatStorage = storage.float()
|
|
self.assertEqual(floatStorage.size(), 6)
|
|
self.assertEqual(floatStorage.tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(floatStorage.type(), 'torch.FloatStorage')
|
|
self.assertEqual(floatStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(floatStorage.dtype, torch.float32)
|
|
|
|
halfStorage = storage.half()
|
|
self.assertEqual(halfStorage.size(), 6)
|
|
self.assertEqual(halfStorage.tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(halfStorage.type(), 'torch.HalfStorage')
|
|
self.assertEqual(halfStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(halfStorage.dtype, torch.float16)
|
|
|
|
bfloat16Storage = storage.bfloat16()
|
|
self.assertEqual(bfloat16Storage.size(), 6)
|
|
self.assertEqual(bfloat16Storage.tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(bfloat16Storage.type(), 'torch.BFloat16Storage')
|
|
self.assertEqual(bfloat16Storage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(bfloat16Storage.dtype, torch.bfloat16)
|
|
|
|
longStorage = storage.long()
|
|
self.assertEqual(longStorage.size(), 6)
|
|
self.assertEqual(longStorage.tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(longStorage.type(), 'torch.LongStorage')
|
|
self.assertEqual(longStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(longStorage.dtype, torch.int64)
|
|
|
|
shortStorage = storage.short()
|
|
self.assertEqual(shortStorage.size(), 6)
|
|
self.assertEqual(shortStorage.tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(shortStorage.type(), 'torch.ShortStorage')
|
|
self.assertEqual(shortStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(shortStorage.dtype, torch.int16)
|
|
|
|
doubleStorage = storage.double()
|
|
self.assertEqual(doubleStorage.size(), 6)
|
|
self.assertEqual(doubleStorage.tolist(), [-1.0, 0.0, 1.0, 2.0, 3.0, 4.0])
|
|
self.assertEqual(doubleStorage.type(), 'torch.DoubleStorage')
|
|
self.assertEqual(doubleStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(doubleStorage.dtype, torch.float64)
|
|
|
|
charStorage = storage.char()
|
|
self.assertEqual(charStorage.size(), 6)
|
|
self.assertEqual(charStorage.tolist(), [-1.0, 0.0, 1.0, 2.0, 3.0, 4.0])
|
|
self.assertEqual(charStorage.type(), 'torch.CharStorage')
|
|
self.assertEqual(charStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(charStorage.dtype, torch.int8)
|
|
|
|
byteStorage = storage.byte()
|
|
self.assertEqual(byteStorage.size(), 6)
|
|
self.assertEqual(byteStorage.tolist(), [255, 0, 1, 2, 3, 4])
|
|
self.assertEqual(byteStorage.type(), 'torch.ByteStorage')
|
|
self.assertEqual(byteStorage.int().tolist(), [255, 0, 1, 2, 3, 4])
|
|
self.assertIs(byteStorage.dtype, torch.uint8)
|
|
|
|
boolStorage = storage.bool()
|
|
self.assertEqual(boolStorage.size(), 6)
|
|
self.assertEqual(boolStorage.tolist(), [True, False, True, True, True, True])
|
|
self.assertEqual(boolStorage.type(), 'torch.BoolStorage')
|
|
self.assertEqual(boolStorage.int().tolist(), [1, 0, 1, 1, 1, 1])
|
|
self.assertIs(boolStorage.dtype, torch.bool)
|
|
|
|
complexfloat_storage = torch.ComplexFloatStorage([-1, 0, 1 + 2j, 2.5j, 3.5, 4 - 2j])
|
|
self.assertEqual(complexfloat_storage.size(), 6)
|
|
self.assertEqual(complexfloat_storage.tolist(), [-1, 0, 1 + 2j, 2.5j, 3.5, 4 - 2j])
|
|
self.assertEqual(complexfloat_storage.type(), 'torch.ComplexFloatStorage')
|
|
self.assertIs(complexfloat_storage.dtype, torch.complex64)
|
|
|
|
complexdouble_storage = complexfloat_storage.complex_double()
|
|
self.assertEqual(complexdouble_storage.size(), 6)
|
|
self.assertEqual(complexdouble_storage.tolist(), [-1, 0, 1 + 2j, 2.5j, 3.5, 4 - 2j])
|
|
self.assertEqual(complexdouble_storage.type(), 'torch.ComplexDoubleStorage')
|
|
self.assertIs(complexdouble_storage.dtype, torch.complex128)
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "TODO: need to fix this test case for Windows")
|
|
def test_from_file(self):
|
|
size = 10000
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
s1 = torch.FloatStorage.from_file(f.name, True, size)
|
|
t1 = torch.FloatTensor(s1).copy_(torch.randn(size))
|
|
|
|
# check mapping
|
|
s2 = torch.FloatStorage.from_file(f.name, True, size)
|
|
t2 = torch.FloatTensor(s2)
|
|
self.assertEqual(t1, t2, atol=0, rtol=0)
|
|
|
|
# check changes to t1 from t2
|
|
rnum = random.uniform(-1, 1)
|
|
t1.fill_(rnum)
|
|
self.assertEqual(t1, t2, atol=0, rtol=0)
|
|
|
|
# check changes to t2 from t1
|
|
rnum = random.uniform(-1, 1)
|
|
t2.fill_(rnum)
|
|
self.assertEqual(t1, t2, atol=0, rtol=0)
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "TODO: need to fix this test case for Windows")
|
|
def test_torch_from_file(self):
|
|
size = 10000
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
s1 = torch.from_file(f.name, True, size, dtype=torch.float)
|
|
t1 = torch.FloatTensor(s1).copy_(torch.randn(size))
|
|
|
|
# check mapping
|
|
s2 = torch.from_file(f.name, True, size, dtype=torch.float)
|
|
t2 = torch.FloatTensor(s2)
|
|
self.assertEqual(t1, t2, atol=0, rtol=0)
|
|
|
|
# check changes to t1 from t2
|
|
rnum = random.uniform(-1, 1)
|
|
t1.fill_(rnum)
|
|
self.assertEqual(t1, t2, atol=0, rtol=0)
|
|
|
|
# check changes to t2 from t1
|
|
rnum = random.uniform(-1, 1)
|
|
t2.fill_(rnum)
|
|
self.assertEqual(t1, t2, atol=0, rtol=0)
|
|
|
|
def test_print(self):
|
|
default_type = torch.Tensor().type()
|
|
for t in torch._tensor_classes:
|
|
if t == torch.HalfTensor:
|
|
continue # HalfTensor does not support fill
|
|
if t.is_sparse:
|
|
continue
|
|
if t.is_cuda and not torch.cuda.is_available():
|
|
continue
|
|
obj = t(100, 100).fill_(1)
|
|
obj.__repr__()
|
|
str(obj)
|
|
# test half tensor
|
|
obj = torch.rand(100, 100, device='cpu').half()
|
|
obj.__repr__()
|
|
str(obj)
|
|
for t in torch._storage_classes:
|
|
if t == torch.BFloat16Storage:
|
|
continue # Fix once fill is enabled for bfloat16
|
|
if t.is_cuda and not torch.cuda.is_available():
|
|
continue
|
|
if t == torch.BoolStorage or t == torch.cuda.BoolStorage:
|
|
obj = t(100).fill_(True)
|
|
else:
|
|
obj = t(100).fill_(1)
|
|
obj.__repr__()
|
|
str(obj)
|
|
|
|
# test complex tensor
|
|
# complex tensor print uses two formatters, one for real values
|
|
# and the other for imag values. this is consistent with numpy
|
|
x = torch.tensor([2.3 + 4j, 7 + 6j])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([2.3000+4.j, 7.0000+6.j])''')
|
|
|
|
# test scientific notation for complex tensors
|
|
x = torch.tensor([1e28 + 2j , -1e-28j])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1.0000e+28+2.0000e+00j, -0.0000e+00-1.0000e-28j])''')
|
|
|
|
# test big integer
|
|
x = torch.tensor(2341234123412341)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor(2341234123412341)''')
|
|
|
|
# test scientific notation
|
|
x = torch.tensor([1e28, 1e-28])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1.0000e+28, 1.0000e-28])''')
|
|
|
|
# test scientific notation using set_printoptions
|
|
x = torch.tensor([1e2, 1e-2])
|
|
torch.set_printoptions(sci_mode=True)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1.0000e+02, 1.0000e-02])''')
|
|
torch.set_printoptions(sci_mode=False)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([ 100.0000, 0.0100])''')
|
|
torch.set_printoptions(sci_mode=None) # reset to the default value
|
|
|
|
# test no leading space if all elements positive
|
|
x = torch.tensor([1, 2])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1, 2])''')
|
|
|
|
# test for leading space if there are negative elements
|
|
x = torch.tensor([1, -2])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([ 1, -2])''')
|
|
|
|
# test inf and nan
|
|
x = torch.tensor([4, inf, 1.5, -inf, 0, nan, 1])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([4.0000, inf, 1.5000, -inf, 0.0000, nan, 1.0000])''')
|
|
|
|
y = torch.tensor([4, inf, complex(1.5, inf), complex(-inf, 4), 0, complex(nan, inf), complex(3, nan)])
|
|
self.assertEqual(y.__repr__(), str(y))
|
|
expected_str = '''\
|
|
tensor([4.0000+0.j, inf+0.j, 1.5000+infj, -inf+4.j, 0.0000+0.j, nan+infj,
|
|
3.0000+nanj])'''
|
|
self.assertExpectedInline(str(y), expected_str)
|
|
|
|
# test dtype
|
|
torch.set_default_dtype(torch.float)
|
|
x = torch.tensor([1e-324, 1e-323, 1e-322, 1e307, 1e308, 1e309], dtype=torch.float64)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
expected_str = '''\
|
|
tensor([ 0.0000e+00, 9.8813e-324, 9.8813e-323, 1.0000e+307, 1.0000e+308,
|
|
inf], dtype=torch.float64)'''
|
|
self.assertExpectedInline(str(x), expected_str)
|
|
|
|
# test changing default dtype
|
|
torch.set_default_dtype(torch.float64)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
expected_str = '''\
|
|
tensor([ 0.0000e+00, 9.8813e-324, 9.8813e-323, 1.0000e+307, 1.0000e+308,
|
|
inf])'''
|
|
self.assertExpectedInline(str(x), expected_str)
|
|
|
|
# test summary
|
|
x = torch.zeros(10000)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([0., 0., 0., ..., 0., 0., 0.])''')
|
|
|
|
# test internal summary function
|
|
x = torch.rand(1, 20, 5, 30)
|
|
summary = torch._tensor_str.get_summarized_data(x)
|
|
self.assertEqual(summary.shape, (1, 6, 5, 6))
|
|
first_and_last = [0, 1, 2, -3, -2, -1]
|
|
self.assertEqual(summary, x[:, first_and_last][..., first_and_last])
|
|
|
|
# test device
|
|
if torch.cuda.is_available():
|
|
x = torch.tensor([123], device='cuda:0')
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([123], device='cuda:0')''')
|
|
|
|
# test changing default to cuda
|
|
torch.set_default_tensor_type(torch.cuda.FloatTensor)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([123])''')
|
|
|
|
# test printing a tensor on a different gpu than current one.
|
|
if torch.cuda.device_count() >= 2:
|
|
with torch.cuda.device(1):
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([123], device='cuda:0')''')
|
|
|
|
# test printing cpu tensor when default device is cuda
|
|
y = torch.tensor([123], device='cpu')
|
|
self.assertEqual(y.__repr__(), str(y))
|
|
self.assertExpectedInline(str(y), '''tensor([123], device='cpu')''')
|
|
torch.set_default_tensor_type(default_type)
|
|
|
|
|
|
# test integral floats and requires_grad
|
|
x = torch.tensor([123.], requires_grad=True)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([123.], requires_grad=True)''')
|
|
|
|
# test non-contiguous print
|
|
# sliced tensor should have > PRINT_OPTS.threshold elements
|
|
x = torch.ones(100, 2, 2, 10)
|
|
y = x.as_strided(size=(100, 2, 10), stride=(2 * 2 * 10, 2 * 10, 1))
|
|
self.assertEqual(str(y), y.__repr__())
|
|
expected_str = '''\
|
|
tensor([[[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.]],
|
|
|
|
[[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.]],
|
|
|
|
[[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.]],
|
|
|
|
...,
|
|
|
|
[[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.]],
|
|
|
|
[[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.]],
|
|
|
|
[[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.]]])\
|
|
'''
|
|
|
|
self.assertExpectedInline(str(y), expected_str)
|
|
|
|
x = torch.ones(100, 2, 2, 10) * (1 + 1j)
|
|
y = x.as_strided(size=(100, 2, 10), stride=(2 * 2 * 10, 2 * 10, 1))
|
|
self.assertEqual(str(y), y.__repr__())
|
|
expected_str = '''\
|
|
tensor([[[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j],
|
|
[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j]],
|
|
|
|
[[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j],
|
|
[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j]],
|
|
|
|
[[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j],
|
|
[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j]],
|
|
|
|
...,
|
|
|
|
[[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j],
|
|
[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j]],
|
|
|
|
[[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j],
|
|
[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j]],
|
|
|
|
[[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j],
|
|
[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j]]])\
|
|
'''
|
|
self.assertExpectedInline(str(y), expected_str)
|
|
|
|
# test print 0-dim tensor: there's no 0-dim in Numpy, we match arrayprint style
|
|
x = torch.tensor(0.00002)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor(2.0000e-05)''')
|
|
|
|
# test print boolean tensor
|
|
x = torch.tensor([True])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([True])''')
|
|
|
|
x = torch.tensor(True)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor(True)''')
|
|
|
|
# [Numpy] test print float in sci_mode when min < 0.0001.
|
|
x = torch.tensor([0.00002])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([2.0000e-05])''')
|
|
|
|
# [Numpy] test print complex in sci_mode when real_min < 0.0001 and (or) imag_min < 0.0001.
|
|
x = torch.tensor([0.00002]) * (1 + 1j)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([2.0000e-05+2.0000e-05j])''')
|
|
|
|
# [Numpy] test print float in sci_mode when max > 1e8.
|
|
# TODO: Pytorch uses fixed precision to print, while Numpy uses dragon4_scientific
|
|
# to do automatic trimming and padding.
|
|
x = torch.tensor([123456789.])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1.2346e+08])''')
|
|
|
|
# [Numpy] test print float in sci_mode when max / min > 1000.
|
|
x = torch.tensor([0.01, 11])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1.0000e-02, 1.1000e+01])''')
|
|
|
|
# [Numpy] test print int max / min > 1000, no sci_mode
|
|
x = torch.tensor([1, 1010])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([ 1, 1010])''')
|
|
|
|
# [Numpy] test print int > 1e8, no sci_mode
|
|
x = torch.tensor([1000000000]) # 1e9
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1000000000])''')
|
|
|
|
# [Numpy] test printing float in int_mode
|
|
x = torch.tensor([1., 1000.])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([ 1., 1000.])''')
|
|
|
|
# [Numpy] test printing float in int_mode in sci format when max / min > 1000.
|
|
x = torch.tensor([1., 1010.])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1.0000e+00, 1.0100e+03])''')
|
|
|
|
def test_sizeof(self) -> None:
|
|
sizeof_empty = torch.randn(0).storage().__sizeof__()
|
|
sizeof_10 = torch.randn(10).storage().__sizeof__()
|
|
sizeof_100 = torch.randn(100).storage().__sizeof__()
|
|
self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10)
|
|
self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0)
|
|
|
|
sizeof_empty = torch.randn(0).to(torch.uint8).storage().__sizeof__()
|
|
sizeof_10 = torch.randn(10).to(torch.uint8).storage().__sizeof__()
|
|
sizeof_100 = torch.randn(100).to(torch.uint8).storage().__sizeof__()
|
|
self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10)
|
|
self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0)
|
|
|
|
def test_unsqueeze(self) -> None:
|
|
x = torch.randn(2, 3, 4)
|
|
y = x.unsqueeze(1)
|
|
self.assertEqual(y, x.view(2, 1, 3, 4))
|
|
y = x.clone().unsqueeze_(2)
|
|
self.assertEqual(y, x.view(2, 3, 1, 4))
|
|
|
|
x = x[:, 1]
|
|
self.assertFalse(x.is_contiguous())
|
|
y = x.unsqueeze(1)
|
|
self.assertEqual(y, x.contiguous().view(2, 1, 4))
|
|
y = x.clone().unsqueeze_(2)
|
|
self.assertEqual(y, x.contiguous().view(2, 4, 1))
|
|
|
|
def test_iter(self) -> None:
|
|
x = torch.randn(5, 5)
|
|
for i, sub in enumerate(x):
|
|
self.assertEqual(sub, x[i])
|
|
|
|
x = torch.Tensor()
|
|
self.assertEqual(list(x), [])
|
|
|
|
def test_accreal_type(self) -> None:
|
|
x = torch.ones(2, 3, 4)
|
|
self.assertIsInstance(x.double().sum().item(), float)
|
|
self.assertIsInstance(x.float().sum().item(), float)
|
|
self.assertIsInstance(x.long().sum().item(), int)
|
|
self.assertIsInstance(x.int().sum().item(), int)
|
|
self.assertIsInstance(x.short().sum().item(), int)
|
|
self.assertIsInstance(x.char().sum().item(), int)
|
|
self.assertIsInstance(x.byte().sum().item(), int)
|
|
|
|
def test_assertEqual(self) -> None:
|
|
x = torch.FloatTensor([0])
|
|
self.assertEqual(x, 0)
|
|
xv = torch.autograd.Variable(x)
|
|
self.assertEqual(xv, 0)
|
|
self.assertEqual(x, xv)
|
|
self.assertEqual(xv, x)
|
|
|
|
# Tests that setting atol or rtol without the other throws
|
|
self.assertRaises(AssertionError,
|
|
lambda: self.assertEqual(x, xv, atol=4))
|
|
self.assertRaises(AssertionError,
|
|
lambda: self.assertEqual(x, xv, rtol=4))
|
|
|
|
self.assertRaisesRegex(TypeError, "takes from 3 to 4 positional arguments",
|
|
lambda: self.assertEqual(x, xv, "", 1.0)) # type: ignore
|
|
|
|
def test_new(self) -> None:
|
|
x = torch.autograd.Variable(torch.Tensor())
|
|
y = torch.autograd.Variable(torch.randn(4, 4))
|
|
z = torch.autograd.Variable(torch.IntTensor([1, 2, 3]))
|
|
self.assertEqual(x.new().shape, [0])
|
|
self.assertEqual(x.new(), x)
|
|
self.assertEqual(x.new(1, 2).shape, [1, 2])
|
|
self.assertEqual(x.new(torch.Size([3, 4])).shape, [3, 4])
|
|
self.assertEqual(x.new([3, 4]).shape, [2])
|
|
self.assertEqual(x.new([3, 4]).tolist(), [3, 4])
|
|
self.assertEqual(x.new((3, 4)).tolist(), [3, 4])
|
|
if TEST_NUMPY:
|
|
self.assertEqual(x.new([np.int32(3), np.float64(4)]).tolist(), [3, 4])
|
|
self.assertEqual(x.new(np.array((3, 4))).tolist(), [3, 4])
|
|
self.assertEqual(x.new([z[2], z[0] + 3]).tolist(), [3, 4])
|
|
self.assertEqual(x.new(size=(3, 4)).shape, [3, 4])
|
|
self.assertEqual(x.new(()).shape, [0])
|
|
self.assertEqual(x.new(y.storage()).data_ptr(), y.data_ptr())
|
|
self.assertEqual(x.new(y).data_ptr(), y.data_ptr())
|
|
self.assertIsNot(x.new(y), y)
|
|
|
|
self.assertRaises(TypeError, lambda: x.new(z))
|
|
# TypeError would be better
|
|
self.assertRaises(RuntimeError, lambda: x.new(z.storage()))
|
|
|
|
def test_empty_like(self) -> None:
|
|
x = torch.autograd.Variable(torch.Tensor())
|
|
y = torch.autograd.Variable(torch.randn(4, 4))
|
|
z = torch.autograd.Variable(torch.IntTensor([1, 2, 3]))
|
|
for a in (x, y, z):
|
|
self.assertEqual(torch.empty_like(a).shape, a.shape)
|
|
self.assertEqualTypeString(torch.empty_like(a), a)
|
|
|
|
@unittest.skipIf(PYTORCH_CUDA_MEMCHECK, "is_pinned uses failure to detect pointer property")
|
|
def test_pin_memory(self):
|
|
x = torch.randn(3, 5)
|
|
self.assertFalse(x.is_pinned())
|
|
if not torch.cuda.is_available():
|
|
self.assertRaises(RuntimeError, lambda: x.pin_memory())
|
|
else:
|
|
pinned = x.pin_memory()
|
|
self.assertTrue(pinned.is_pinned())
|
|
self.assertEqual(pinned, x)
|
|
self.assertNotEqual(pinned.data_ptr(), x.data_ptr())
|
|
# test that pin_memory on already pinned tensor has no effect
|
|
self.assertIs(pinned, pinned.pin_memory())
|
|
self.assertEqual(pinned.data_ptr(), pinned.pin_memory().data_ptr())
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_numpy_unresizable(self) -> None:
|
|
x = np.zeros((2, 2))
|
|
y = torch.from_numpy(x)
|
|
with self.assertRaises(ValueError):
|
|
x.resize((5, 5))
|
|
|
|
z = torch.randn(5, 5)
|
|
w = z.numpy()
|
|
with self.assertRaises(RuntimeError):
|
|
z.resize_(10, 10)
|
|
with self.assertRaises(ValueError):
|
|
w.resize((10, 10))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_to_numpy(self) -> None:
|
|
def get_castable_tensor(shape, dtype):
|
|
if dtype.is_floating_point:
|
|
dtype_info = torch.finfo(dtype)
|
|
# can't directly use min and max, because for double, max - min
|
|
# is greater than double range and sampling always gives inf.
|
|
low = max(dtype_info.min, -1e10)
|
|
high = min(dtype_info.max, 1e10)
|
|
t = torch.empty(shape, dtype=torch.float64).uniform_(low, high)
|
|
else:
|
|
# can't directly use min and max, because for int64_t, max - min
|
|
# is greater than int64_t range and triggers UB.
|
|
dtype_info = torch.iinfo(dtype)
|
|
low = max(dtype_info.min, int(-1e10))
|
|
high = min(dtype_info.max, int(1e10))
|
|
dtype_info = torch.iinfo(dtype)
|
|
t = torch.empty(shape, dtype=torch.int64).random_(low, high)
|
|
return t.to(dtype)
|
|
|
|
dtypes = [
|
|
torch.uint8,
|
|
torch.int8,
|
|
torch.short,
|
|
torch.int,
|
|
torch.half,
|
|
torch.float,
|
|
torch.double,
|
|
torch.long,
|
|
]
|
|
for dtp in dtypes:
|
|
# 1D
|
|
sz = 10
|
|
x = get_castable_tensor(sz, dtp)
|
|
y = x.numpy()
|
|
for i in range(sz):
|
|
self.assertEqual(x[i], y[i])
|
|
|
|
# 1D > 0 storage offset
|
|
xm = get_castable_tensor(sz * 2, dtp)
|
|
x = xm.narrow(0, sz - 1, sz)
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
y = x.numpy()
|
|
for i in range(sz):
|
|
self.assertEqual(x[i], y[i])
|
|
|
|
def check2d(x, y):
|
|
for i in range(sz1):
|
|
for j in range(sz2):
|
|
self.assertEqual(x[i][j], y[i][j])
|
|
|
|
# empty
|
|
x = torch.Tensor().to(dtp)
|
|
y = x.numpy()
|
|
self.assertEqual(y.size, 0)
|
|
|
|
# contiguous 2D
|
|
sz1 = 3
|
|
sz2 = 5
|
|
x = get_castable_tensor((sz1, sz2), dtp)
|
|
y = x.numpy()
|
|
check2d(x, y)
|
|
self.assertTrue(y.flags['C_CONTIGUOUS'])
|
|
|
|
# with storage offset
|
|
xm = get_castable_tensor((sz1 * 2, sz2), dtp)
|
|
x = xm.narrow(0, sz1 - 1, sz1)
|
|
y = x.numpy()
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
check2d(x, y)
|
|
self.assertTrue(y.flags['C_CONTIGUOUS'])
|
|
|
|
# non-contiguous 2D
|
|
x = get_castable_tensor((sz2, sz1), dtp).t()
|
|
y = x.numpy()
|
|
check2d(x, y)
|
|
self.assertFalse(y.flags['C_CONTIGUOUS'])
|
|
|
|
# with storage offset
|
|
xm = get_castable_tensor((sz2 * 2, sz1), dtp)
|
|
x = xm.narrow(0, sz2 - 1, sz2).t()
|
|
y = x.numpy()
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
check2d(x, y)
|
|
|
|
# non-contiguous 2D with holes
|
|
xm = get_castable_tensor((sz2 * 2, sz1 * 2), dtp)
|
|
x = xm.narrow(0, sz2 - 1, sz2).narrow(1, sz1 - 1, sz1).t()
|
|
y = x.numpy()
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
check2d(x, y)
|
|
|
|
if dtp != torch.half:
|
|
# check writeable
|
|
x = get_castable_tensor((3, 4), dtp)
|
|
y = x.numpy()
|
|
self.assertTrue(y.flags.writeable)
|
|
y[0][1] = 3
|
|
self.assertTrue(x[0][1] == 3)
|
|
y = x.t().numpy()
|
|
self.assertTrue(y.flags.writeable)
|
|
y[0][1] = 3
|
|
self.assertTrue(x[0][1] == 3)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_to_numpy_bool(self) -> None:
|
|
x = torch.tensor([True, False], dtype=torch.bool)
|
|
self.assertEqual(x.dtype, torch.bool)
|
|
|
|
y = x.numpy()
|
|
self.assertEqual(y.dtype, np.bool)
|
|
for i in range(len(x)):
|
|
self.assertEqual(x[i], y[i])
|
|
|
|
x = torch.tensor([True], dtype=torch.bool)
|
|
self.assertEqual(x.dtype, torch.bool)
|
|
|
|
y = x.numpy()
|
|
self.assertEqual(y.dtype, np.bool)
|
|
self.assertEqual(x[0], y[0])
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_from_numpy(self) -> None:
|
|
dtypes = [
|
|
np.double,
|
|
np.float,
|
|
np.float16,
|
|
np.complex64,
|
|
np.complex128,
|
|
np.int64,
|
|
np.int32,
|
|
np.int16,
|
|
np.int8,
|
|
np.uint8,
|
|
np.longlong,
|
|
np.bool,
|
|
]
|
|
complex_dtypes = [
|
|
np.complex64,
|
|
np.complex128,
|
|
]
|
|
|
|
for dtype in dtypes:
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
tensor_from_array = torch.from_numpy(array)
|
|
# TODO: change to tensor equality check once HalfTensor
|
|
# implements `==`
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor_from_array[i], array[i])
|
|
# ufunc 'remainder' not supported for complex dtypes
|
|
if dtype not in complex_dtypes:
|
|
# This is a special test case for Windows
|
|
# https://github.com/pytorch/pytorch/issues/22615
|
|
array2 = array % 2
|
|
tensor_from_array2 = torch.from_numpy(array2)
|
|
for i in range(len(array2)):
|
|
self.assertEqual(tensor_from_array2[i], array2[i])
|
|
|
|
# Test unsupported type
|
|
array = np.array([1, 2, 3, 4], dtype=np.uint16)
|
|
with self.assertRaises(TypeError):
|
|
tensor_from_array = torch.from_numpy(array)
|
|
|
|
# check storage offset
|
|
x = np.linspace(1, 125, 125)
|
|
x.shape = (5, 5, 5)
|
|
x = x[1]
|
|
expected = torch.arange(1, 126, dtype=torch.float64).view(5, 5, 5)[1]
|
|
self.assertEqual(torch.from_numpy(x), expected)
|
|
|
|
# check noncontiguous
|
|
x = np.linspace(1, 25, 25)
|
|
x.shape = (5, 5)
|
|
expected = torch.arange(1, 26, dtype=torch.float64).view(5, 5).t()
|
|
self.assertEqual(torch.from_numpy(x.T), expected)
|
|
|
|
# check noncontiguous with holes
|
|
x = np.linspace(1, 125, 125)
|
|
x.shape = (5, 5, 5)
|
|
x = x[:, 1]
|
|
expected = torch.arange(1, 126, dtype=torch.float64).view(5, 5, 5)[:, 1]
|
|
self.assertEqual(torch.from_numpy(x), expected)
|
|
|
|
# check zero dimensional
|
|
x = np.zeros((0, 2))
|
|
self.assertEqual(torch.from_numpy(x).shape, (0, 2))
|
|
x = np.zeros((2, 0))
|
|
self.assertEqual(torch.from_numpy(x).shape, (2, 0))
|
|
|
|
# check ill-sized strides raise exception
|
|
x = np.array([3., 5., 8.])
|
|
x.strides = (3,)
|
|
self.assertRaises(ValueError, lambda: torch.from_numpy(x))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_ctor_with_numpy_scalar_ctor(self) -> None:
|
|
dtypes = [
|
|
np.double,
|
|
np.float,
|
|
np.float16,
|
|
np.int64,
|
|
np.int32,
|
|
np.int16,
|
|
np.uint8,
|
|
np.bool,
|
|
]
|
|
for dtype in dtypes:
|
|
self.assertEqual(dtype(42), torch.tensor(dtype(42)).item())
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_numpy_index(self):
|
|
i = np.int32([0, 1, 2])
|
|
x = torch.randn(5, 5)
|
|
for idx in i:
|
|
self.assertFalse(isinstance(idx, int))
|
|
self.assertEqual(x[idx], x[int(idx)])
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_numpy_array_interface(self):
|
|
types = [
|
|
torch.DoubleTensor,
|
|
torch.FloatTensor,
|
|
torch.HalfTensor,
|
|
torch.LongTensor,
|
|
torch.IntTensor,
|
|
torch.ShortTensor,
|
|
torch.ByteTensor,
|
|
]
|
|
dtypes = [
|
|
np.float64,
|
|
np.float32,
|
|
np.float16,
|
|
np.int64,
|
|
np.int32,
|
|
np.int16,
|
|
np.uint8,
|
|
]
|
|
for tp, dtype in zip(types, dtypes):
|
|
if np.dtype(dtype).kind == 'u':
|
|
x = torch.Tensor([1, 2, 3, 4]).type(tp)
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
else:
|
|
x = torch.Tensor([1, -2, 3, -4]).type(tp)
|
|
array = np.array([1, -2, 3, -4], dtype=dtype)
|
|
|
|
# Test __array__ w/o dtype argument
|
|
asarray = np.asarray(x)
|
|
self.assertIsInstance(asarray, np.ndarray)
|
|
self.assertEqual(asarray.dtype, dtype)
|
|
for i in range(len(x)):
|
|
self.assertEqual(asarray[i], x[i])
|
|
|
|
# Test __array_wrap__, same dtype
|
|
abs_x = np.abs(x)
|
|
abs_array = np.abs(array)
|
|
self.assertIsInstance(abs_x, tp)
|
|
for i in range(len(x)):
|
|
self.assertEqual(abs_x[i], abs_array[i])
|
|
|
|
# Test __array__ with dtype argument
|
|
for dtype in dtypes:
|
|
x = torch.IntTensor([1, -2, 3, -4])
|
|
asarray = np.asarray(x, dtype=dtype)
|
|
self.assertEqual(asarray.dtype, dtype)
|
|
if np.dtype(dtype).kind == 'u':
|
|
wrapped_x = np.array([1, -2, 3, -4], dtype=dtype)
|
|
for i in range(len(x)):
|
|
self.assertEqual(asarray[i], wrapped_x[i])
|
|
else:
|
|
for i in range(len(x)):
|
|
self.assertEqual(asarray[i], x[i])
|
|
|
|
# Test some math functions with float types
|
|
float_types = [torch.DoubleTensor, torch.FloatTensor]
|
|
float_dtypes = [np.float64, np.float32]
|
|
for tp, dtype in zip(float_types, float_dtypes):
|
|
x = torch.Tensor([1, 2, 3, 4]).type(tp)
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
for func in ['sin', 'sqrt', 'ceil']:
|
|
ufunc = getattr(np, func)
|
|
res_x = ufunc(x)
|
|
res_array = ufunc(array)
|
|
self.assertIsInstance(res_x, tp)
|
|
for i in range(len(x)):
|
|
self.assertEqual(res_x[i], res_array[i])
|
|
|
|
# Test functions with boolean return value
|
|
for tp, dtype in zip(types, dtypes):
|
|
x = torch.Tensor([1, 2, 3, 4]).type(tp)
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
geq2_x = np.greater_equal(x, 2)
|
|
geq2_array = np.greater_equal(array, 2).astype('uint8')
|
|
self.assertIsInstance(geq2_x, torch.ByteTensor)
|
|
for i in range(len(x)):
|
|
self.assertEqual(geq2_x[i], geq2_array[i])
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_multiplication_numpy_scalar(self) -> None:
|
|
for np_dtype in [np.float32, np.float64, np.int32, np.int64, np.int16, np.uint8]:
|
|
for t_dtype in [torch.float, torch.double]:
|
|
np_sc = np_dtype(2.0)
|
|
t = torch.ones(2, requires_grad=True, dtype=t_dtype)
|
|
r1 = t * np_sc
|
|
self.assertIsInstance(r1, torch.Tensor)
|
|
self.assertTrue(r1.dtype == t_dtype)
|
|
self.assertTrue(r1.requires_grad)
|
|
r2 = np_sc * t
|
|
self.assertIsInstance(r2, torch.Tensor)
|
|
self.assertTrue(r2.dtype == t_dtype)
|
|
self.assertTrue(r2.requires_grad)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_parse_numpy_int(self):
|
|
self.assertRaisesRegex(RuntimeError, "Overflow",
|
|
lambda: torch.mean(torch.randn(1, 1), np.uint64(-1)))
|
|
# https://github.com/pytorch/pytorch/issues/29252
|
|
for nptype in [np.int16, np.int8, np.uint8, np.int32, np.int64]:
|
|
scalar = 3
|
|
np_arr = np.array([scalar], dtype=nptype)
|
|
np_val = np_arr[0]
|
|
|
|
# np integral type can be treated as a python int in native functions with
|
|
# int parameters:
|
|
self.assertEqual(torch.ones(5).diag(scalar), torch.ones(5).diag(np_val))
|
|
self.assertEqual(torch.ones([2, 2, 2, 2]).mean(scalar), torch.ones([2, 2, 2, 2]).mean(np_val))
|
|
|
|
# numpy integral type parses like a python int in custom python bindings:
|
|
self.assertEqual(torch.Storage(np_val).size(), scalar)
|
|
|
|
tensor = torch.tensor([2], dtype=torch.int)
|
|
tensor[0] = np_val
|
|
self.assertEqual(tensor[0], np_val)
|
|
|
|
# Original reported issue, np integral type parses to the correct
|
|
# PyTorch integral type when passed for a `Scalar` parameter in
|
|
# arithmetic operations:
|
|
t = torch.from_numpy(np_arr)
|
|
self.assertEqual((t + np_val).dtype, t.dtype)
|
|
self.assertEqual((np_val + t).dtype, t.dtype)
|
|
|
|
def test_error_msg_type_translation(self):
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
# message includes both Double and Long
|
|
'(?=.*Double)(?=.*Long)'):
|
|
|
|
# Calls model with a LongTensor input but DoubleTensor weights
|
|
input = torch.zeros(1, 1, 1, 6, dtype=torch.long)
|
|
weight = torch.nn.Parameter(torch.zeros(1, 1, 1, 3, dtype=torch.double))
|
|
model = torch.nn.Conv2d(1, 1, (1, 3), stride=1, padding=0, bias=False)
|
|
model.weight = weight
|
|
out = model(input)
|
|
|
|
def test_tensor_from_sequence(self):
|
|
class MockSequence(object):
|
|
def __init__(self, lst):
|
|
self.lst = lst
|
|
|
|
def __len__(self):
|
|
return len(self.lst)
|
|
|
|
def __getitem__(self, item):
|
|
raise TypeError
|
|
|
|
class GoodMockSequence(MockSequence):
|
|
def __getitem__(self, item):
|
|
return self.lst[item]
|
|
|
|
bad_mock_seq = MockSequence([1.0, 2.0, 3.0])
|
|
good_mock_seq = GoodMockSequence([1.0, 2.0, 3.0])
|
|
with self.assertRaisesRegex(ValueError, 'could not determine the shape'):
|
|
torch.Tensor(bad_mock_seq)
|
|
self.assertEqual(torch.Tensor([1.0, 2.0, 3.0]), torch.Tensor(good_mock_seq))
|
|
|
|
def test_comparison_ops(self):
|
|
x = torch.randn(5, 5)
|
|
y = torch.randn(5, 5)
|
|
|
|
eq = x == y
|
|
for idx in iter_indices(x):
|
|
self.assertEqual(x[idx] == y[idx], eq[idx] == 1)
|
|
|
|
ne = x != y
|
|
for idx in iter_indices(x):
|
|
self.assertEqual(x[idx] != y[idx], ne[idx] == 1)
|
|
|
|
lt = x < y
|
|
for idx in iter_indices(x):
|
|
self.assertEqual(x[idx] < y[idx], lt[idx] == 1)
|
|
|
|
le = x <= y
|
|
for idx in iter_indices(x):
|
|
self.assertEqual(x[idx] <= y[idx], le[idx] == 1)
|
|
|
|
gt = x > y
|
|
for idx in iter_indices(x):
|
|
self.assertEqual(x[idx] > y[idx], gt[idx] == 1)
|
|
|
|
ge = x >= y
|
|
for idx in iter_indices(x):
|
|
self.assertEqual(x[idx] >= y[idx], ge[idx] == 1)
|
|
|
|
def test_comparison_ops_must_take_bool_output(self):
|
|
for op in [torch.lt, torch.le, torch.gt, torch.ge, torch.eq, torch.ne,
|
|
torch.logical_and, torch.logical_or, torch.logical_xor]:
|
|
self.assertEqual(op(torch.tensor([True]), torch.tensor([False])).dtype, torch.bool)
|
|
|
|
def test_inplace_comparison_ops_require_inputs_have_same_dtype(self):
|
|
with self.assertRaisesRegex(RuntimeError, 'Expected object of scalar type'):
|
|
for op in ['lt_', 'le_', 'gt_', 'ge_', 'eq_', 'ne_', 'logical_xor_', 'logical_and_', 'logical_or_']:
|
|
x = torch.tensor([1], dtype=torch.int)
|
|
y = torch.tensor([2], dtype=torch.long)
|
|
in_place_method = getattr(x, op)
|
|
in_place_method(y)
|
|
|
|
def test_comparison_ops_check_for_scalar_overflow(self):
|
|
with self.assertRaisesRegex(RuntimeError, 'value cannot be converted to type'):
|
|
torch.tensor([1 << 5], dtype=torch.uint8) < (1 << 20)
|
|
(1 << 20) < torch.tensor([1 << 5], dtype=torch.uint8)
|
|
torch.tensor([1 << 5], dtype=torch.uint8) <= (1 << 20)
|
|
(1 << 20) <= torch.tensor([1 << 5], dtype=torch.uint8)
|
|
torch.tensor([1 << 5], dtype=torch.uint8) > (1 << 20)
|
|
(1 << 20) > torch.tensor([1 << 5], dtype=torch.uint8)
|
|
torch.tensor([1 << 5], dtype=torch.uint8) >= (1 << 20)
|
|
(1 << 20) >= torch.tensor([1 << 5], dtype=torch.uint8)
|
|
torch.tensor([1 << 5], dtype=torch.uint8) == (1 << 20)
|
|
(1 << 20) == torch.tensor([1 << 5], dtype=torch.uint8)
|
|
torch.tensor([1 << 5], dtype=torch.uint8) != (1 << 20)
|
|
(1 << 20) != torch.tensor([1 << 5], dtype=torch.uint8)
|
|
|
|
def test_comparison_ops_check_for_zerodim_tensor_overflow(self):
|
|
with self.assertRaisesRegex(RuntimeError, 'value cannot be converted to type'):
|
|
torch.tensor([1 << 5], dtype=torch.uint8) < torch.tensor(1 << 20, dtype=torch.int32)
|
|
torch.tensor(1 << 40, dtype=torch.int64) < torch.tensor([1 << 30], dtype=torch.int32)
|
|
torch.tensor([1 << 5], dtype=torch.uint8) <= torch.tensor(1 << 20, dtype=torch.int32)
|
|
torch.tensor(1 << 40, dtype=torch.int64) <= torch.tensor([1 << 30], dtype=torch.int32)
|
|
torch.tensor([1 << 5], dtype=torch.uint8) > torch.tensor(1 << 20, dtype=torch.int32)
|
|
torch.tensor(1 << 40, dtype=torch.int64) > torch.tensor([1 << 30], dtype=torch.int32)
|
|
torch.tensor([1 << 5], dtype=torch.uint8) >= torch.tensor(1 << 20, dtype=torch.int32)
|
|
torch.tensor(1 << 40, dtype=torch.int64) >= torch.tensor([1 << 30], dtype=torch.int32)
|
|
torch.tensor([1 << 5], dtype=torch.uint8) == torch.tensor(1 << 20, dtype=torch.int32)
|
|
torch.tensor(1 << 40, dtype=torch.int64) == torch.tensor([1 << 30], dtype=torch.int32)
|
|
torch.tensor([1 << 5], dtype=torch.uint8) != torch.tensor(1 << 20, dtype=torch.int32)
|
|
torch.tensor(1 << 40, dtype=torch.int64) != torch.tensor([1 << 30], dtype=torch.int32)
|
|
|
|
def test_bitwise_ops(self):
|
|
x = torch.randn(5, 5).gt(0)
|
|
y = torch.randn(5, 5).gt(0)
|
|
|
|
and_result = x & y
|
|
for idx in iter_indices(x):
|
|
if and_result[idx]:
|
|
self.assertTrue(x[idx] and y[idx])
|
|
else:
|
|
self.assertFalse(x[idx] and y[idx])
|
|
|
|
or_result = x | y
|
|
for idx in iter_indices(x):
|
|
if or_result[idx]:
|
|
self.assertTrue(x[idx] or y[idx])
|
|
else:
|
|
self.assertFalse(x[idx] or y[idx])
|
|
|
|
xor_result = x ^ y
|
|
for idx in iter_indices(x):
|
|
if xor_result[idx]:
|
|
self.assertTrue(x[idx] ^ y[idx])
|
|
else:
|
|
self.assertFalse(x[idx] ^ y[idx])
|
|
|
|
x_clone = x.clone()
|
|
x_clone &= y
|
|
self.assertEqual(x_clone, and_result)
|
|
|
|
x_clone = x.clone()
|
|
x_clone |= y
|
|
self.assertEqual(x_clone, or_result)
|
|
|
|
x_clone = x.clone()
|
|
x_clone ^= y
|
|
self.assertEqual(x_clone, xor_result)
|
|
|
|
def test_op_invert(self):
|
|
res = 0xffff - torch.arange(127, dtype=torch.int8)
|
|
for dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
|
|
a = torch.arange(127, dtype=dtype)
|
|
self.assertEqual(res.to(dtype), ~a)
|
|
|
|
self.assertEqual(torch.tensor([True, False]),
|
|
~torch.tensor([False, True]))
|
|
|
|
# test exceptions
|
|
for dtype in (torch.half, torch.float, torch.double):
|
|
a = torch.zeros(10, dtype=dtype)
|
|
with self.assertRaises(TypeError):
|
|
b = ~a
|
|
|
|
def test_apply(self):
|
|
x = torch.arange(1, 6)
|
|
res = x.clone().apply_(lambda k: k + k)
|
|
self.assertEqual(res, x * 2)
|
|
self.assertRaises(TypeError, lambda: x.apply_(lambda k: "str"))
|
|
|
|
def test_map(self):
|
|
x = torch.autograd.Variable(torch.randn(3, 3))
|
|
y = torch.autograd.Variable(torch.randn(3))
|
|
res = x.clone()
|
|
res.map_(y, lambda a, b: a + b)
|
|
self.assertEqual(res, x + y)
|
|
self.assertRaisesRegex(TypeError, "not callable", lambda: res.map_(y, "str"))
|
|
|
|
def test_map2(self):
|
|
x = torch.autograd.Variable(torch.randn(3, 3))
|
|
y = torch.autograd.Variable(torch.randn(3))
|
|
z = torch.autograd.Variable(torch.randn(1, 3))
|
|
res = x.clone()
|
|
res.map2_(y, z, lambda a, b, c: a + b * c)
|
|
self.assertEqual(res, x + y * z)
|
|
z.requires_grad = True
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "requires grad",
|
|
lambda: res.map2_(y, z, lambda a, b, c: a + b * c))
|
|
|
|
def test_Size(self):
|
|
x = torch.Size([1, 2, 3])
|
|
self.assertIsInstance(x, tuple)
|
|
self.assertEqual(x[0], 1)
|
|
self.assertEqual(x[1], 2)
|
|
self.assertEqual(x[2], 3)
|
|
self.assertEqual(len(x), 3)
|
|
self.assertRaises(TypeError, lambda: torch.Size(torch.ones(3)))
|
|
|
|
self.assertIsInstance(x * 2, torch.Size)
|
|
self.assertIsInstance(x[:-1], torch.Size)
|
|
self.assertIsInstance(x + x, torch.Size)
|
|
|
|
def test_Size_scalar(self):
|
|
three = torch.tensor(3)
|
|
two = torch.tensor(2)
|
|
x = torch.Size([0, 1, two, three, 4])
|
|
for i in range(1, 5):
|
|
self.assertEqual(x[i], i)
|
|
|
|
def test_Size_iter(self):
|
|
for sizes in [iter([1, 2, 3, 4, 5]), range(1, 6)]:
|
|
x = torch.Size(sizes)
|
|
for i in range(0, 5):
|
|
self.assertEqual(x[i], i + 1)
|
|
|
|
def test_t_not_2d_error(self):
|
|
self.assertRaises(RuntimeError, lambda: torch.randn(2, 3, 4).t())
|
|
self.assertRaises(RuntimeError, lambda: torch.randn(2, 3, 4).t_())
|
|
|
|
# unit test for special case transposed copy (see ATen/native/Copy.cpp for details)
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_big_transpose(self):
|
|
t = torch.rand(456, 789)
|
|
t1 = t.t().contiguous()
|
|
t2 = torch.from_numpy(t.numpy().transpose())
|
|
self.assertEqual(t1, t2)
|
|
|
|
def test_inplace_division(self):
|
|
t = torch.rand(5, 5)
|
|
id_before = id(t)
|
|
t /= 2
|
|
id_after = id(t)
|
|
self.assertEqual(id_before, id_after)
|
|
|
|
def test_simple_scalar_cast(self):
|
|
ok = [torch.Tensor([1.5]), torch.zeros(1, 1, 1, 1)]
|
|
ok_values = [1.5, 0]
|
|
|
|
not_ok = map(torch.Tensor, [[], [1, 2], [[1, 2], [3, 4]]])
|
|
|
|
for tensor, value in zip(ok, ok_values):
|
|
self.assertEqual(int(tensor), int(value))
|
|
self.assertEqual(float(tensor), float(value))
|
|
|
|
for tensor in not_ok:
|
|
self.assertRaises(ValueError, lambda: int(tensor))
|
|
self.assertRaises(ValueError, lambda: float(tensor))
|
|
|
|
def test_offset_scalar_cast(self):
|
|
x = torch.Tensor([1, 2, 3])
|
|
y = x[2:]
|
|
self.assertEqual(int(y), 3)
|
|
|
|
# skip this test for now as it affects all tests
|
|
@unittest.skipIf(True, "flush_denormal not supported")
|
|
def test_set_flush_denormal(self):
|
|
tiny_float = 1e-42
|
|
tiny_double = 1e-320
|
|
float_tensor = torch.FloatTensor([1.0, tiny_float])
|
|
double_tensor = torch.DoubleTensor([1.0, tiny_float, tiny_double])
|
|
|
|
self.assertEqual(float_tensor[0], 1.0, atol=0.0, rtol=0)
|
|
self.assertEqual(float_tensor[1], tiny_float, atol=tiny_float / 16, rtol=0)
|
|
self.assertEqual(double_tensor[0], 1.0, atol=0.0, rtol=0)
|
|
self.assertEqual(double_tensor[1], tiny_float, atol=0.0, rtol=0)
|
|
self.assertEqual(double_tensor[2], tiny_double, atol=0.0, rtol=0)
|
|
|
|
torch.set_flush_denormal(True)
|
|
self.assertEqual(float_tensor[0], 1.0, atol=0.0, rtol=0)
|
|
self.assertEqual(float_tensor[1], 0.0, atol=0.0, rtol=0) # tiny_float to zero
|
|
self.assertEqual(double_tensor[0], 1.0, atol=0.0, rtol=0)
|
|
# tiny_float is not converted to zero in double type
|
|
self.assertEqual(double_tensor[1], tiny_float, atol=0.0, rtol=0)
|
|
self.assertEqual(double_tensor[2], 0.0, atol=0.0, rtol=0) # tiny_double to zero
|
|
torch.set_flush_denormal(False)
|
|
|
|
def test_show_config(self):
|
|
# We can't usefully test the output; just make sure this doesn't crash
|
|
torch.__config__.show()
|
|
|
|
def test_parallel_info(self):
|
|
torch.__config__.parallel_info()
|
|
|
|
@slowTest
|
|
def test_slow_test(self):
|
|
# Just a smoketest to make sure our slowTest decorator works.
|
|
pass
|
|
|
|
def test_is_nonzero(self):
|
|
self.assertExpectedRaisesInline(
|
|
RuntimeError,
|
|
lambda: torch.tensor([]).is_nonzero(),
|
|
"Boolean value of Tensor with no values is ambiguous",
|
|
)
|
|
self.assertExpectedRaisesInline(
|
|
RuntimeError,
|
|
lambda: torch.tensor([0, 0]).is_nonzero(),
|
|
"Boolean value of Tensor with more than one value is ambiguous",
|
|
)
|
|
self.assertFalse(torch.tensor(0).is_nonzero())
|
|
self.assertTrue(torch.tensor(1).is_nonzero())
|
|
self.assertFalse(torch.tensor([0]).is_nonzero())
|
|
self.assertTrue(torch.tensor([1]).is_nonzero())
|
|
self.assertFalse(torch.tensor([[0]]).is_nonzero())
|
|
self.assertTrue(torch.tensor([[1]]).is_nonzero())
|
|
|
|
def test_meshgrid(self):
|
|
a = torch.tensor(1)
|
|
b = torch.tensor([1, 2, 3])
|
|
c = torch.tensor([1, 2])
|
|
grid_a, grid_b, grid_c = torch.meshgrid([a, b, c])
|
|
self.assertEqual(grid_a.shape, torch.Size([1, 3, 2]))
|
|
self.assertEqual(grid_b.shape, torch.Size([1, 3, 2]))
|
|
self.assertEqual(grid_c.shape, torch.Size([1, 3, 2]))
|
|
grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c)
|
|
self.assertEqual(grid_a2.shape, torch.Size([1, 3, 2]))
|
|
self.assertEqual(grid_b2.shape, torch.Size([1, 3, 2]))
|
|
self.assertEqual(grid_c2.shape, torch.Size([1, 3, 2]))
|
|
expected_grid_a = torch.ones(1, 3, 2, dtype=torch.int64)
|
|
expected_grid_b = torch.tensor([[[1, 1],
|
|
[2, 2],
|
|
[3, 3]]])
|
|
expected_grid_c = torch.tensor([[[1, 2],
|
|
[1, 2],
|
|
[1, 2]]])
|
|
self.assertTrue(grid_a.equal(expected_grid_a))
|
|
self.assertTrue(grid_b.equal(expected_grid_b))
|
|
self.assertTrue(grid_c.equal(expected_grid_c))
|
|
self.assertTrue(grid_a2.equal(expected_grid_a))
|
|
self.assertTrue(grid_b2.equal(expected_grid_b))
|
|
self.assertTrue(grid_c2.equal(expected_grid_c))
|
|
|
|
# NB: we must not be built with CUDA; if we are built with CUDA but no CUDA
|
|
# is available, we get a different error.
|
|
@unittest.skipIf(torch.backends.cuda.is_built() or IS_SANDCASTLE, "CUDA is built, can't test CUDA not built error")
|
|
def test_cuda_not_built(self):
|
|
msg = "Torch not compiled with CUDA enabled"
|
|
self.assertRaisesRegex(AssertionError, msg, lambda: torch.cuda.current_device())
|
|
self.assertRaisesRegex(AssertionError, msg, lambda: torch.tensor([1], device="cuda"))
|
|
self.assertRaisesRegex(AssertionError, msg, lambda: torch.tensor([1]).cuda())
|
|
self.assertRaisesRegex(TypeError, msg, lambda: torch.cuda.FloatTensor())
|
|
self.assertRaisesRegex(TypeError, msg, lambda: torch.set_default_tensor_type(torch.cuda.FloatTensor))
|
|
self.assertRaisesRegex(AssertionError, msg, lambda: torch.tensor([1]).to(device="cuda"))
|
|
|
|
def test_cast_binary_op(self):
|
|
# Scalar
|
|
a = torch.tensor(2)
|
|
b = torch.tensor(3)
|
|
a_copy = a.clone()
|
|
b_copy = b.clone()
|
|
|
|
self.assertEqual(torch.tensor(6, dtype=torch.float), a.float() * b)
|
|
|
|
self.assertEqualTypeString(a, a_copy)
|
|
self.assertEqualTypeString(b, b_copy)
|
|
|
|
def test_cartesian_prod(self):
|
|
a = torch.tensor([1])
|
|
b = torch.tensor([1, 2, 3])
|
|
c = torch.tensor([1, 2])
|
|
prod = torch.cartesian_prod(a, b, c)
|
|
expected = torch.tensor(list(product([a], b, c)))
|
|
self.assertEqual(expected, prod)
|
|
|
|
# test 0 size input
|
|
d = torch.empty(0, dtype=b.dtype)
|
|
prod = torch.cartesian_prod(a, b, c, d)
|
|
expected = torch.empty(0, 4, dtype=b.dtype)
|
|
self.assertEqual(expected, prod)
|
|
|
|
# test single input
|
|
prod = torch.cartesian_prod(b)
|
|
self.assertEqual(b, prod)
|
|
|
|
def test_combinations(self):
|
|
a = torch.tensor([1, 2, 3])
|
|
|
|
c = torch.combinations(a, r=1)
|
|
expected = torch.tensor(list(combinations(a, r=1)))
|
|
self.assertEqual(c, expected)
|
|
|
|
c = torch.combinations(a, r=1, with_replacement=True)
|
|
expected = torch.tensor(list(combinations_with_replacement(a, r=1)))
|
|
self.assertEqual(c, expected)
|
|
|
|
c = torch.combinations(a)
|
|
expected = torch.tensor(list(combinations(a, r=2)))
|
|
self.assertEqual(c, expected)
|
|
|
|
c = torch.combinations(a, with_replacement=True)
|
|
expected = torch.tensor(list(combinations_with_replacement(a, r=2)))
|
|
self.assertEqual(c, expected)
|
|
|
|
c = torch.combinations(a, r=3)
|
|
expected = torch.tensor(list(combinations(a, r=3)))
|
|
self.assertEqual(c, expected)
|
|
|
|
c = torch.combinations(a, r=4)
|
|
expected = torch.empty(0, 4, dtype=a.dtype)
|
|
self.assertEqual(c, expected)
|
|
|
|
c = torch.combinations(a, r=5)
|
|
expected = torch.empty(0, 5, dtype=a.dtype)
|
|
self.assertEqual(c, expected)
|
|
|
|
# test empty imput
|
|
a = torch.empty(0)
|
|
c1 = torch.combinations(a)
|
|
c2 = torch.combinations(a, with_replacement=True)
|
|
expected = torch.empty(0, 2, dtype=a.dtype)
|
|
self.assertEqual(c1, expected)
|
|
self.assertEqual(c2, expected)
|
|
|
|
def test_has_internal_overlap(self):
|
|
OVERLAP_NO = 0
|
|
OVERLAP_YES = 1
|
|
OVERLAP_TOO_HARD = 2
|
|
|
|
# Check for contiguous tensors
|
|
a = torch.randn(3, 3)
|
|
self.assertEqual(torch._debug_has_internal_overlap(a), OVERLAP_NO)
|
|
|
|
# Checks for zero strides
|
|
b = torch.randn(1, 3)
|
|
b_expanded = b.expand(4, 3)
|
|
self.assertEqual(torch._debug_has_internal_overlap(b_expanded), OVERLAP_YES)
|
|
|
|
# Check for zero strided, size 1 axis, in non-contiguous storage (gh-33812)
|
|
c = torch.randn(10).as_strided([2, 1, 5], [1, 0, 2])
|
|
self.assertEqual(torch._debug_has_internal_overlap(c), OVERLAP_TOO_HARD)
|
|
|
|
def test_allow_tensor_metadata_change(self):
|
|
def do_test(t):
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"set_sizes_contiguous is not allowed on a Tensor created from .data or .detach()"):
|
|
t.resize_((2, 1))
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"set_storage is not allowed on a Tensor created from .data or .detach()"):
|
|
t.set_()
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"set_storage_offset is not allowed on a Tensor created from .data or .detach()"):
|
|
t.set_(t.storage(), 0, t.size(), list(t.stride()))
|
|
|
|
do_test(torch.tensor([[1, 2]]).data)
|
|
do_test(torch.tensor([[1, 2]]).detach())
|
|
|
|
def test_c10_layer_norm(self):
|
|
# test that we can call c10 ops and they return a reasonable result
|
|
X = torch.rand(5, 5, dtype=torch.float)
|
|
weight = torch.rand(*X.size()[1:], dtype=torch.float)
|
|
bias = torch.rand(*X.size()[1:], dtype=torch.float)
|
|
epsilon = 1e-4
|
|
|
|
expected_norm = torch.nn.functional.layer_norm(
|
|
X, X.size()[1:], weight=weight, bias=bias, eps=epsilon)
|
|
actual_norm, actual_mean, actual_stdev = \
|
|
torch.ops._caffe2.LayerNorm(torch.tensor(X), torch.tensor(
|
|
weight), torch.tensor(bias), 1, epsilon, True)
|
|
torch.testing.assert_allclose(expected_norm, actual_norm)
|
|
|
|
def test_memory_format(self):
|
|
def test_helper(x, memory_format):
|
|
y = x.contiguous(memory_format=memory_format)
|
|
self.assertFalse(y.is_contiguous())
|
|
self.assertTrue(y.is_contiguous(memory_format=memory_format))
|
|
self.assertEqual(y, x)
|
|
|
|
test_helper(torch.randn(4, 3, 8, 8), torch.channels_last)
|
|
test_helper(torch.randn(4, 3, 8, 8, 8), torch.channels_last_3d)
|
|
|
|
def test_memory_format_contiguous_returns_same_tensor_if_already_satisfies(self):
|
|
def test_helper(x, memory_format):
|
|
alias = x.contiguous(memory_format=memory_format)
|
|
alias.fill_(7)
|
|
self.assertEqual(x, alias)
|
|
|
|
test_helper(torch.randn(4, 8, 8, 3).permute(0, 3, 1, 2), torch.channels_last)
|
|
test_helper(torch.randn(4, 8, 8, 8, 3).permute(0, 4, 1, 2, 3), torch.channels_last_3d)
|
|
|
|
def test_memory_format_empty(self):
|
|
def test_helper(dim1, dim2, memory_format):
|
|
with self.assertRaises(RuntimeError):
|
|
x = torch.empty(dim1, memory_format=memory_format)
|
|
x = torch.empty(dim2, memory_format=memory_format)
|
|
self.assertTrue(x.is_contiguous(memory_format=memory_format))
|
|
|
|
test_helper((3, 3), (3, 3, 3, 3), torch.channels_last)
|
|
test_helper((3, 3, 3), (3, 3, 3, 3, 3), torch.channels_last_3d)
|
|
|
|
def test_subclass_tensors(self):
|
|
# raise an error when trying to subclass FloatTensor
|
|
with self.assertRaisesRegex(TypeError, "type 'torch.FloatTensor' is not an acceptable base type"):
|
|
class Foo1(torch.FloatTensor):
|
|
pass
|
|
|
|
# but allow subclassing Tensor:
|
|
class Foo2(torch.Tensor):
|
|
def foo(self):
|
|
return 5
|
|
f = Foo2()
|
|
self.assertEqual(f.foo(), 5)
|
|
|
|
def test_ndim(self):
|
|
a = torch.randn(1, 2, 3)
|
|
self.assertEqual(3, a.ndim)
|
|
b = torch.randn(())
|
|
self.assertEqual(0, b.ndim)
|
|
c = torch.randn(1, 0)
|
|
self.assertEqual(2, c.ndim)
|
|
|
|
def test_T(self):
|
|
a = torch.randn(2, 3, 4)
|
|
t1 = a.T
|
|
t2 = a.permute(2, 1, 0)
|
|
self.assertEqual(t2, t1)
|
|
b = torch.randn(10)
|
|
self.assertEqual(b, b.T)
|
|
scalar = torch.tensor(5)
|
|
self.assertEqual(scalar, scalar.T)
|
|
|
|
def test_python_types(self):
|
|
a1 = torch.randn((1, 2), dtype=torch.float64)
|
|
a2 = torch.randn((1, 2), dtype=float)
|
|
self.assertEqual(a1.dtype, a2.dtype)
|
|
|
|
b1 = torch.arange(10, 20, dtype=torch.int64)
|
|
b2 = torch.arange(10, 20, dtype=int)
|
|
self.assertEqual(b1.dtype, b2.dtype)
|
|
|
|
c1 = torch.tensor([True, False], dtype=torch.bool)
|
|
c2 = torch.tensor([True, False], dtype=bool)
|
|
self.assertEqual(c1.dtype, c2.dtype)
|
|
|
|
def test_fill_diagonal(self):
|
|
a1 = torch.randn(7, 3)
|
|
a2 = a1.clone()
|
|
v = 1
|
|
for i in range(3):
|
|
a2[i][i] = v
|
|
a1.fill_diagonal_(v)
|
|
self.assertEqual(a1, a2)
|
|
|
|
b1 = torch.randn(7, 3)
|
|
b2 = b1.clone()
|
|
for i in range(3):
|
|
b2[i][i] = v
|
|
b2[i + 4][i] = v
|
|
b1.fill_diagonal_(v, wrap=True)
|
|
self.assertEqual(b1, b2)
|
|
|
|
c1 = torch.rand(3, 3, 3)
|
|
c2 = c1.clone()
|
|
for i in range(3):
|
|
c2[i][i][i] = v
|
|
c1.fill_diagonal_(v)
|
|
self.assertEqual(c1, c2)
|
|
|
|
# non-contiguous tensor
|
|
d1 = torch.rand(3, 3, 3)[:, 1, ...]
|
|
d2 = d1.clone()
|
|
for i in range(3):
|
|
d2[i][i] = v
|
|
d1.fill_diagonal_(v)
|
|
self.assertEqual(d1, d2)
|
|
|
|
e1 = torch.rand(7, 3, 3)[:, 1, ...]
|
|
e2 = e1.clone()
|
|
for i in range(3):
|
|
e2[i][i] = v
|
|
e2[i + 4][i] = v
|
|
e1.fill_diagonal_(v, wrap=True)
|
|
self.assertEqual(e1, e2)
|
|
|
|
def test_batch_norm_cpu_inference(self):
|
|
# input nchw in (2,1,1,1), (2,2,2,2)
|
|
inputs = [
|
|
torch.tensor([[[[-0.5000]]], [[[0.5000]]]]),
|
|
torch.tensor([
|
|
[
|
|
[[-0.5000, 0.5000], [-1.0000, 1.0000]],
|
|
[[-0.2500, -0.5000], [0.2500, 0.5000]]
|
|
],
|
|
[
|
|
[[0.1000, 1.0000], [1.0000, 0.1000]],
|
|
[[1.0000, 0.5000], [1.5000, -1.5000]]
|
|
]])]
|
|
# output nchw in (2,1,1,1), (2,2,2,2)
|
|
outputs = [
|
|
torch.tensor([
|
|
[[[-0.499997496604919433593750000]]],
|
|
[[[0.499997496604919433593750000]]]]),
|
|
torch.tensor([
|
|
[[[-0.499997496604919433593750000, 0.499997496604919433593750000],
|
|
[-0.999994993209838867187500000, 0.999994993209838867187500000]],
|
|
[[-0.249998748302459716796875000, -0.499997496604919433593750000],
|
|
[0.249998748302459716796875000, 0.499997496604919433593750000]]],
|
|
[[[0.099999502301216125488281250, 0.999994993209838867187500000],
|
|
[0.999994993209838867187500000, 0.099999502301216125488281250]],
|
|
[[0.999994993209838867187500000, 0.499997496604919433593750000],
|
|
[1.499992489814758300781250000, -1.499992489814758300781250000]]]])]
|
|
|
|
|
|
for i in range(len(inputs)):
|
|
for affine in [False, True]:
|
|
m = torch.nn.BatchNorm2d(inputs[i].size()[1], 1e-05, 0.1, affine=affine)
|
|
m.eval()
|
|
# contiguous case
|
|
input1 = inputs[i].contiguous()
|
|
output1 = m(input1)
|
|
# non-contiguous case
|
|
input2 = input1.permute(0, 1, 3, 2)
|
|
output2 = m(input2).permute(0, 1, 3, 2)
|
|
# channels last case
|
|
input3 = input1.contiguous(memory_format=torch.channels_last)
|
|
output3 = m(input3)
|
|
self.assertEqual(output3, outputs[i])
|
|
self.assertEqual(output3, output1)
|
|
self.assertEqual(output3, output2)
|
|
|
|
def test_empty_meta(self):
|
|
x = torch.empty_meta(2 ** 20, 2 ** 20)
|
|
y = torch.empty_meta(2 ** 20)
|
|
z = x + y
|
|
self.assertEqual(z.size(), (2 ** 20, 2 ** 20))
|
|
|
|
def test_tensor_grad_warnings(self):
|
|
dummy = torch.empty(1)
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
# Accessing .grad on leaf
|
|
dummy.requires_grad_()
|
|
foo = dummy.grad
|
|
self.assertEqual(len(w), 0)
|
|
|
|
# Accessing .grad on non-leaf
|
|
dummy = dummy.clone()
|
|
foo = dummy.grad
|
|
self.assertEqual(len(w), 1)
|
|
|
|
# Accessing .grad on non-leaf that retains gradients
|
|
dummy.retain_grad()
|
|
foo = dummy.grad
|
|
self.assertEqual(len(w), 1)
|
|
|
|
def test_normal_shape(self):
|
|
warned = False
|
|
for device in torch.testing.get_all_device_types():
|
|
tensor1 = torch.rand(1, device=device)
|
|
tensor4 = torch.rand(4, device=device)
|
|
tensor120 = torch.rand(120, device=device)
|
|
tensor2145 = torch.rand(2, 1, 4, 5, device=device)
|
|
tensor2345 = torch.rand(2, 3, 4, 5, device=device)
|
|
tensor2345_non_contiguous = torch.rand(2, 4, 3, 5, device=device).permute(0, 2, 1, 3)
|
|
tensor2345_channels_last = tensor2345.contiguous(memory_format=torch.channels_last)
|
|
output2345 = torch.zeros(2, 3, 4, 5, device=device)
|
|
output345 = torch.zeros(3, 4, 5, device=device)
|
|
|
|
# inputs have same size
|
|
self.assertEqual(torch.normal(tensor2345, tensor2345).size(), (2, 3, 4, 5))
|
|
self.assertEqual(torch.normal(tensor2345_non_contiguous, tensor2345).size(), (2, 3, 4, 5))
|
|
self.assertEqual(torch.normal(tensor2345, tensor2345_channels_last).size(), (2, 3, 4, 5))
|
|
self.assertEqual(torch.normal(tensor2345_non_contiguous, tensor2345_channels_last).size(), (2, 3, 4, 5))
|
|
|
|
# scalar case
|
|
self.assertEqual(torch.normal(tensor2345, 2).size(), (2, 3, 4, 5))
|
|
self.assertEqual(torch.normal(2, tensor2345).size(), (2, 3, 4, 5))
|
|
|
|
# inputs are expandable tensors
|
|
self.assertEqual(torch.normal(tensor2345, tensor1).size(), (2, 3, 4, 5))
|
|
self.assertEqual(torch.normal(tensor2145, tensor2345).size(), (2, 3, 4, 5))
|
|
|
|
# inputs are non-expandable tensors, but they have same number of elements
|
|
# TORCH_WARN_ONCE is used in torch.normal, only 1st assertEqual will show warn msg
|
|
if not warned:
|
|
self.assertWarnsRegex(UserWarning, "deprecated and the support will be removed",
|
|
lambda: self.assertEqual(torch.normal(tensor120, tensor2345).size(), (120,)))
|
|
warned = True
|
|
else:
|
|
self.assertEqual(torch.normal(tensor120, tensor2345).size(), (120,))
|
|
self.assertEqual(torch.normal(tensor2345, tensor120).size(), (2, 3, 4, 5))
|
|
|
|
# inputs are non-expandable tensors and they don't have same number of elements
|
|
with self.assertRaisesRegex(RuntimeError, "inconsistent tensor"):
|
|
torch.normal(tensor2345, tensor4)
|
|
|
|
# output and inputs are size compatible
|
|
self.assertEqual(torch.normal(tensor2345, tensor2345, out=output2345).size(), (2, 3, 4, 5))
|
|
|
|
# output and inputs are not size compatible
|
|
with self.assertRaisesRegex(RuntimeError, "inconsistent tensor"):
|
|
# inputs are expandable but have different broadcasted size than output
|
|
torch.normal(tensor2345, tensor2145, out=output345)
|
|
with self.assertRaisesRegex(RuntimeError, "inconsistent tensor"):
|
|
# inputs are not expandable but reshapeable, output size is not the same as mean
|
|
torch.normal(tensor2345, tensor120, out=output345)
|
|
|
|
def test_tensoriterator_output_setup(self):
|
|
# Test whether the output's memory layout is correct
|
|
def test_memory_layout(x, y, scale, zero_point, out):
|
|
self.assertEqual(x.dim(), 4)
|
|
self.assertEqual(x.size(), y.size())
|
|
self.assertEqual(y.size(), out.size())
|
|
|
|
shape = x.size()
|
|
for n in range(shape[0]):
|
|
for c in range(shape[1]):
|
|
for h in range(shape[2]):
|
|
for w in range(shape[3]):
|
|
if scale is not None and zero_point is not None:
|
|
self.assertEqual(
|
|
out[n][c][h][w],
|
|
torch.ops.quantized.add(x[n][c][h][w], y[n][c][h][w], scale, zero_point))
|
|
else:
|
|
self.assertEqual(out[n][c][h][w], x[n][c][h][w] + y[n][c][h][w])
|
|
|
|
xraw = torch.rand(2, 3, 4, 4)
|
|
yraw = torch.rand(2, 3, 4, 4)
|
|
qxraw = torch.quantize_per_tensor(xraw, 0.1, 5, torch.quint8)
|
|
qyraw = torch.quantize_per_tensor(yraw, 0.1, 5, torch.quint8)
|
|
|
|
# contiguous case fast setup
|
|
test_memory_layout(xraw, yraw, None, None, xraw + yraw)
|
|
test_memory_layout(qxraw, qyraw, 0.1, 5, torch.ops.quantized.add(qxraw, qyraw, 0.1, 5))
|
|
|
|
# channels last case fast setup
|
|
x = xraw.contiguous(memory_format=torch.channels_last)
|
|
y = yraw.contiguous(memory_format=torch.channels_last)
|
|
test_memory_layout(x, y, None, None, x + y)
|
|
qx = qxraw.contiguous(memory_format=torch.channels_last)
|
|
qy = qyraw.contiguous(memory_format=torch.channels_last)
|
|
test_memory_layout(qx, qy, 0.1, 5, torch.ops.quantized.add(qx, qy, 0.1, 5))
|
|
|
|
# non contiguous case fast setup (dense, non-overlapping, same shape and strides)
|
|
x = xraw.permute(0, 2, 3, 1)
|
|
y = yraw.permute(0, 2, 3, 1)
|
|
test_memory_layout(x, y, None, None, x + y)
|
|
qx = qxraw.permute(0, 2, 3, 1)
|
|
qy = qyraw.permute(0, 2, 3, 1)
|
|
test_memory_layout(qx, qy, 0.1, 5, torch.ops.quantized.add(qx, qy, 0.1, 5))
|
|
|
|
# non contiguous case fast setup (dense, non-overlapping)
|
|
# input tensors have same shape and strides
|
|
# output tensor have same shape as input tensors but different stride
|
|
# output tensor should preserve its strides in this case
|
|
x = xraw.permute(0, 2, 3, 1)
|
|
y = yraw.permute(0, 2, 3, 1)
|
|
out = torch.empty_like(xraw)
|
|
out = out.permute(0, 3, 2, 1)
|
|
expected_stride = out.stride()
|
|
test_memory_layout(x, y, None, None, torch.add(x, y, out=out))
|
|
self.assertEqual(expected_stride, out.stride())
|
|
|
|
# non contiguous case non fast setup
|
|
x = xraw.permute(0, 2, 3, 1)
|
|
y = yraw.permute(0, 3, 2, 1)
|
|
test_memory_layout(x, y, None, None, x + y)
|
|
qx = qxraw.permute(0, 2, 3, 1)
|
|
qy = qyraw.permute(0, 3, 2, 1)
|
|
test_memory_layout(qx, qy, 0.1, 5, torch.ops.quantized.add(qx, qy, 0.1, 5))
|
|
|
|
# Tests to make sure we still handle .data properly until it is removed
|
|
def test_dot_data_use(self):
|
|
# .data allows to change the Tensors types inplace, check that we still
|
|
# raise a nice error.
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
# message includes both Double and Long
|
|
'(?=.*Double)(?=.*Long)'):
|
|
|
|
# Calls model with a LongTensor input but DoubleTensor weights
|
|
input = torch.randn(1, 1, 1, 6, dtype=torch.double)
|
|
weight = torch.zeros(1, 1, 1, 3, dtype=torch.long)
|
|
model = torch.nn.Conv2d(1, 1, (1, 3), stride=1, padding=0, bias=False)
|
|
model.weight.data = weight
|
|
out = model(input)
|
|
|
|
|
|
# Functions to test negative dimension wrapping
|
|
METHOD = 1
|
|
INPLACE_METHOD = 2
|
|
FUNCTIONAL = 4
|
|
DIM_ARG = None
|
|
|
|
def make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim=0):
|
|
def neg_dim_test(self):
|
|
if isinstance(tensor_arg, list):
|
|
assert METHOD not in types and INPLACE_METHOD not in types
|
|
x = [torch.randn(arg) for arg in tensor_arg]
|
|
ndim = len(tensor_arg[-1])
|
|
else:
|
|
x = torch.randn(*tensor_arg)
|
|
ndim = len(tensor_arg)
|
|
ndim += extra_dim
|
|
|
|
n_dim_to_test = sum(map(lambda e: e is DIM_ARG, arg_constr()))
|
|
|
|
for dims_val in combinations(range(ndim), n_dim_to_test):
|
|
arg = arg_constr()
|
|
arg_neg = copy.deepcopy(arg)
|
|
idx = 0
|
|
for i, v in enumerate(arg):
|
|
if v is DIM_ARG:
|
|
arg[i] = dims_val[idx]
|
|
arg_neg[i] = dims_val[idx] - ndim
|
|
idx += 1
|
|
|
|
if METHOD in types:
|
|
a = getattr(x, name)(*arg)
|
|
b = getattr(x, name)(*arg_neg)
|
|
self.assertEqual(a, b)
|
|
|
|
if INPLACE_METHOD in types:
|
|
a = x.clone()
|
|
getattr(a, name + '_')(*arg)
|
|
b = x.clone()
|
|
getattr(b, name + '_')(*arg_neg)
|
|
self.assertEqual(a, b)
|
|
|
|
if FUNCTIONAL in types:
|
|
a = getattr(torch, name)(x, *arg)
|
|
b = getattr(torch, name)(x, *arg_neg)
|
|
self.assertEqual(a, b)
|
|
|
|
return neg_dim_test
|
|
|
|
|
|
def idx_tensor(size, max_val):
|
|
return torch.LongTensor(*size).random_(0, max_val - 1)
|
|
|
|
|
|
def add_neg_dim_tests():
|
|
neg_dim_tests = [
|
|
('narrow', (10, 20, 30), lambda: [DIM_ARG, 0, 5], [METHOD]),
|
|
('transpose', (10, 20, 30), lambda: [DIM_ARG, DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
|
|
('size', (10, 20, 30), lambda: [DIM_ARG], [METHOD]),
|
|
('cat', [(2, 3, 4), (2, 3, 4)], lambda: [DIM_ARG], [FUNCTIONAL]),
|
|
('chunk', (10, 20, 30), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('gather', (10, 20), lambda: [DIM_ARG, idx_tensor((10, 20), 10)], [METHOD, FUNCTIONAL]),
|
|
('index_select', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10)], [METHOD, FUNCTIONAL]),
|
|
('split', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('squeeze', (10, 1, 20, 1), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
|
|
('unbind', (2, 3, 4), lambda: [DIM_ARG], [FUNCTIONAL]),
|
|
('unsqueeze', (10, 20), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL], 1),
|
|
('logcumsumexp', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('cumprod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('cumsum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('cummax', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('cummin', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('mean', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('median', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('mode', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('norm', (10, 20), lambda: [2, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('prod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('std', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('sum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('var', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('kthvalue', (10, 20), lambda: [3, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('max', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('min', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('sort', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('topk', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('renorm', (10, 20), lambda: [2, DIM_ARG, 1], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
|
|
('index_add', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
|
|
('index_copy', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
|
|
('index_fill', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), 12], [INPLACE_METHOD]),
|
|
('scatter', (10, 10), lambda: [DIM_ARG, idx_tensor((10, 10), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
|
|
('select', (10, 20), lambda: [DIM_ARG, 3], [METHOD]),
|
|
('unfold', (10, 20), lambda: [DIM_ARG, 5, 2], [METHOD]),
|
|
]
|
|
|
|
for decl in neg_dim_tests:
|
|
if len(decl) == 4:
|
|
name, tensor_arg, arg_constr, types = decl
|
|
extra_dim = 0
|
|
elif len(decl) == 5:
|
|
name, tensor_arg, arg_constr, types, extra_dim = decl
|
|
|
|
test_name = 'test_' + name + '_neg_dim'
|
|
|
|
assert not hasattr(AbstractTestCases._TestTorchMixin, test_name), "Duplicated test name: " + test_name
|
|
setattr(AbstractTestCases._TestTorchMixin, test_name, make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim))
|
|
|
|
|
|
# Device-generic tests. Instantiated below and not run directly.
|
|
class TestTorchDeviceType(TestCase):
|
|
exact_dtype = True
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
|
|
@dtypes(torch.complex64, torch.complex128)
|
|
def test_abs_angle_complex_to_float(self, device, dtype):
|
|
# Constructs random complex values
|
|
from random import random
|
|
random_vals = []
|
|
for multiplier in (-1, 1, -10, 10, -100, 100):
|
|
for _ in range(10):
|
|
random_vals.append(complex(random() * multiplier, random() * multiplier))
|
|
|
|
for vals in (random_vals, []):
|
|
a = np.array(vals, dtype=torch_to_numpy_dtype_dict[dtype])
|
|
t = torch.tensor(vals, device=device, dtype=dtype)
|
|
|
|
for fn_name in ('abs', 'angle'):
|
|
torch_fn = getattr(torch, fn_name)
|
|
np_fn = getattr(np, fn_name)
|
|
|
|
# Tests function
|
|
np_result = torch.from_numpy(np_fn(a))
|
|
torch_result = torch_fn(t).cpu()
|
|
self.assertEqual(np_result, torch_result, exact_dtype=True)
|
|
|
|
# Tests float out
|
|
float_dtype = torch.float32 if dtype is torch.complex64 else torch.float64
|
|
np_float_out = np_fn(a).astype(torch_to_numpy_dtype_dict[float_dtype])
|
|
float_out = torch.empty_like(t).float()
|
|
torch_fn(t, out=float_out)
|
|
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
|
|
self.assertEqualIgnoreType(torch.from_numpy(np_float_out), float_out.cpu())
|
|
|
|
# Tests float out (resized out)
|
|
float_out = torch.empty(1, device=device, dtype=float_dtype)
|
|
torch_fn(t, out=float_out)
|
|
self.assertEqual(torch.from_numpy(np_float_out), float_out.cpu())
|
|
|
|
# Tests complex out
|
|
np_complex_out = np_fn(a)
|
|
complex_out = torch.empty_like(t)
|
|
torch_fn(t, out=complex_out)
|
|
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
|
|
self.assertEqualIgnoreType(torch.from_numpy(np_complex_out), complex_out.cpu())
|
|
|
|
# Tests complex out (resized out)
|
|
complex_out = torch.empty(1, device=device, dtype=dtype)
|
|
torch_fn(t, out=complex_out)
|
|
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
|
|
self.assertEqualIgnoreType(torch.from_numpy(np_complex_out), complex_out.cpu())
|
|
|
|
# Tests long out behavior (expected failure)
|
|
long_out = torch.empty(0, device=device, dtype=torch.long)
|
|
with self.assertRaises(RuntimeError):
|
|
torch_fn(t, out=long_out)
|
|
|
|
# Tests inplace
|
|
if fn_name == 'abs':
|
|
torch_inplace_method = getattr(torch.Tensor, fn_name + "_")
|
|
np_fn(a, out=a)
|
|
torch_inplace_method(t)
|
|
self.assertEqual(torch.from_numpy(a), t.cpu())
|
|
|
|
# Note: angle does not have an in-place variant
|
|
if fn_name == 'angle':
|
|
with self.assertRaises(AttributeError):
|
|
torch_inplace_method = getattr(torch.Tensor, fn_name + "_")
|
|
|
|
# Verifies that the inplace dunders (like idiv) actually are in place
|
|
@onlyOnCPUAndCUDA
|
|
def test_inplace_dunders(self, device):
|
|
t = torch.randn((1,), device=device)
|
|
expected = t.data_ptr()
|
|
t += 1
|
|
t -= 1
|
|
t *= 1
|
|
t /= 1
|
|
t //= 1
|
|
self.assertEqual(expected, t.data_ptr())
|
|
|
|
@dtypes(torch.float32, torch.complex64)
|
|
def test_storage(self, device, dtype):
|
|
v = torch.randn(3, 5, dtype=dtype, device=device)
|
|
self.assertEqual(v.storage()[0], v[0][0])
|
|
self.assertEqual(v.storage()[14], v[2][4])
|
|
|
|
@dtypes(torch.float32, torch.complex64)
|
|
def test_deepcopy(self, device, dtype):
|
|
from copy import deepcopy
|
|
a = torch.randn(5, 5, dtype=dtype, device=device)
|
|
b = torch.randn(5, 5, dtype=dtype, device=device)
|
|
c = a.view(25)
|
|
q = [a, [a.storage(), b.storage()], b, c]
|
|
w = deepcopy(q)
|
|
self.assertEqual(w[0], q[0], atol=0, rtol=0)
|
|
self.assertEqual(w[1][0], q[1][0], atol=0, rtol=0)
|
|
self.assertEqual(w[1][1], q[1][1], atol=0, rtol=0)
|
|
self.assertEqual(w[1], q[1], atol=0, rtol=0)
|
|
self.assertEqual(w[2], q[2], atol=0, rtol=0)
|
|
|
|
# Check that deepcopy preserves sharing
|
|
w[0].add_(1)
|
|
for i in range(a.numel()):
|
|
self.assertEqual(w[1][0][i], q[1][0][i] + 1)
|
|
self.assertEqual(w[3], c + 1)
|
|
w[2].sub_(1)
|
|
for i in range(a.numel()):
|
|
self.assertEqual(w[1][1][i], q[1][1][i] - 1)
|
|
|
|
@dtypes(torch.float32, torch.complex64)
|
|
def test_deepcopy_scalar(self, device, dtype):
|
|
from copy import deepcopy
|
|
a = torch.tensor(5, dtype=dtype, device=device)
|
|
self.assertEqual(a.size(), deepcopy(a).size())
|
|
self.assertEqual(a, deepcopy(a))
|
|
|
|
# Tests that when rtol or atol (including self.precision) is set, then
|
|
# the other is zeroed.
|
|
# TODO: this is legacy behavior and should be updated after test
|
|
# precisions are reviewed to be consistent with torch.isclose.
|
|
@onlyOnCPUAndCUDA
|
|
def test__comparetensors_legacy(self, device):
|
|
a = torch.tensor((10000000.,))
|
|
b = torch.tensor((10000002.,))
|
|
|
|
x = torch.tensor((1.,))
|
|
y = torch.tensor((1. + 1e-5,))
|
|
|
|
# Helper for reusing the tensor values as scalars
|
|
def _scalar_helper(a, b, rtol=None, atol=None):
|
|
return self._compareScalars(a.item(), b.item(), rtol=rtol, atol=atol)
|
|
|
|
for op in (self._compareTensors, _scalar_helper):
|
|
# Tests default
|
|
result, debug_msg = op(a, b)
|
|
self.assertTrue(result)
|
|
|
|
# Tests setting atol
|
|
result, debug_msg = op(a, b, atol=2, rtol=0)
|
|
self.assertTrue(result)
|
|
|
|
# Tests setting atol too small
|
|
result, debug_msg = op(a, b, atol=1, rtol=0)
|
|
self.assertFalse(result)
|
|
|
|
# Tests setting rtol too small
|
|
result, debug_msg = op(x, y, atol=0, rtol=1.05e-5)
|
|
self.assertTrue(result)
|
|
|
|
# Tests setting rtol too small
|
|
result, debug_msg = op(x, y, atol=0, rtol=1e-5)
|
|
self.assertFalse(result)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
def test__comparescalars_debug_msg(self, device):
|
|
# float x float
|
|
result, debug_msg = self._compareScalars(4., 7.)
|
|
expected_msg = ("Comparing 4.0 and 7.0 gives a difference of 3.0, "
|
|
"but the allowed difference with rtol=1.3e-06 and "
|
|
"atol=1e-05 is only 1.9100000000000003e-05!")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# complex x complex, real difference
|
|
result, debug_msg = self._compareScalars(complex(1, 3), complex(3, 1))
|
|
expected_msg = ("Comparing the real part 1.0 and 3.0 gives a difference "
|
|
"of 2.0, but the allowed difference with rtol=1.3e-06 "
|
|
"and atol=1e-05 is only 1.39e-05!")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# complex x complex, imaginary difference
|
|
result, debug_msg = self._compareScalars(complex(1, 3), complex(1, 5.5))
|
|
expected_msg = ("Comparing the imaginary part 3.0 and 5.5 gives a "
|
|
"difference of 2.5, but the allowed difference with "
|
|
"rtol=1.3e-06 and atol=1e-05 is only 1.715e-05!")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# complex x int
|
|
result, debug_msg = self._compareScalars(complex(1, -2), 1)
|
|
expected_msg = ("Comparing the imaginary part -2.0 and 0.0 gives a "
|
|
"difference of 2.0, but the allowed difference with "
|
|
"rtol=1.3e-06 and atol=1e-05 is only 1e-05!")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# NaN x NaN, equal_nan=False
|
|
result, debug_msg = self._compareScalars(float('nan'), float('nan'), equal_nan=False)
|
|
expected_msg = ("Found nan and nan while comparing and either one is "
|
|
"nan and the other isn't, or both are nan and equal_nan "
|
|
"is False")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks that compareTensors provides the correct debug info
|
|
@onlyOnCPUAndCUDA
|
|
def test__comparetensors_debug_msg(self, device):
|
|
# Acquires atol that will be used
|
|
atol = max(1e-05, self.precision)
|
|
|
|
# Checks float tensor comparisons (2D tensor)
|
|
a = torch.tensor(((0, 6), (7, 9)), device=device, dtype=torch.float32)
|
|
b = torch.tensor(((0, 7), (7, 22)), device=device, dtype=torch.float32)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("With rtol=1.3e-06 and atol={0}, found 2 element(s) (out of 4) "
|
|
"whose difference(s) exceeded the margin of error (including 0 nan comparisons). "
|
|
"The greatest difference was 13.0 (9.0 vs. 22.0), "
|
|
"which occurred at index (1, 1).").format(atol)
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks float tensor comparisons (with extremal values)
|
|
a = torch.tensor((float('inf'), 5, float('inf')), device=device, dtype=torch.float32)
|
|
b = torch.tensor((float('inf'), float('nan'), float('-inf')), device=device, dtype=torch.float32)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("With rtol=1.3e-06 and atol={0}, found 2 element(s) (out of 3) "
|
|
"whose difference(s) exceeded the margin of error (including 1 nan comparisons). "
|
|
"The greatest difference was nan (5.0 vs. nan), "
|
|
"which occurred at index 1.").format(atol)
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks float tensor comparisons (with finite vs nan differences)
|
|
a = torch.tensor((20, -6), device=device, dtype=torch.float32)
|
|
b = torch.tensor((-1, float('nan')), device=device, dtype=torch.float32)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("With rtol=1.3e-06 and atol={0}, found 2 element(s) (out of 2) "
|
|
"whose difference(s) exceeded the margin of error (including 1 nan comparisons). "
|
|
"The greatest difference was nan (-6.0 vs. nan), "
|
|
"which occurred at index 1.").format(atol)
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks int tensor comparisons (1D tensor)
|
|
a = torch.tensor((1, 2, 3, 4), device=device)
|
|
b = torch.tensor((2, 5, 3, 4), device=device)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("Found 2 different element(s) (out of 4), "
|
|
"with the greatest difference of 3 (2 vs. 5) "
|
|
"occuring at index 1.")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks bool tensor comparisons (0D tensor)
|
|
a = torch.tensor((True), device=device)
|
|
b = torch.tensor((False), device=device)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("Found 1 different element(s) (out of 1), "
|
|
"with the greatest difference of 1 (1 vs. 0) "
|
|
"occuring at index 0.")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks complex tensor comparisons (real part)
|
|
a = torch.tensor((1 - 1j, 4 + 3j), device=device)
|
|
b = torch.tensor((1 - 1j, 1 + 3j), device=device)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("Real parts failed to compare as equal! "
|
|
"With rtol=1.3e-06 and atol={0}, "
|
|
"found 1 element(s) (out of 2) whose difference(s) exceeded the "
|
|
"margin of error (including 0 nan comparisons). The greatest difference was "
|
|
"3.0 (4.0 vs. 1.0), which occurred at index 1.").format(atol)
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks complex tensor comparisons (imaginary part)
|
|
a = torch.tensor((1 - 1j, 4 + 3j), device=device)
|
|
b = torch.tensor((1 - 1j, 4 - 21j), device=device)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("Imaginary parts failed to compare as equal! "
|
|
"With rtol=1.3e-06 and atol={0}, "
|
|
"found 1 element(s) (out of 2) whose difference(s) exceeded the "
|
|
"margin of error (including 0 nan comparisons). The greatest difference was "
|
|
"24.0 (3.0 vs. -21.0), which occurred at index 1.").format(atol)
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks size mismatch
|
|
a = torch.tensor((1, 2), device=device)
|
|
b = torch.tensor((3), device=device)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("Attempted to compare equality of tensors "
|
|
"with different sizes. Got sizes torch.Size([2]) and torch.Size([]).")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks dtype mismatch
|
|
a = torch.tensor((1, 2), device=device, dtype=torch.long)
|
|
b = torch.tensor((1, 2), device=device, dtype=torch.float32)
|
|
result, debug_msg = self._compareTensors(a, b, exact_dtype=True)
|
|
expected_msg = ("Attempted to compare equality of tensors "
|
|
"with different dtypes. Got dtypes torch.int64 and torch.float32.")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks device mismatch
|
|
if self.device_type == 'cuda':
|
|
a = torch.tensor((5), device='cpu')
|
|
b = torch.tensor((5), device=device)
|
|
result, debug_msg = self._compareTensors(a, b, exact_device=True)
|
|
expected_msg = ("Attempted to compare equality of tensors "
|
|
"on different devices! Got devices cpu and cuda:0.")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Helper for testing _compareTensors and _compareScalars
|
|
# Works on single element tensors
|
|
def _comparetensors_helper(self, tests, device, dtype, equal_nan, exact_dtype=True, atol=1e-08, rtol=1e-05):
|
|
for test in tests:
|
|
a = torch.tensor((test[0],), device=device, dtype=dtype)
|
|
b = torch.tensor((test[1],), device=device, dtype=dtype)
|
|
|
|
# Tensor x Tensor comparison
|
|
compare_result, debug_msg = self._compareTensors(a, b, rtol=rtol, atol=atol,
|
|
equal_nan=equal_nan,
|
|
exact_dtype=exact_dtype)
|
|
self.assertEqual(compare_result, test[2])
|
|
|
|
# Scalar x Scalar comparison
|
|
compare_result, debug_msg = self._compareScalars(a.item(), b.item(),
|
|
rtol=rtol, atol=atol,
|
|
equal_nan=equal_nan)
|
|
self.assertEqual(compare_result, test[2])
|
|
|
|
def _isclose_helper(self, tests, device, dtype, equal_nan, atol=1e-08, rtol=1e-05):
|
|
for test in tests:
|
|
a = torch.tensor((test[0],), device=device, dtype=dtype)
|
|
b = torch.tensor((test[1],), device=device, dtype=dtype)
|
|
|
|
actual = torch.isclose(a, b, equal_nan=equal_nan, atol=atol, rtol=rtol)
|
|
expected = test[2]
|
|
self.assertEqual(actual.item(), expected)
|
|
|
|
# torch.close is not implemented for bool tensors
|
|
# see https://github.com/pytorch/pytorch/issues/33048
|
|
def test_isclose_comparetensors_bool(self, device):
|
|
tests = (
|
|
(True, True, True),
|
|
(False, False, True),
|
|
(True, False, False),
|
|
(False, True, False),
|
|
)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
self._isclose_helper(tests, device, torch.bool, False)
|
|
|
|
self._comparetensors_helper(tests, device, torch.bool, False)
|
|
|
|
@dtypes(torch.uint8,
|
|
torch.int8, torch.int16, torch.int32, torch.int64)
|
|
def test_isclose_comparetensors_integer(self, device, dtype):
|
|
tests = (
|
|
(0, 0, True),
|
|
(0, 1, False),
|
|
(1, 0, False),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, False)
|
|
|
|
# atol and rtol tests
|
|
tests = [
|
|
(0, 1, True),
|
|
(1, 0, False),
|
|
(1, 3, True),
|
|
]
|
|
|
|
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
|
|
if dtype is torch.uint8:
|
|
tests = [
|
|
(-1, 1, False),
|
|
(1, -1, False)
|
|
]
|
|
else:
|
|
tests = [
|
|
(-1, 1, True),
|
|
(1, -1, True)
|
|
]
|
|
|
|
self._isclose_helper(tests, device, dtype, False, atol=1.5, rtol=.5)
|
|
self._comparetensors_helper(tests, device, dtype, False, atol=1.5, rtol=.5)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(torch.float16, torch.float32, torch.float64)
|
|
def test_isclose_comparetensors_float(self, device, dtype):
|
|
tests = (
|
|
(0, 0, True),
|
|
(0, -1, False),
|
|
(float('inf'), float('inf'), True),
|
|
(-float('inf'), float('inf'), False),
|
|
(float('inf'), float('nan'), False),
|
|
(float('nan'), float('nan'), False),
|
|
(0, float('nan'), False),
|
|
(1, 1, True),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, False)
|
|
self._comparetensors_helper(tests, device, dtype, False)
|
|
|
|
# atol and rtol tests
|
|
eps = 1e-2 if dtype is torch.half else 1e-6
|
|
tests = (
|
|
(0, 1, True),
|
|
(0, 1 + eps, False),
|
|
(1, 0, False),
|
|
(1, 3, True),
|
|
(1 - eps, 3, False),
|
|
(-.25, .5, True),
|
|
(-.25 - eps, .5, False),
|
|
(.25, -.5, True),
|
|
(.25 + eps, -.5, False),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
|
|
# equal_nan = True tests
|
|
tests = (
|
|
(0, float('nan'), False),
|
|
(float('inf'), float('nan'), False),
|
|
(float('nan'), float('nan'), True),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, True)
|
|
|
|
self._comparetensors_helper(tests, device, dtype, True)
|
|
|
|
# torch.close with equal_nan=True is not implemented for complex inputs
|
|
# see https://github.com/numpy/numpy/issues/15959
|
|
# Note: compareTensor will compare the real and imaginary parts of a
|
|
# complex tensors separately, unlike isclose.
|
|
@dtypes(torch.complex64, torch.complex128)
|
|
def test_isclose_comparetensors_complex(self, device, dtype):
|
|
tests = (
|
|
(complex(1, 1), complex(1, 1 + 1e-8), True),
|
|
(complex(0, 1), complex(1, 1), False),
|
|
(complex(1, 1), complex(1, 0), False),
|
|
(complex(1, 1), complex(1, float('nan')), False),
|
|
(complex(1, float('nan')), complex(1, float('nan')), False),
|
|
(complex(1, 1), complex(1, float('inf')), False),
|
|
(complex(float('inf'), 1), complex(1, float('inf')), False),
|
|
(complex(-float('inf'), 1), complex(1, float('inf')), False),
|
|
(complex(-float('inf'), 1), complex(float('inf'), 1), False),
|
|
(complex(float('inf'), 1), complex(float('inf'), 1), True),
|
|
(complex(float('inf'), 1), complex(float('inf'), 1 + 1e-4), False),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, False)
|
|
self._comparetensors_helper(tests, device, dtype, False)
|
|
|
|
# atol and rtol tests
|
|
|
|
# atol and rtol tests
|
|
eps = 1e-6
|
|
tests = (
|
|
# Complex versions of float tests (real part)
|
|
(complex(0, 0), complex(1, 0), True),
|
|
(complex(0, 0), complex(1 + eps, 0), False),
|
|
(complex(1, 0), complex(0, 0), False),
|
|
(complex(1, 0), complex(3, 0), True),
|
|
(complex(1 - eps, 0), complex(3, 0), False),
|
|
(complex(-.25, 0), complex(.5, 0), True),
|
|
(complex(-.25 - eps, 0), complex(.5, 0), False),
|
|
(complex(.25, 0), complex(-.5, 0), True),
|
|
(complex(.25 + eps, 0), complex(-.5, 0), False),
|
|
# Complex versions of float tests (imaginary part)
|
|
(complex(0, 0), complex(0, 1), True),
|
|
(complex(0, 0), complex(0, 1 + eps), False),
|
|
(complex(0, 1), complex(0, 0), False),
|
|
(complex(0, 1), complex(0, 3), True),
|
|
(complex(0, 1 - eps), complex(0, 3), False),
|
|
(complex(0, -.25), complex(0, .5), True),
|
|
(complex(0, -.25 - eps), complex(0, .5), False),
|
|
(complex(0, .25), complex(0, -.5), True),
|
|
(complex(0, .25 + eps), complex(0, -.5), False),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
|
|
# atol and rtol tests for isclose
|
|
tests = (
|
|
# Complex-specific tests
|
|
(complex(1, -1), complex(-1, 1), False),
|
|
(complex(1, -1), complex(2, -2), True),
|
|
(complex(-math.sqrt(2), math.sqrt(2)),
|
|
complex(-math.sqrt(.5), math.sqrt(.5)), True),
|
|
(complex(-math.sqrt(2), math.sqrt(2)),
|
|
complex(-math.sqrt(.501), math.sqrt(.499)), False),
|
|
(complex(2, 4), complex(1., 8.8523607), True),
|
|
(complex(2, 4), complex(1., 8.8523607 + eps), False),
|
|
(complex(1, 99), complex(4, 100), True),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
|
|
# atol and rtol tests for compareTensors
|
|
tests = (
|
|
(complex(1, -1), complex(-1, 1), False),
|
|
(complex(1, -1), complex(2, -2), True),
|
|
(complex(1, 99), complex(4, 100), False),
|
|
)
|
|
|
|
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
|
|
# equal_nan = True tests
|
|
tests = (
|
|
(complex(1, 1), complex(1, float('nan')), False),
|
|
(complex(float('nan'), 1), complex(1, float('nan')), False),
|
|
(complex(float('nan'), 1), complex(float('nan'), 1), True),
|
|
)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
self._isclose_helper(tests, device, dtype, True)
|
|
|
|
self._comparetensors_helper(tests, device, dtype, True)
|
|
|
|
# Tests that isclose with rtol or atol values less than zero throws a
|
|
# RuntimeError
|
|
@dtypes(torch.bool, torch.uint8,
|
|
torch.int8, torch.int16, torch.int32, torch.int64,
|
|
torch.float16, torch.float32, torch.float64)
|
|
def test_isclose_atol_rtol_greater_than_zero(self, device, dtype):
|
|
t = torch.tensor((1,), device=device, dtype=dtype)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
torch.isclose(t, t, atol=-1, rtol=1)
|
|
with self.assertRaises(RuntimeError):
|
|
torch.isclose(t, t, atol=1, rtol=-1)
|
|
with self.assertRaises(RuntimeError):
|
|
torch.isclose(t, t, atol=-1, rtol=-1)
|
|
|
|
# XLA tests fail for self.assertRaises for complex dtypes
|
|
@onlyOnCPUAndCUDA
|
|
def test_complex_assert_raises(self, device):
|
|
for dtype in [torch.complex64, torch.complex128]:
|
|
size = [5, 5]
|
|
tensor = torch.rand(size, dtype=dtype, device=device)
|
|
|
|
# index_add calls atomicAdd on cuda.
|
|
zeros = torch.zeros(size, dtype=dtype, device=device)
|
|
|
|
# index_add is not supported for complex dtypes on cuda yet
|
|
if device.startswith('cuda') and dtype.is_complex:
|
|
self.assertRaises(RuntimeError,
|
|
lambda: zeros.index_add(0, torch.arange(0, size[0], dtype=torch.long, device=device), tensor))
|
|
|
|
self.assertRaises(RuntimeError, lambda: torch.sign(torch.tensor([4j], device=device, dtype=dtype)))
|
|
|
|
a = torch.rand((2, 2), dtype=dtype, device=device)
|
|
b = torch.rand((2, 2), dtype=dtype, device=device)
|
|
c = torch.rand((2, 2), dtype=dtype, device=device)
|
|
alpha = 3
|
|
|
|
# addcmul is not supported for complex dtypes on cuda yet
|
|
if device.startswith('cuda') and dtype.is_complex:
|
|
self.assertRaises(RuntimeError, lambda: torch.addcmul(a, b, c, value=alpha))
|
|
|
|
def check_internal_mem_overlap(self, inplace_op, num_inputs,
|
|
dtype, device,
|
|
expected_failure=False):
|
|
if isinstance(inplace_op, str):
|
|
inplace_op = getattr(torch.Tensor, inplace_op)
|
|
input = torch.randn(1, dtype=dtype, device=device).expand(3, 3)
|
|
inputs = [input] + [torch.randn_like(input)
|
|
for i in range(num_inputs - 1)]
|
|
if not expected_failure:
|
|
with self.assertRaisesRegex(RuntimeError, 'single memory location'):
|
|
inplace_op(*inputs)
|
|
else:
|
|
with self.assertRaises(AssertionError):
|
|
with self.assertRaisesRegex(RuntimeError, 'single memory location'):
|
|
inplace_op(*inputs)
|
|
|
|
def unary_check_input_output_mem_overlap(self, data, sz, op,
|
|
expected_failure=False):
|
|
|
|
def _test(op, output, input):
|
|
output_exp = torch.empty_like(output)
|
|
op(input, out=output_exp)
|
|
self.assertEqual(op(input, out=output), output_exp, msg=op.__name__)
|
|
|
|
# output is identical to input:
|
|
_test(op, output=data[0:sz], input=data[0:sz])
|
|
# output and input are independent:
|
|
_test(op, output=data[0:sz], input=data[sz:2 * sz])
|
|
# output partially overlaps with input:
|
|
if not expected_failure:
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
_test(op, data[0:sz], data[1:sz + 1])
|
|
else:
|
|
with self.assertRaises(AssertionError):
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
_test(op, data[0:sz], data[1:sz + 1])
|
|
|
|
def binary_check_input_output_mem_overlap(self, op, device,
|
|
expected_failure=False):
|
|
sz = 3
|
|
data = torch.randn(2 * sz, device=device)
|
|
other = torch.randn(sz, device=device)
|
|
|
|
self.unary_check_input_output_mem_overlap(
|
|
data, sz, lambda input, out: op(other, input, out=out),
|
|
expected_failure=expected_failure)
|
|
|
|
self.unary_check_input_output_mem_overlap(
|
|
data, sz, lambda input, out: op(input, other, out=out),
|
|
expected_failure=expected_failure)
|
|
|
|
def ternary_check_input_output_mem_overlap(self, op, device,
|
|
expected_failure=False):
|
|
sz = 3
|
|
data = torch.randn(2 * sz, device=device)
|
|
other1 = torch.randn(sz, device=device)
|
|
other2 = torch.randn(sz, device=device)
|
|
|
|
self.unary_check_input_output_mem_overlap(
|
|
data, sz, lambda input, out: op(input, other1, other2, out=out),
|
|
expected_failure=expected_failure)
|
|
|
|
self.unary_check_input_output_mem_overlap(
|
|
data, sz, lambda input, out: op(other1, input, other2, out=out),
|
|
expected_failure=expected_failure)
|
|
|
|
self.unary_check_input_output_mem_overlap(
|
|
data, sz, lambda input, out: op(other1, other2, input, out=out),
|
|
expected_failure=expected_failure)
|
|
|
|
def _test_pow(self, base, exponent, np_exponent=None):
|
|
if np_exponent is None:
|
|
np_exponent = exponent
|
|
|
|
def to_np(value):
|
|
if isinstance(value, torch.Tensor):
|
|
return value.cpu().numpy()
|
|
return value
|
|
|
|
try:
|
|
expected = torch.from_numpy(
|
|
np.power(to_np(base), to_np(np_exponent)))
|
|
except ValueError as e:
|
|
err_msg = "Integers to negative integer powers are not allowed."
|
|
self.assertEqual(str(e), err_msg)
|
|
out = torch.empty_like(base)
|
|
test_cases = [
|
|
lambda: base.pow(exponent),
|
|
lambda: base.pow_(exponent),
|
|
lambda: torch.pow(base, exponent),
|
|
lambda: torch.pow(base, exponent, out=out)
|
|
]
|
|
for test_case in test_cases:
|
|
self.assertRaisesRegex(RuntimeError, err_msg, test_case)
|
|
else:
|
|
if isinstance(base, torch.Tensor):
|
|
actual = base.pow(exponent)
|
|
self.assertEqual(actual, expected.to(actual))
|
|
actual = base.clone()
|
|
if torch.can_cast(torch.result_type(base, exponent), base.dtype):
|
|
actual2 = actual.pow_(exponent)
|
|
self.assertEqual(actual, expected)
|
|
self.assertEqual(actual2, expected)
|
|
else:
|
|
self.assertRaisesRegex(RuntimeError, "can't be cast", lambda: actual.pow_(exponent))
|
|
|
|
actual = torch.pow(base, exponent)
|
|
self.assertEqual(actual, expected.to(actual))
|
|
|
|
actual2 = torch.pow(base, exponent, out=actual)
|
|
self.assertEqual(actual, expected.to(actual))
|
|
self.assertEqual(actual2, expected.to(actual))
|
|
|
|
def _select_broadcastable_dims(self, dims_full=None):
|
|
# select full dimensionality
|
|
if dims_full is None:
|
|
dims_full = []
|
|
ndims = random.randint(1, 4)
|
|
dims_full = [random.randint(1, 8) for _ in range(ndims)]
|
|
else:
|
|
ndims = len(dims_full)
|
|
|
|
# select actual dimensions for ops:
|
|
# larger: full ndims, individual sizes may be reduced
|
|
# smaller: possibly reduced ndims, sizes may be reduced
|
|
smaller_ndims = random.randint(1, ndims)
|
|
dims_small = []
|
|
dims_large = []
|
|
for i in range(ndims - 1, -1, -1):
|
|
j = random.randint(1, 3)
|
|
if j == 1: # no reduced singleton dimension
|
|
ds = dims_full[i]
|
|
dl = dims_full[i]
|
|
elif j == 2: # larger may have reduced singleton dimension
|
|
ds = dims_full[i]
|
|
dl = 1 if len(dims_small) < smaller_ndims else dims_full[i]
|
|
elif j == 3: # smaller may have reduced singleton dimension
|
|
ds = 1
|
|
dl = dims_full[i]
|
|
dims_large = [dl] + dims_large
|
|
if len(dims_small) < smaller_ndims:
|
|
dims_small = [ds] + dims_small
|
|
return (dims_small, dims_large, dims_full)
|
|
|
|
# collected tests of ops that used scalar_check in Declarations.cwrap for
|
|
# correctness
|
|
def test_scalar_check(self, device):
|
|
zero_d = torch.randn((), device=device)
|
|
one_d = torch.randn((1,), device=device)
|
|
|
|
# _multinomial_alias_setup
|
|
self.assertRaises(RuntimeError, lambda: torch._multinomial_alias_setup(zero_d))
|
|
|
|
# remainder
|
|
self.assertEqual((), torch.remainder(zero_d, zero_d).shape)
|
|
self.assertEqual((), torch.remainder(zero_d, 2).shape)
|
|
self.assertEqual((1,), torch.remainder(zero_d, one_d).shape)
|
|
self.assertEqual((1,), torch.remainder(one_d, zero_d).shape)
|
|
|
|
# fmod
|
|
self.assertEqual((), torch.fmod(zero_d, zero_d).shape)
|
|
self.assertEqual((), torch.fmod(zero_d, 2).shape)
|
|
self.assertEqual((1,), torch.fmod(zero_d, one_d).shape)
|
|
self.assertEqual((1,), torch.fmod(one_d, zero_d).shape)
|
|
|
|
# exp, cos, cosh, tan, atan, tanh, erf, erfc, reciprocal
|
|
self.assertEqual((), torch.exp(zero_d).shape)
|
|
self.assertEqual((), torch.cos(zero_d).shape)
|
|
self.assertEqual((), torch.cosh(zero_d).shape)
|
|
self.assertEqual((), torch.tan(zero_d).shape)
|
|
self.assertEqual((), torch.atan(zero_d).shape)
|
|
self.assertEqual((), torch.acosh(zero_d).shape)
|
|
self.assertEqual((), torch.asinh(zero_d).shape)
|
|
self.assertEqual((), torch.atanh(zero_d).shape)
|
|
self.assertEqual((), torch.tanh(zero_d).shape)
|
|
self.assertEqual((), torch.erf(zero_d).shape)
|
|
self.assertEqual((), torch.erfc(zero_d).shape)
|
|
self.assertEqual((), torch.reciprocal(zero_d).shape)
|
|
self.assertEqual((1,), torch.exp(one_d).shape)
|
|
self.assertEqual((1,), torch.cos(one_d).shape)
|
|
self.assertEqual((1,), torch.cosh(one_d).shape)
|
|
self.assertEqual((1,), torch.tan(one_d).shape)
|
|
self.assertEqual((1,), torch.atan(one_d).shape)
|
|
self.assertEqual((1,), torch.acosh(one_d).shape)
|
|
self.assertEqual((1,), torch.asinh(one_d).shape)
|
|
self.assertEqual((1,), torch.atanh(one_d).shape)
|
|
self.assertEqual((1,), torch.tanh(one_d).shape)
|
|
self.assertEqual((1,), torch.erf(one_d).shape)
|
|
self.assertEqual((1,), torch.erfc(one_d).shape)
|
|
self.assertEqual((1,), torch.reciprocal(one_d).shape)
|
|
|
|
# clamp
|
|
self.assertEqual((), torch.clamp(zero_d, min=0, max=1).shape)
|
|
self.assertEqual((), torch.clamp(zero_d, min=0).shape)
|
|
self.assertEqual((), torch.clamp(zero_d, max=1).shape)
|
|
self.assertEqual((1,), torch.clamp(one_d, min=0, max=1).shape)
|
|
self.assertEqual((1,), torch.clamp(one_d, min=0).shape)
|
|
self.assertEqual((1,), torch.clamp(one_d, max=1).shape)
|
|
|
|
# cumsum, cumprod, cummax, cummin
|
|
self.assertEqual((), torch.logcumsumexp(zero_d, 0).shape)
|
|
self.assertEqual((), torch.cumsum(zero_d, 0).shape)
|
|
self.assertEqual((), torch.cumprod(zero_d, 0).shape)
|
|
self.assertEqual((), torch.cummax(zero_d, 0)[0].shape)
|
|
self.assertEqual((), torch.cummin(zero_d, 0)[0].shape)
|
|
|
|
# renorm
|
|
self.assertRaises(RuntimeError, lambda: torch.renorm(zero_d, 0.5, 0, 1.0))
|
|
|
|
# sort, topk
|
|
self.assertEqual([(), ()], [x.shape for x in torch.sort(zero_d, 0, False)])
|
|
self.assertEqual([(), ()], [x.shape for x in torch.sort(zero_d, 0, True)])
|
|
self.assertEqual([(), ()], [x.shape for x in torch.topk(zero_d, 1, 0, False)])
|
|
self.assertEqual([(), ()], [x.shape for x in torch.topk(zero_d, 1, 0, True)])
|
|
|
|
# lstsq (gels)
|
|
self.assertRaises(RuntimeError, lambda: torch.lstsq(zero_d, zero_d))
|
|
|
|
# eig
|
|
self.assertRaises(RuntimeError, lambda: torch.eig(zero_d, False))
|
|
self.assertRaises(RuntimeError, lambda: torch.eig(zero_d, True))
|
|
|
|
# this is only implemented on cpu
|
|
if (torch.device(device).type == 'cpu'):
|
|
self.assertRaises(RuntimeError, lambda: torch.ormqr(zero_d, zero_d, zero_d))
|
|
|
|
# max, min
|
|
self.assertEqual((), torch.max(zero_d, zero_d).shape)
|
|
self.assertEqual((1,), torch.max(one_d, zero_d).shape)
|
|
self.assertEqual((1,), torch.max(zero_d, one_d).shape)
|
|
self.assertEqual((), torch.min(zero_d, zero_d).shape)
|
|
self.assertEqual((1,), torch.min(one_d, zero_d).shape)
|
|
self.assertEqual((1,), torch.min(zero_d, one_d).shape)
|
|
|
|
# diag
|
|
self.assertRaises(RuntimeError, lambda: torch.diag(zero_d))
|
|
|
|
zero_d_int = torch.tensor(1, device=device)
|
|
one_d_int = torch.tensor([1], device=device)
|
|
|
|
# lshift, rshift
|
|
self.assertEqual((), (zero_d_int >> zero_d_int).shape)
|
|
self.assertEqual((), (zero_d_int >> 1).shape)
|
|
self.assertEqual((1,), (one_d_int >> zero_d_int).shape)
|
|
self.assertEqual((1,), (zero_d_int >> one_d_int).shape)
|
|
self.assertEqual((1,), (one_d_int >> 1).shape)
|
|
|
|
self.assertEqual((), (zero_d_int << zero_d_int).shape)
|
|
self.assertEqual((), (zero_d_int << 1).shape)
|
|
self.assertEqual((1,), (one_d_int << zero_d_int).shape)
|
|
self.assertEqual((1,), (zero_d_int << one_d_int).shape)
|
|
self.assertEqual((1,), (one_d_int << 1).shape)
|
|
|
|
# or
|
|
self.assertEqual((), (zero_d_int | zero_d_int).shape)
|
|
self.assertEqual((), (zero_d_int | 1).shape)
|
|
self.assertEqual((1,), (one_d_int | zero_d_int).shape)
|
|
self.assertEqual((1,), (zero_d_int | one_d_int).shape)
|
|
self.assertEqual((1,), (one_d_int | 1).shape)
|
|
|
|
# and
|
|
self.assertEqual((), (zero_d_int & zero_d_int).shape)
|
|
self.assertEqual((), (zero_d_int & 1).shape)
|
|
self.assertEqual((1,), (one_d_int & zero_d_int).shape)
|
|
self.assertEqual((1,), (zero_d_int & one_d_int).shape)
|
|
self.assertEqual((1,), (one_d_int & 1).shape)
|
|
|
|
# _multinomial_alias_draw
|
|
self.assertRaises(RuntimeError, lambda: torch._multinomial_alias_draw(zero_d, zero_d_int, 10))
|
|
|
|
# clone
|
|
self.assertEqual((), zero_d.clone().shape)
|
|
|
|
zero_d_bool = torch.tensor(True, device=device)
|
|
one_d_bool = torch.tensor([True], device=device)
|
|
|
|
# masked_select
|
|
self.assertEqual((1,), torch.masked_select(zero_d_bool, zero_d_bool).shape)
|
|
self.assertEqual((1,), torch.masked_select(zero_d_bool, one_d_bool).shape)
|
|
self.assertEqual((1,), torch.masked_select(one_d_bool, zero_d_bool).shape)
|
|
|
|
zero_d_uint8 = torch.tensor(1, dtype=torch.uint8, device=device)
|
|
one_d_uint8 = torch.tensor([1], dtype=torch.uint8, device=device)
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
self.assertEqual((1,), torch.masked_select(zero_d_uint8, zero_d_uint8).shape)
|
|
self.assertEqual((1,), torch.masked_select(zero_d_uint8, one_d_uint8).shape)
|
|
self.assertEqual((1,), torch.masked_select(one_d_uint8, zero_d_uint8).shape)
|
|
|
|
# mode
|
|
self.assertEqual([(), ()], [x.shape for x in torch.mode(zero_d, dim=0, keepdim=True)])
|
|
self.assertEqual([(), ()], [x.shape for x in torch.mode(zero_d, dim=0, keepdim=False)])
|
|
self.assertEqual([(1,), (1,)], [x.shape for x in torch.mode(one_d, dim=0, keepdim=True)])
|
|
self.assertEqual([(), ()], [x.shape for x in torch.mode(one_d, dim=0, keepdim=False)])
|
|
|
|
# max
|
|
self.assertEqual([(), ()], [x.shape for x in torch.max(zero_d, dim=0, keepdim=True)])
|
|
self.assertEqual([(), ()], [x.shape for x in torch.max(zero_d, dim=0, keepdim=False)])
|
|
self.assertEqual([(1,), (1,)], [x.shape for x in torch.max(one_d, dim=0, keepdim=True)])
|
|
self.assertEqual([(), ()], [x.shape for x in torch.max(one_d, dim=0, keepdim=False)])
|
|
|
|
# min
|
|
self.assertEqual([(), ()], [x.shape for x in torch.min(zero_d, dim=0, keepdim=True)])
|
|
self.assertEqual([(), ()], [x.shape for x in torch.min(zero_d, dim=0, keepdim=False)])
|
|
self.assertEqual([(1,), (1,)], [x.shape for x in torch.min(one_d, dim=0, keepdim=True)])
|
|
self.assertEqual([(), ()], [x.shape for x in torch.min(one_d, dim=0, keepdim=False)])
|
|
|
|
# set_
|
|
zero_d_clone = zero_d.clone()
|
|
one_d_clone = one_d.clone()
|
|
self.assertEqual((), zero_d_clone.set_(one_d.storage(), 0, (), ()).shape)
|
|
self.assertEqual((1,), zero_d_clone.set_(one_d.storage(), 0, (1,), (1,)).shape)
|
|
self.assertEqual((), one_d_clone.set_(one_d.storage(), 0, (), ()).shape)
|
|
self.assertEqual((1,), one_d_clone.set_(one_d.storage(), 0, (1,), (1,)).shape)
|
|
|
|
self.assertEqual((), zero_d.clone().set_(zero_d).shape)
|
|
self.assertEqual((), one_d.clone().set_(zero_d).shape)
|
|
self.assertEqual((1,), zero_d.clone().set_(one_d).shape)
|
|
self.assertEqual((1,), one_d.clone().set_(one_d).shape)
|
|
|
|
# take
|
|
self.assertEqual((), torch.randn((2, 3), device=device).take(zero_d_int).shape)
|
|
self.assertEqual((1,), torch.randn((2, 3), device=device).take(one_d_int).shape)
|
|
|
|
# gather
|
|
self.assertEqual((), torch.gather(zero_d, 0, torch.zeros((), dtype=torch.int64, device=device)).shape)
|
|
self.assertEqual((1,), torch.gather(zero_d, 0, torch.zeros((1,), dtype=torch.int64, device=device)).shape)
|
|
self.assertEqual((), torch.gather(one_d, 0, torch.zeros((), dtype=torch.int64, device=device)).shape)
|
|
self.assertEqual((1,), torch.gather(one_d, 0, torch.zeros((1,), dtype=torch.int64, device=device)).shape)
|
|
|
|
# normal
|
|
# documentation says out shape matches shape of mean
|
|
self.assertEqual((), torch.normal(zero_d, zero_d).shape)
|
|
self.assertEqual((1,), torch.normal(one_d, zero_d).shape)
|
|
self.assertEqual((), torch.normal(1, zero_d).shape)
|
|
self.assertEqual((), torch.normal(zero_d, 1).shape)
|
|
self.assertEqual((1,), torch.normal(one_d, 1).shape)
|
|
# TODO: this behavior differs on CPU and GPU, see https://github.com/pytorch/pytorch/issues/30480.
|
|
# self.assertEqual((), torch.normal(zero_d, one_d).shape)
|
|
# self.assertEqual((), torch.normal(1, one_d).shape)
|
|
|
|
# convolutions. Yes, we are testing nn.functional here; seems justified
|
|
# given its similar to the other tests
|
|
w = torch.randn(2, 1, 3, 3, device=device).div_(2).requires_grad_()
|
|
self.assertRaises(RuntimeError, lambda: torch.nn.functional.conv2d(zero_d, w, groups=1))
|
|
self.assertRaises(RuntimeError, lambda: torch.nn.functional.conv2d(zero_d, w, groups=2))
|
|
|
|
# nll_loss -- verify input can't be 0-dimensional.
|
|
self.assertRaises(ValueError, lambda: torch.nn.functional.nll_loss(zero_d, zero_d, reduction='none'))
|
|
self.assertRaises(ValueError, lambda: torch.nn.functional.nll_loss(zero_d, one_d, reduction='none'))
|
|
# verify output is 0-dimensional when reduction != 'none'
|
|
for (input, target) in ((torch.randn(1, 1, device=device), torch.tensor([0], device=device)),
|
|
(torch.randn(1, 1, 1, 1, device=device), torch.tensor([[[0]]], device=device))):
|
|
self.assertEqual((), torch.nn.functional.nll_loss(input, target, reduction='mean').shape)
|
|
self.assertEqual((), torch.nn.functional.nll_loss(input, target, reduction='sum').shape)
|
|
|
|
# multilabel_margin_loss
|
|
for input in (zero_d, one_d, torch.randn(1, 1, device=device)):
|
|
for target in (torch.tensor(0, device=device), torch.tensor([0], device=device), torch.tensor([[0]], device=device)):
|
|
if (input.dim() <= 1 and target.dim() <= 1) or (input.dim() == 2 and target.dim() == 2):
|
|
output_shape = (target.shape[0],) if target.dim() == 2 else ()
|
|
self.assertEqual(output_shape,
|
|
torch.nn.functional.multilabel_margin_loss(input, target, reduction='none').shape)
|
|
self.assertEqual((), torch.nn.functional.multilabel_margin_loss(input, target, reduction='mean').shape)
|
|
self.assertEqual((), torch.nn.functional.multilabel_margin_loss(input, target, reduction='sum').shape)
|
|
else:
|
|
self.assertRaises(RuntimeError,
|
|
lambda: torch.nn.functional.multilabel_margin_loss(input, target, reduction='none'))
|
|
self.assertRaises(RuntimeError,
|
|
lambda: torch.nn.functional.multilabel_margin_loss(input, target, reduction='mean'))
|
|
self.assertRaises(RuntimeError,
|
|
lambda: torch.nn.functional.multilabel_margin_loss(input, target, reduction='sum'))
|
|
|
|
# multi_margin_loss
|
|
for input in (zero_d, one_d, torch.randn(1, 1, device=device)):
|
|
for target in (torch.tensor(0, device=device), torch.tensor([0], device=device)):
|
|
self.assertEqual(target.shape, torch.nn.functional.multi_margin_loss(input, target, reduction='none').shape)
|
|
self.assertEqual((), torch.nn.functional.multi_margin_loss(input, target, reduction='mean').shape)
|
|
self.assertEqual((), torch.nn.functional.multi_margin_loss(input, target, reduction='sum').shape)
|
|
|
|
# Uses mismatched arange out size to trigger a warning
|
|
def test_cpp_warnings_have_python_context(self, device):
|
|
# Creates long string in advance to avoid a too-long Python line
|
|
s = ".+Triggered internally at.+RangeFactories.+"
|
|
|
|
def cpp_warn_fn():
|
|
out = torch.empty((5,))
|
|
torch.arange(0, 3, out=out)
|
|
return out
|
|
|
|
# Checks eager-mode cpp warning
|
|
with warnings.catch_warnings(record=True) as w:
|
|
cpp_warn_fn()
|
|
frameinfo = inspect.getframeinfo(inspect.currentframe())
|
|
warning = w[0]
|
|
|
|
# Checks for cpp context in the warning message
|
|
self.assertTrue(re.search(s, str(warning.message)) is not None)
|
|
|
|
# Checks the Python features of the warning
|
|
# Note: the eager mode warning refers to the line in the function
|
|
# that throws the warning.
|
|
self.assertEqual(frameinfo.lineno - 6, warning.lineno)
|
|
self.assertEqual(len(w), 1)
|
|
|
|
# Checks jitted cpp warning
|
|
with warnings.catch_warnings(record=True) as w:
|
|
scripted_cpp_warn_fn = torch.jit.script(cpp_warn_fn)
|
|
scripted_cpp_warn_fn()
|
|
warning = w[0]
|
|
|
|
# Checks for cpp context in the warning message
|
|
self.assertTrue(re.search(s, str(warning.message)) is not None)
|
|
|
|
# Checks the Python features of the warning
|
|
# Note: the jitted warning's lineno refers to the call to the jitted
|
|
# function, which in our test suite has a layer of indirection
|
|
# that makes checking the Python lineno fragile
|
|
self.assertEqual(len(w), 1)
|
|
|
|
# Checks jitted Python warning
|
|
def warn_fn():
|
|
warnings.warn("Warning!")
|
|
|
|
# The jit mimics an eager-mode Python warning in this case
|
|
with warnings.catch_warnings(record=True) as w:
|
|
scripted_warn_fn = torch.jit.script(warn_fn)
|
|
scripted_warn_fn()
|
|
frameinfo = inspect.getframeinfo(inspect.currentframe())
|
|
warning = w[0]
|
|
|
|
self.assertTrue(re.search('Warning!', str(warning.message)) is not None)
|
|
|
|
# Checks the Python features of the warning
|
|
self.assertEqual(frameinfo.lineno - 6, warning.lineno)
|
|
self.assertEqual(len(w), 1)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'NumPy not found')
|
|
@dtypes(torch.float)
|
|
def test_isfinite_isinf_isnan(self, device, dtype):
|
|
vals = (-float('inf'), float('inf'), float('nan'), -1, 0, 1)
|
|
|
|
self.compare_with_numpy(torch.isfinite, np.isfinite, vals, device, dtype)
|
|
self.compare_with_numpy(torch.isinf, np.isinf, vals, device, dtype)
|
|
self.compare_with_numpy(torch.isnan, np.isnan, vals, device, dtype)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'NumPy not found')
|
|
@dtypes(torch.long)
|
|
def test_isfinite_isinf_isnan_int(self, device, dtype):
|
|
vals = (-1, 0, 1)
|
|
|
|
self.compare_with_numpy(torch.isfinite, np.isfinite, vals, device, dtype)
|
|
self.compare_with_numpy(torch.isinf, np.isinf, vals, device, dtype)
|
|
self.compare_with_numpy(torch.isnan, np.isnan, vals, device, dtype)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'NumPy not found')
|
|
@dtypes(torch.complex64)
|
|
def test_isfinite_isinf_isnan_complex(self, device, dtype):
|
|
vals = (
|
|
complex(-float('inf'), float('inf')),
|
|
complex(-float('inf'), 0),
|
|
complex(0, float('inf')),
|
|
complex(float('inf'), float('nan')),
|
|
complex(float('nan'), 0),
|
|
complex(-1, 0),
|
|
complex(0, 1)
|
|
)
|
|
|
|
self.compare_with_numpy(torch.isfinite, np.isfinite, vals, device, dtype)
|
|
self.compare_with_numpy(torch.isinf, np.isinf, vals, device, dtype)
|
|
self.compare_with_numpy(torch.isnan, np.isnan, vals, device, dtype)
|
|
|
|
@onlyCPU
|
|
def test_isfinite_type(self, device):
|
|
with self.assertRaises(TypeError):
|
|
torch.isfinite(1) # Parameter must be a tensor
|
|
|
|
@onlyCPU
|
|
def test_isinf_type(self, device):
|
|
with self.assertRaises(TypeError):
|
|
torch.isinf(1) # Parameter must be a tensor
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float)
|
|
def test_diag(self, device, dtype):
|
|
x = torch.rand(100, 100, dtype=dtype, device=device)
|
|
res1 = torch.diag(x)
|
|
res2 = torch.tensor((), dtype=dtype, device=device)
|
|
torch.diag(x, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_diagonal(self, device):
|
|
x = torch.randn((100, 100), device=device)
|
|
result = torch.diagonal(x)
|
|
expected = torch.diag(x)
|
|
self.assertEqual(result, expected)
|
|
|
|
x = torch.randn((100, 100), device=device)
|
|
result = torch.diagonal(x, 17)
|
|
expected = torch.diag(x, 17)
|
|
self.assertEqual(result, expected)
|
|
|
|
def test_conv_transposed_backward_agnostic_to_memory_format(self, device):
|
|
in_channels = 64
|
|
out_channels = 128
|
|
scale_factor = 8
|
|
batch_size = 8
|
|
length = 16
|
|
|
|
conv = torch.nn.ConvTranspose1d(
|
|
in_channels, out_channels, kernel_size=scale_factor * 2, stride=scale_factor).to(device)
|
|
layer_norm = torch.nn.LayerNorm(out_channels).to(device)
|
|
|
|
input_ = torch.randn(batch_size, in_channels, length).to(device).contiguous()
|
|
input_ = conv(input_).contiguous()
|
|
input_ = layer_norm(input_.transpose(1, 2).contiguous()).contiguous()
|
|
input_.sum().backward()
|
|
|
|
@skipCUDAIfRocm
|
|
@largeTensorTest('12GB')
|
|
def test_conv_transposed_large(self, device):
|
|
# ConvTranspose3d works for large input tensors (gh-32866)
|
|
in_channels = 64
|
|
out_channels = 128
|
|
kernel_size = 5
|
|
|
|
conv = torch.nn.ConvTranspose3d(
|
|
in_channels, out_channels, kernel_size=kernel_size,
|
|
stride=2, padding=2, output_padding=1).to(device)
|
|
|
|
x = torch.rand([1, 64, 8, 128, 172]).to(device)
|
|
y = conv(x)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
@onlyCPU
|
|
@dtypes(torch.float)
|
|
def test_diagonal_multidim(self, device, dtype):
|
|
x = torch.randn(10, 11, 12, 13, dtype=dtype, device=device)
|
|
xn = x.numpy()
|
|
for args in [(2, 2, 3),
|
|
(2,),
|
|
(-2, 1, 2),
|
|
(0, -2, -1)]:
|
|
result = torch.diagonal(x, *args)
|
|
expected = xn.diagonal(*args)
|
|
self.assertEqual(expected.shape, result.shape)
|
|
self.assertEqual(expected, result)
|
|
# test non-continguous
|
|
xp = x.permute(1, 2, 3, 0)
|
|
result = torch.diagonal(xp, 0, -2, -1)
|
|
expected = xp.numpy().diagonal(0, -2, -1)
|
|
self.assertEqual(expected.shape, result.shape)
|
|
self.assertEqual(expected, result)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float)
|
|
def test_broadcast_tensors(self, device, dtype):
|
|
x0 = torch.randn(2, 1, 3, dtype=dtype, device=device)
|
|
x1 = torch.randn(3, dtype=dtype, device=device)
|
|
x2 = torch.randn(3, 1, dtype=dtype, device=device)
|
|
expected_size = (2, 3, 3)
|
|
|
|
y0, y1, y2 = torch.broadcast_tensors(x0, x1, x2)
|
|
self.assertTrue(y0.size() == expected_size)
|
|
self.assertTrue(y1.size() == expected_size)
|
|
self.assertTrue(y2.size() == expected_size)
|
|
|
|
def _do_pow_for_exponents(self, m1, exponents, pow_fn, atol):
|
|
for num in exponents:
|
|
if isinstance(num, int) and num < 0 and not m1.is_floating_point() and not m1.is_complex():
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
r'Integers to negative integer powers are not allowed\.'):
|
|
torch.pow(m1[4], num)
|
|
else:
|
|
# base - tensor, exponent - number
|
|
# contiguous
|
|
res1 = torch.pow(m1[4], num)
|
|
res2 = res1.clone().zero_()
|
|
# `math.pow` has issues with complex exponentiation so we need to resort to normal `pow`.
|
|
for i in range(res2.size(0)):
|
|
res2[i] = pow_fn(m1[4][i], num)
|
|
rtol = 0 if atol is not None else None
|
|
self.assertEqual(res1, res2, atol=atol, rtol=rtol)
|
|
|
|
# non-contiguous
|
|
res1 = torch.pow(m1[:, 4], num)
|
|
res2 = res1.clone().zero_()
|
|
for i in range(res2.size(0)):
|
|
res2[i] = pow_fn(m1[i, 4], num)
|
|
self.assertEqual(res1, res2, atol=atol, rtol=rtol)
|
|
|
|
# scalar ** tensor to enforce correct handling of dtypes for __rpow__().
|
|
expected_dtype = torch.result_type(num, m1)
|
|
res1 = num ** m1[4]
|
|
res2 = torch.tensor(num, dtype=expected_dtype, device=m1.device) ** m1[4]
|
|
self.assertEqual(res1, res2)
|
|
self.assertEqual(res1.dtype, expected_dtype)
|
|
|
|
def test_pow(self, device):
|
|
# [res] torch.pow([res,] x)
|
|
|
|
# pow has dedicated implementation for different exponents
|
|
for dtype in torch.testing.get_all_math_dtypes(device):
|
|
|
|
# This test won't work on torch.half because math.pow will generate a much more accurate result. We skip it
|
|
# for now.
|
|
if dtype == torch.half:
|
|
continue
|
|
|
|
# deferring to https://github.com/pytorch/pytorch/pull/36793
|
|
if dtype.is_complex:
|
|
continue
|
|
|
|
m1 = torch.empty(0, dtype=dtype, device=device)
|
|
if m1.is_floating_point() or m1.is_complex():
|
|
m1 = torch.rand(100, 100, dtype=dtype, device=device) + 0.5
|
|
else:
|
|
# math.pow will overflow and throw exceptions for large integers
|
|
range_high = 4 if dtype in (torch.int8, torch.uint8) else 10
|
|
m1 = torch.randint(1, range_high, (100, 100), dtype=dtype, device=device)
|
|
|
|
exponents = [-2.8, -2, -1, -0.5, 0, 0.5, 1, 2, 3, 4, 3.3]
|
|
complex_exponents = [-2.5j, -1.0j, 0j, 1.0j, 2.5j, 1.0 + 1.0j, -1.0 - 1.5j, 3.3j]
|
|
if m1.is_complex():
|
|
self._do_pow_for_exponents(m1, exponents + complex_exponents, pow, 10e-4)
|
|
else:
|
|
self._do_pow_for_exponents(m1, exponents, math.pow, None)
|
|
self._do_pow_for_exponents(m1, complex_exponents, pow, 10e-4)
|
|
|
|
# base - number, exponent - tensor
|
|
# contiguous
|
|
res1 = torch.pow(3, m1[4])
|
|
res2 = res1.clone().zero_()
|
|
for i in range(res2.size(0)):
|
|
res2[i] = math.pow(3, m1[4, i])
|
|
self.assertEqual(res1, res2)
|
|
|
|
# non-contiguous
|
|
res1 = torch.pow(3, m1[:, 4])
|
|
res2 = res1.clone().zero_()
|
|
for i in range(res2.size(0)):
|
|
res2[i] = math.pow(3, m1[i][4])
|
|
self.assertEqual(res1, res2)
|
|
|
|
# resize behavior for exp == 1
|
|
out = torch.zeros(1, dtype=dtype, device=device)
|
|
torch.pow(m1, 1, out=out)
|
|
self.assertEqual(out, m1)
|
|
|
|
|
|
def test_neg(self, device):
|
|
int_types = [torch.int, torch.short, torch.int8, torch.uint8]
|
|
float_types = [torch.float, torch.double, torch.long]
|
|
|
|
# Tests bool tensor negation raises the correct error
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Negation, the `\-` operator, on a bool tensor is not supported. "
|
|
r"If you are trying to invert a mask, use the `\~` or `logical_not\(\)` operator instead.",
|
|
lambda: - torch.tensor([False, True], device=device))
|
|
|
|
for dtype in float_types + int_types:
|
|
if dtype in float_types:
|
|
a = torch.randn(100, 90).to(device=device, dtype=dtype)
|
|
if dtype == torch.uint8:
|
|
a = torch.randint(0, 256, (100, 90), dtype=dtype, device=device)
|
|
else:
|
|
a = torch.randint(-128, 128, (100, 90), dtype=dtype, device=device)
|
|
zeros = torch.zeros_like(a, device=device, dtype=dtype)
|
|
|
|
if dtype == torch.uint8:
|
|
res_add = torch.add(zeros, a, alpha=255)
|
|
else:
|
|
res_add = torch.add(zeros, a, alpha=-1)
|
|
|
|
res_neg = a.clone()
|
|
res_neg.neg_()
|
|
self.assertEqual(res_neg, res_add)
|
|
|
|
# test out of place as well
|
|
res_neg_out_place = a.clone().neg()
|
|
self.assertEqual(res_neg_out_place, res_add)
|
|
|
|
# test via __neg__ operator
|
|
res_neg_op = -a.clone()
|
|
self.assertEqual(res_neg_op, res_add)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
def test_inverse(self, device):
|
|
from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value
|
|
|
|
# no batches: 2-D tensors
|
|
matrix = random_fullrank_matrix_distinct_singular_value(5).to(device)
|
|
matrix_inverse = torch.inverse(matrix)
|
|
|
|
identity = torch.eye(5, dtype=torch.float64, device=device)
|
|
self.assertEqual(identity, torch.mm(matrix, matrix_inverse), atol=1e-8, rtol=0, msg='inverse value')
|
|
self.assertEqual(identity, torch.mm(matrix_inverse, matrix), atol=1e-8, rtol=0, msg='inverse value')
|
|
|
|
matrix_inverse_out = torch.empty(5, 5, dtype=torch.float64, device=device)
|
|
torch.inverse(matrix, out=matrix_inverse_out)
|
|
self.assertEqual(matrix_inverse_out, matrix_inverse, atol=0, rtol=0, msg='inverse value in-place')
|
|
# second call, now that matrix_inverse_out is transposed
|
|
torch.inverse(matrix, out=matrix_inverse_out)
|
|
self.assertEqual(matrix_inverse_out, matrix_inverse, atol=0, rtol=0, msg='inverse value in-place')
|
|
|
|
# one batch
|
|
matrix = random_fullrank_matrix_distinct_singular_value(5, 1).to(device)
|
|
matrix_inverse = torch.inverse(matrix)
|
|
expected_inv = matrix.squeeze(0).inverse()
|
|
self.assertEqual(matrix_inverse, expected_inv.unsqueeze(0))
|
|
|
|
# four batches
|
|
matrices = random_fullrank_matrix_distinct_singular_value(5, 4).to(device)
|
|
expected_inv_list = []
|
|
for i in range(0, 4):
|
|
expected_inv_list.append(torch.inverse(matrices[i]))
|
|
expected_inv = torch.stack(expected_inv_list)
|
|
matrices_inverse = torch.inverse(matrices)
|
|
self.assertEqual(matrices_inverse, expected_inv)
|
|
|
|
# six batches (2 x 3)
|
|
matrices = random_fullrank_matrix_distinct_singular_value(5, 2, 3).to(device)
|
|
expected_inv_list = []
|
|
for mat in matrices.view(-1, 5, 5):
|
|
expected_inv_list.append(torch.inverse(mat))
|
|
expected_inv = torch.stack(expected_inv_list).view(2, 3, 5, 5)
|
|
matrices_inverse = torch.inverse(matrices)
|
|
self.assertEqual(matrices_inverse, expected_inv)
|
|
|
|
# incorrect input test
|
|
with self.assertRaisesRegex(RuntimeError, "must be batches of square matrices"):
|
|
torch.inverse(torch.randn(2, 3, 4, 3))
|
|
|
|
# correctness test
|
|
matrices = random_fullrank_matrix_distinct_singular_value(5, 3).to(device)
|
|
matrices_inverse = torch.inverse(matrices)
|
|
self.assertEqual(torch.matmul(matrices, matrices_inverse), identity.expand_as(matrices))
|
|
self.assertEqual(torch.matmul(matrices_inverse, matrices), identity.expand_as(matrices))
|
|
|
|
# torch.inverse with out and batches
|
|
matrices = random_fullrank_matrix_distinct_singular_value(5, 3).to(device)
|
|
matrices_inverse = torch.empty(3, 5, 5, dtype=torch.float64, device=device)
|
|
torch.inverse(matrices, out=matrices_inverse)
|
|
self.assertEqual(torch.inverse(matrices), matrices_inverse)
|
|
|
|
# non-contiguous inputs
|
|
if not TEST_NUMPY:
|
|
return
|
|
|
|
from numpy.linalg import inv
|
|
matrices = random_fullrank_matrix_distinct_singular_value(3, 2).to(device).permute(0, 2, 1)
|
|
assert not matrices.is_contiguous()
|
|
matrices_inverse = torch.inverse(matrices)
|
|
expected_inv = torch.as_tensor(inv(matrices.cpu().numpy()))
|
|
self.assertEqual(matrices_inverse, expected_inv.to(device))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'NumPy not found')
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(torch.int8, torch.int16, torch.int32, torch.int64)
|
|
def test_signed_shift(self, device, dtype):
|
|
"Ensure that signed integer bit shifting works as expected."
|
|
a = torch.tensor([-10, 10], device=device, dtype=dtype) # [11...1110110, 1010]
|
|
expected_l = torch.tensor([-40, 40], device=device, dtype=dtype) # [11...11011000, 101000]
|
|
self.assertEqual(a << 2, expected_l)
|
|
self.compare_with_numpy(lambda x: x << 2, lambda x: np.left_shift(x, 2), a)
|
|
expected_r = torch.tensor([-5, 5], device=device, dtype=dtype) # [1111...111011, 101]
|
|
self.assertEqual(a >> 1, expected_r)
|
|
self.compare_with_numpy(lambda x: x >> 1, lambda x: np.right_shift(x, 1), a)
|
|
|
|
def test_bitwise_not(self, device):
|
|
res = 0xffff - torch.arange(127, dtype=torch.int8, device=device)
|
|
for dtype in (torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
|
|
if dtype == torch.bool:
|
|
a = torch.tensor([True, False], device=device)
|
|
expected_res = torch.tensor([False, True], device=device)
|
|
else:
|
|
a = torch.arange(127, dtype=dtype, device=device)
|
|
expected_res = res.to(dtype)
|
|
# new tensor
|
|
self.assertEqual(expected_res, a.bitwise_not())
|
|
# out
|
|
b = torch.empty(0, dtype=dtype, device=device)
|
|
torch.bitwise_not(a, out=b)
|
|
self.assertEqual(expected_res, b)
|
|
# in-place
|
|
a.bitwise_not_()
|
|
self.assertEqual(expected_res, a)
|
|
|
|
# test exceptions
|
|
for dtype in (torch.half, torch.float, torch.double):
|
|
a = torch.zeros(10, dtype=dtype, device=device)
|
|
# new tensor
|
|
with self.assertRaises(RuntimeError):
|
|
a.bitwise_not()
|
|
# out
|
|
b = torch.empty(0, dtype=dtype, device=device)
|
|
with self.assertRaises(RuntimeError):
|
|
torch.bitwise_not(a, out=b)
|
|
# in-place
|
|
with self.assertRaises(RuntimeError):
|
|
a.bitwise_not_()
|
|
|
|
def test_bitwise_and(self, device):
|
|
for dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
|
|
a = torch.tensor([1, -2, 3], dtype=dtype, device=device)
|
|
b = torch.tensor([2, 1, 3], dtype=dtype, device=device)
|
|
expected_res = torch.tensor([0, 0, 3], dtype=dtype, device=device)
|
|
b_scalar = 2
|
|
expected_res_scalar = torch.tensor([0, 2, 2], dtype=dtype, device=device)
|
|
|
|
# standard version
|
|
self.assertEqual(torch.bitwise_and(a, b), expected_res)
|
|
self.assertEqual(torch.bitwise_and(a, b_scalar), expected_res_scalar)
|
|
|
|
# out
|
|
c = torch.empty(0, dtype=dtype, device=device)
|
|
torch.bitwise_and(a, b, out=c)
|
|
self.assertEqual(c, expected_res)
|
|
torch.bitwise_and(a, b_scalar, out=c)
|
|
self.assertEqual(c, expected_res_scalar)
|
|
|
|
# in-place
|
|
a1 = a.clone()
|
|
a1.bitwise_and_(b)
|
|
self.assertEqual(a1, expected_res)
|
|
a.bitwise_and_(b_scalar)
|
|
self.assertEqual(a, expected_res_scalar)
|
|
|
|
self.assertEqual(torch.tensor([False, True, False], device=device),
|
|
torch.bitwise_and(torch.tensor([True, True, False], device=device),
|
|
torch.tensor([False, True, False], device=device)))
|
|
|
|
def test_bitwise_or(self, device):
|
|
for dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
|
|
a = torch.tensor([1, -2, 3], dtype=dtype, device=device)
|
|
b = torch.tensor([2, 1, 3], dtype=dtype, device=device)
|
|
expected_res = torch.tensor([3, -1, 3], dtype=dtype, device=device)
|
|
b_scalar = 2
|
|
expected_res_scalar = torch.tensor([3, -2, 3], dtype=dtype, device=device)
|
|
|
|
# standard version
|
|
self.assertEqual(torch.bitwise_or(a, b), expected_res)
|
|
self.assertEqual(torch.bitwise_or(a, b_scalar), expected_res_scalar)
|
|
|
|
# out
|
|
c = torch.empty(0, dtype=dtype, device=device)
|
|
torch.bitwise_or(a, b, out=c)
|
|
self.assertEqual(c, expected_res)
|
|
torch.bitwise_or(a, b_scalar, out=c)
|
|
self.assertEqual(c, expected_res_scalar)
|
|
|
|
# in-place
|
|
a1 = a.clone()
|
|
a1.bitwise_or_(b)
|
|
self.assertEqual(a1, expected_res)
|
|
a.bitwise_or_(b_scalar)
|
|
self.assertEqual(a, expected_res_scalar)
|
|
|
|
self.assertEqual(torch.tensor([True, True, False], device=device),
|
|
torch.bitwise_or(torch.tensor([True, True, False], device=device),
|
|
torch.tensor([False, True, False], device=device)))
|
|
|
|
def test_bitwise_xor(self, device):
|
|
for dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
|
|
a = torch.tensor([1, -2, 3], dtype=dtype, device=device)
|
|
b = torch.tensor([2, 1, 3], dtype=dtype, device=device)
|
|
expected_res = torch.tensor([3, -1, 0], dtype=dtype, device=device)
|
|
b_scalar = 2
|
|
expected_res_scalar = torch.tensor([3, -4, 1], dtype=dtype, device=device)
|
|
|
|
# standard version
|
|
self.assertEqual(torch.bitwise_xor(a, b), expected_res)
|
|
self.assertEqual(torch.bitwise_xor(a, b_scalar), expected_res_scalar)
|
|
|
|
# out
|
|
c = torch.empty(0, dtype=dtype, device=device)
|
|
torch.bitwise_xor(a, b, out=c)
|
|
self.assertEqual(c, expected_res)
|
|
torch.bitwise_xor(a, b_scalar, out=c)
|
|
self.assertEqual(c, expected_res_scalar)
|
|
|
|
# in-place
|
|
a1 = a.clone()
|
|
a1.bitwise_xor_(b)
|
|
self.assertEqual(a1, expected_res)
|
|
a.bitwise_xor_(b_scalar)
|
|
self.assertEqual(a, expected_res_scalar)
|
|
|
|
self.assertEqual(torch.tensor([True, False, False], device=device),
|
|
torch.bitwise_xor(torch.tensor([True, True, False], device=device),
|
|
torch.tensor([False, True, False], device=device)))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
@dtypes(*torch.testing.get_all_dtypes())
|
|
def test_logical_not(self, device, dtype):
|
|
data = [10, 1, 0.3, 0, -0.3, -1, -10]
|
|
a = torch.tensor(data, dtype=dtype, device=device)
|
|
|
|
# do this before constructing the numpy array because np can't construct
|
|
# bfloat16 tensors. Can we define our own dtype in NumPy so testing would be easier?
|
|
if dtype == torch.bfloat16 or dtype.is_complex:
|
|
self.assertRaises(RuntimeError, lambda: a.logical_not())
|
|
self.assertRaises(RuntimeError, lambda: a.logical_not_())
|
|
raise unittest.SkipTest('logical_not not supported on {}'.format(dtype))
|
|
|
|
a_np = np.array(data, dtype=torch_to_numpy_dtype_dict[dtype])
|
|
self.assertEqual(np.logical_not(a_np), torch.logical_not(a).to('cpu'))
|
|
self.assertEqual(np.logical_not(a_np, out=a_np), a.logical_not_().to('cpu'))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
@dtypes(*list(product(torch.testing.get_all_dtypes(),
|
|
torch.testing.get_all_dtypes())))
|
|
def test_logical_not_out(self, device, dtypes):
|
|
dtype = dtypes[0]
|
|
out_dtype = dtypes[1]
|
|
data = [10, 1, 0.3, 0, -0.3, -1, -10]
|
|
a = torch.tensor(data, dtype=dtype, device=device)
|
|
out = torch.empty(a.shape, dtype=out_dtype, device=device)
|
|
|
|
if (dtype == torch.bfloat16 or dtype.is_complex or
|
|
out_dtype == torch.bfloat16 or out_dtype.is_complex):
|
|
self.assertRaises(RuntimeError, lambda: torch.logical_not(a, out=out))
|
|
raise unittest.SkipTest('logical_not not supported on {}'.format(out_dtype))
|
|
|
|
out_np = np.empty(a.shape, dtype=torch_to_numpy_dtype_dict[out_dtype])
|
|
|
|
self.assertEqual(a, a.cpu().numpy())
|
|
torch.logical_not(a, out=out)
|
|
np.logical_not(a.cpu().numpy(), out=out_np)
|
|
self.assertEqual(out_np, out.to('cpu'))
|
|
|
|
def _test_logical(self, device, op, a_, b_, expected_res_):
|
|
for dtype in torch.testing.get_all_dtypes():
|
|
expected_res = torch.tensor(expected_res_, dtype=dtype, device=device)
|
|
a = torch.tensor(a_, dtype=dtype, device=device)
|
|
for other_dtype in torch.testing.get_all_dtypes():
|
|
b = torch.tensor(b_, dtype=other_dtype, device=device)
|
|
|
|
# Skip bfloat16 on CUDA. Remove this after bfloat16 is supported on CUDA.
|
|
if device.startswith('cuda') and torch.bfloat16 in (dtype, other_dtype):
|
|
with self.assertRaises(RuntimeError):
|
|
getattr(a, op)(b)
|
|
continue
|
|
# TODO Remove this skipping after bfloat16 can be handled nicely with other dtypes.
|
|
# Skip only if either dtype or other_dtype is bfloat16.
|
|
if (dtype == torch.bfloat16) != (other_dtype == torch.bfloat16):
|
|
with self.assertRaises(RuntimeError):
|
|
getattr(a, op)(b)
|
|
continue
|
|
|
|
if dtype.is_complex or other_dtype.is_complex:
|
|
with self.assertRaises(RuntimeError):
|
|
getattr(a, op)(b)
|
|
continue
|
|
|
|
# new tensor
|
|
self.assertEqual(expected_res.bool(), getattr(a, op)(b))
|
|
# out
|
|
c = torch.empty(0, dtype=torch.bool, device=device)
|
|
getattr(torch, op)(a, b, out=c)
|
|
self.assertEqual(expected_res.bool(), c.bool())
|
|
|
|
# in-place
|
|
b = torch.tensor(b_, dtype=dtype, device=device)
|
|
# Skip bfloat16 on CUDA. Remove this after bfloat16 is supported on CUDA.
|
|
if device.startswith('cuda') and dtype == torch.bfloat16:
|
|
with self.assertRaises(RuntimeError):
|
|
getattr(a, op + '_')(b)
|
|
continue
|
|
if dtype.is_complex:
|
|
with self.assertRaises(RuntimeError):
|
|
getattr(a, op + '_')(b)
|
|
continue
|
|
getattr(a, op + '_')(b)
|
|
self.assertEqual(expected_res, a)
|
|
|
|
def test_logical_xor(self, device):
|
|
self._test_logical(device, 'logical_xor', [10, 0, 1, 0], [1, 0, 0, 10], [0, 0, 1, 1])
|
|
|
|
def test_logical_and(self, device):
|
|
self._test_logical(device, 'logical_and', [10, 0, 1, 0], [1, 0, 0, 10], [1, 0, 0, 0])
|
|
|
|
def test_logical_or(self, device):
|
|
self._test_logical(device, 'logical_or', [10, 0, 1, 0], [1, 0, 0, 10], [1, 0, 1, 1])
|
|
|
|
def test_clamp(self, device):
|
|
m1 = torch.rand(100, device=device).mul(5).add(-2.5) # uniform in [-2.5, 2.5]
|
|
# just in case we're extremely lucky.
|
|
min_val = -1
|
|
max_val = 1
|
|
m1[1] = min_val
|
|
m1[2] = max_val
|
|
|
|
res1 = m1.clone()
|
|
res1.clamp_(min_val, max_val)
|
|
res2 = m1.clone()
|
|
for i in iter_indices(res2):
|
|
res2[i] = max(min_val, min(max_val, res2[i]))
|
|
self.assertEqual(res1, res2)
|
|
|
|
out = m1.clone()
|
|
torch.clamp(m1, min=min_val, max=max_val, out=out)
|
|
self.assertEqual(out, res1)
|
|
|
|
res1 = torch.clamp(m1, min=min_val)
|
|
res2 = m1.clone()
|
|
for i in iter_indices(res2):
|
|
res2[i] = max(min_val, res2[i])
|
|
self.assertEqual(res1, res2)
|
|
|
|
torch.clamp(m1, min=min_val, out=out)
|
|
self.assertEqual(out, res1)
|
|
|
|
res1 = torch.clamp(m1, max=max_val)
|
|
res2 = m1.clone()
|
|
for i in iter_indices(res2):
|
|
res2[i] = min(max_val, res2[i])
|
|
self.assertEqual(res1, res2)
|
|
|
|
torch.clamp(m1, max=max_val, out=out)
|
|
self.assertEqual(out, res1)
|
|
|
|
# if the tensor contains nan case
|
|
test_tens = torch.tensor([nan], device=device)
|
|
|
|
res1 = test_tens.clone()
|
|
res1.clamp_(min_val, max_val)
|
|
res2 = test_tens.clone()
|
|
for i in iter_indices(res2):
|
|
res2[i] = max(min(res2[i], max_val), min_val)
|
|
self.assertEqual(torch.isnan(res1), torch.isnan(res2))
|
|
|
|
out = test_tens.clone()
|
|
torch.clamp(test_tens, min=min_val, max=max_val, out=out)
|
|
self.assertEqual(torch.isnan(out), torch.isnan(res1))
|
|
|
|
res1 = torch.clamp(test_tens, min=min_val)
|
|
res2 = test_tens.clone()
|
|
for i in iter_indices(res2):
|
|
res2[i] = max(res2[i], min_val)
|
|
self.assertEqual(torch.isnan(res1), torch.isnan(res2))
|
|
|
|
torch.clamp(test_tens, min=min_val, out=out)
|
|
self.assertEqual(torch.isnan(out), torch.isnan(res1))
|
|
|
|
res1 = torch.clamp(test_tens, max=max_val)
|
|
res2 = test_tens.clone()
|
|
for i in iter_indices(res2):
|
|
res2[i] = min(res2[i], max_val)
|
|
self.assertEqual(torch.isnan(res1), torch.isnan(res2))
|
|
|
|
torch.clamp(test_tens, max=max_val, out=out)
|
|
self.assertEqual(torch.isnan(out), torch.isnan(res1))
|
|
|
|
error_msg = 'At least one of \'min\' or \'max\' must not be None'
|
|
with self.assertRaisesRegex(RuntimeError, error_msg):
|
|
m1.clamp()
|
|
with self.assertRaisesRegex(RuntimeError, error_msg):
|
|
m1.clamp_()
|
|
|
|
def test_cat_empty_legacy(self, device):
|
|
# FIXME: this is legacy behavior and should be removed
|
|
# when we support empty tensors with arbitrary sizes
|
|
dtype = torch.float32
|
|
|
|
x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device)
|
|
empty = torch.randn((0,), dtype=dtype, device=device)
|
|
|
|
res1 = torch.cat([x, empty], dim=1)
|
|
res2 = torch.cat([empty, x], dim=1)
|
|
self.assertEqual(res1, res2)
|
|
|
|
res1 = torch.cat([empty, empty], dim=1)
|
|
self.assertEqual(res1, empty)
|
|
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
'non-empty list of Tensors'):
|
|
torch.cat([], dim=1)
|
|
|
|
def test_cat_empty(self, device):
|
|
dtype = torch.float32
|
|
|
|
x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device)
|
|
empty = torch.randn((4, 0, 32, 32), dtype=dtype, device=device)
|
|
|
|
res1 = torch.cat([x, empty], dim=1)
|
|
res2 = torch.cat([empty, x], dim=1)
|
|
self.assertEqual(res1, res2)
|
|
|
|
res1 = torch.cat([empty, empty], dim=1)
|
|
self.assertEqual(res1, empty)
|
|
|
|
# check non-legacy-behavior (sizes don't match)
|
|
empty = torch.randn((4, 0, 31, 32), dtype=dtype, device=device)
|
|
self.assertRaises(RuntimeError, lambda: torch.cat([x, empty], dim=1))
|
|
self.assertRaises(RuntimeError, lambda: torch.cat([empty, x], dim=1))
|
|
|
|
# check non-legacy-behavior (dimensions don't match)
|
|
empty = torch.randn((4, 0), dtype=dtype, device=device)
|
|
self.assertRaises(RuntimeError, lambda: torch.cat([x, empty], dim=1))
|
|
self.assertRaises(RuntimeError, lambda: torch.cat([empty, x], dim=1))
|
|
|
|
def test_cat_out(self, device):
|
|
x = torch.zeros((0), device=device)
|
|
y = torch.randn((4, 6), device=device)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, r"unsupported operation:.* input tensor 0"):
|
|
torch.cat([x, y], dim=0, out=x)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, r"unsupported operation:.* input tensor 1"):
|
|
torch.cat([x, y], dim=0, out=y)
|
|
|
|
z = torch.zeros((4, 6), device=device)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, r"unsupported operation:.* input tensor 1"):
|
|
torch.cat([y, z], out=z[:2, :])
|
|
|
|
w = y.view(-1).clone()
|
|
a = torch.cat([w[:2], w[4:6]])
|
|
b = torch.cat([w[:2], w[4:6]], out=w[6:10])
|
|
self.assertEqual(a, b)
|
|
self.assertEqual(w[:6], y.view(-1)[:6])
|
|
|
|
def test_cat_out_channels_last(self, device):
|
|
x = torch.randn((4, 3, 8, 8))
|
|
y = torch.randn(x.shape)
|
|
res1 = torch.cat((x, y))
|
|
z = res1.clone().contiguous(memory_format=torch.channels_last)
|
|
res2 = torch.cat((x, y), out=z)
|
|
self.assertEqual(res1, res2)
|
|
|
|
@onlyCPU
|
|
def test_cat_in_channels_last(self, device):
|
|
for dim in range(4):
|
|
x = torch.randn((4, 15, 8, 8), device=device)
|
|
y = torch.randn(x.shape, device=device)
|
|
res1 = torch.cat((x, y), dim=dim)
|
|
x = x.clone().contiguous(memory_format=torch.channels_last)
|
|
y = y.clone().contiguous(memory_format=torch.channels_last)
|
|
res2 = torch.cat((x, y), dim=dim)
|
|
self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last))
|
|
self.assertEqual(res1, res2)
|
|
|
|
# Size larger than grain size.
|
|
x = torch.randn((4, 15, 256, 256), device=device)
|
|
y = torch.randn(x.shape, device=device)
|
|
res1 = torch.cat((x, y), dim=dim)
|
|
x = x.clone().contiguous(memory_format=torch.channels_last)
|
|
y = y.clone().contiguous(memory_format=torch.channels_last)
|
|
res2 = torch.cat((x, y), dim=dim)
|
|
self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last))
|
|
self.assertEqual(res1, res2)
|
|
|
|
@onlyCUDA
|
|
def test_cat_preserve_channels_last(self, device):
|
|
x = torch.randn((4, 3, 8, 8), device=device)
|
|
y = torch.randn(x.shape, device=device)
|
|
res1 = torch.cat((x, y))
|
|
res2 = torch.cat((x.contiguous(memory_format=torch.channels_last), y.contiguous(memory_format=torch.channels_last)))
|
|
self.assertEqual(res1, res2)
|
|
self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last))
|
|
|
|
@onlyCUDA
|
|
@deviceCountAtLeast(2)
|
|
def test_cat_different_devices(self, devices):
|
|
cuda0 = torch.randn((3, 3), device=devices[0])
|
|
cuda1 = torch.randn((3, 3), device=devices[1])
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
"input tensors must be on the same device"):
|
|
torch.cat((cuda0, cuda1))
|
|
cpu = torch.randn(3, 3)
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
"input tensors must be on the same device"):
|
|
torch.cat((cuda0, cpu))
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
"input tensors must be on the same device"):
|
|
torch.cat((cpu, cuda0))
|
|
|
|
def test_block_diag(self, device):
|
|
def block_diag_workaround(*arrs):
|
|
arrs_expanded = []
|
|
for a in arrs:
|
|
if a.dim() == 2:
|
|
arrs_expanded.append(a)
|
|
elif a.dim() == 1:
|
|
arrs_expanded.append(a.expand(1, a.size(0)))
|
|
elif a.dim() == 0:
|
|
arrs_expanded.append(a.expand(1, 1))
|
|
shapes = torch.tensor([a.shape for a in arrs_expanded], device=device)
|
|
out = torch.zeros(
|
|
torch.sum(shapes, dim=0).tolist(),
|
|
dtype=arrs_expanded[0].dtype,
|
|
device=device
|
|
)
|
|
r, c = 0, 0
|
|
for i, (rr, cc) in enumerate(shapes):
|
|
out[r:r + rr, c:c + cc] = arrs_expanded[i]
|
|
r += rr
|
|
c += cc
|
|
return out
|
|
|
|
tensors = [
|
|
torch.rand((2, 2), device=device),
|
|
torch.rand((2, 3), device=device),
|
|
torch.rand(10, device=device),
|
|
torch.rand((8, 1), device=device),
|
|
torch.rand(1, device=device)[0]
|
|
]
|
|
result = torch.block_diag(*tensors)
|
|
result_check = block_diag_workaround(*tensors)
|
|
self.assertEqual(result, result_check)
|
|
|
|
tensor = torch.rand(1, device=device)[0]
|
|
result = torch.block_diag(tensor)
|
|
result_check = tensor.expand(1, 1)
|
|
self.assertEqual(result, result_check)
|
|
|
|
tensor = torch.rand(10, device=device)
|
|
result = torch.block_diag(tensor)
|
|
result_check = tensor.expand(1, tensor.size(0))
|
|
self.assertEqual(result, result_check)
|
|
|
|
result = torch.block_diag()
|
|
result_check = torch.empty(1, 0, device=device)
|
|
self.assertEqual(result, result_check)
|
|
self.assertEqual(result.device.type, 'cpu')
|
|
|
|
test_dtypes = [
|
|
torch.uint8,
|
|
torch.int8,
|
|
torch.int16,
|
|
torch.int32,
|
|
torch.int64,
|
|
torch.float32,
|
|
torch.float64,
|
|
torch.complex64,
|
|
torch.complex128
|
|
]
|
|
# Test pairs of different dtypes
|
|
for dtype1 in test_dtypes:
|
|
for dtype2 in test_dtypes:
|
|
a = torch.tensor(1, device=device, dtype=dtype1)
|
|
b = torch.tensor(2, device=device, dtype=dtype2)
|
|
result = torch.block_diag(a, b)
|
|
result_dtype = torch.result_type(a, b)
|
|
result_check = torch.tensor([[1, 0], [0, 2]], device=device, dtype=result_dtype)
|
|
self.assertEqual(result, result_check)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"torch.block_diag: Input tensors must have 2 or fewer dimensions. Input 1 has 3 dimensions"
|
|
):
|
|
torch.block_diag(torch.tensor(5), torch.tensor([[[6]]]))
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"torch.block_diag: Input tensors must have 2 or fewer dimensions. Input 0 has 4 dimensions"
|
|
):
|
|
torch.block_diag(torch.tensor([[[[6]]]]))
|
|
|
|
if device != 'cpu':
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
(
|
|
"torch.block_diag: input tensors must all be on the same device."
|
|
" Input 0 is on device cpu and input 1 is on device "
|
|
)
|
|
):
|
|
torch.block_diag(torch.ones(2, 2).cpu(), torch.ones(2, 2, device=device))
|
|
|
|
@unittest.skipIf(not TEST_SCIPY, "Scipy not found")
|
|
def test_block_diag_scipy(self, device):
|
|
import scipy.linalg
|
|
scipy_tensors_list = [
|
|
[
|
|
1,
|
|
[2],
|
|
[],
|
|
[3, 4, 5],
|
|
[[], []],
|
|
[[6], [7.3]]
|
|
],
|
|
[
|
|
[[1, 2], [3, 4]],
|
|
[1]
|
|
],
|
|
[
|
|
[[4, 9], [7, 10]],
|
|
[4.6, 9.12],
|
|
[1j + 3]
|
|
],
|
|
[]
|
|
]
|
|
|
|
expected_torch_types = [
|
|
torch.float32,
|
|
torch.int64,
|
|
torch.complex64,
|
|
torch.float32
|
|
]
|
|
|
|
expected_scipy_types = [
|
|
torch.float64,
|
|
# windows scipy block_diag returns int32 types
|
|
torch.int32 if IS_WINDOWS else torch.int64,
|
|
torch.complex128,
|
|
torch.float64
|
|
]
|
|
|
|
for scipy_tensors, torch_type, scipy_type in zip(scipy_tensors_list, expected_torch_types, expected_scipy_types):
|
|
torch_tensors = [torch.tensor(t, device=device) for t in scipy_tensors]
|
|
torch_result = torch.block_diag(*torch_tensors)
|
|
self.assertEqual(torch_result.dtype, torch_type)
|
|
|
|
scipy_result = torch.tensor(
|
|
scipy.linalg.block_diag(*scipy_tensors),
|
|
device=device
|
|
)
|
|
self.assertEqual(scipy_result.dtype, scipy_type)
|
|
scipy_result = scipy_result.to(torch_type)
|
|
|
|
self.assertEqual(torch_result, scipy_result)
|
|
|
|
def test_is_set_to(self, device):
|
|
t1 = torch.empty(3, 4, 9, 10, device=device)
|
|
t2 = torch.empty(3, 4, 9, 10, device=device)
|
|
t3 = torch.tensor([], device=device).set_(t1)
|
|
t4 = t3.clone().resize_(12, 90)
|
|
self.assertFalse(t1.is_set_to(t2))
|
|
self.assertTrue(t1.is_set_to(t3))
|
|
self.assertTrue(t3.is_set_to(t1), "is_set_to should be symmetric")
|
|
self.assertFalse(t1.is_set_to(t4))
|
|
self.assertFalse(torch.Tensor().is_set_to(torch.Tensor()),
|
|
"Tensors with no storages should not appear to be set "
|
|
"to each other")
|
|
|
|
t1 = torch.tensor([True, True], dtype=torch.bool, device=device)
|
|
t2 = torch.tensor([0], dtype=torch.bool, device=device).set_(t1)
|
|
self.assertTrue(t1.is_set_to(t2))
|
|
|
|
# test that sizes must match
|
|
t1 = torch.empty([2, 3, 4], device=device)
|
|
t2 = t1.view(4, 3, 2)
|
|
self.assertFalse(t1.is_set_to(t2))
|
|
self.assertFalse(t2.is_set_to(t1))
|
|
|
|
# test that legacy empty size behavior used to be respected (i.e. all
|
|
# empty tensors were logically collapsed to size [0]).
|
|
t1 = torch.empty([2, 5, 0], device=device)
|
|
t2 = t1.view([0])
|
|
self.assertFalse(t1.is_set_to(t2))
|
|
self.assertFalse(t2.is_set_to(t1))
|
|
|
|
@slowTest
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
def test_inverse_many_batches(self, device):
|
|
from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value
|
|
|
|
matrices = random_fullrank_matrix_distinct_singular_value(5, 256, 256).to(device)
|
|
matrices_inverse = torch.inverse(matrices)
|
|
self.assertEqual(torch.matmul(matrices_inverse, matrices),
|
|
torch.eye(5, dtype=torch.float64).to(device).expand_as(matrices))
|
|
|
|
matrices = random_fullrank_matrix_distinct_singular_value(3, 512, 512).to(device)
|
|
matrices_inverse = torch.inverse(matrices)
|
|
self.assertEqual(torch.matmul(matrices, matrices_inverse),
|
|
torch.eye(3, dtype=torch.float64).to(device).expand_as(matrices))
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_pinverse(self, device, dtype):
|
|
from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value as fullrank
|
|
|
|
def run_test(M):
|
|
# Testing against definition for pseudo-inverses
|
|
MPI = torch.pinverse(M)
|
|
if M.numel() > 0:
|
|
self.assertEqual(M, M.matmul(MPI).matmul(M), atol=1e-8, rtol=0, msg='pseudo-inverse condition 1')
|
|
self.assertEqual(MPI, MPI.matmul(M).matmul(MPI), atol=1e-8, rtol=0, msg='pseudo-inverse condition 2')
|
|
self.assertEqual(M.matmul(MPI), (M.matmul(MPI)).transpose(-2, -1),
|
|
atol=1e-8, rtol=0, msg='pseudo-inverse condition 3')
|
|
self.assertEqual(MPI.matmul(M), (MPI.matmul(M)).transpose(-2, -1),
|
|
atol=1e-8, rtol=0, msg='pseudo-inverse condition 4')
|
|
else:
|
|
self.assertEqual(M.shape, MPI.shape[:-2] + (MPI.shape[-1], MPI.shape[-2]))
|
|
for sizes in [(5, 5), (3, 5, 5), (3, 7, 5, 5), # square matrices
|
|
(3, 2), (5, 3, 2), (7, 5, 3, 2), # fat matrices
|
|
(2, 3), (5, 2, 3), (7, 5, 2, 3), # thin matrices
|
|
(0, 0), (0, 2), (2, 0), (3, 0, 0), (0, 3, 0), (0, 0, 3)]: # zero numel matrices
|
|
M = torch.randn(*sizes, dtype=dtype, device=device)
|
|
run_test(M)
|
|
|
|
# Test inverse and pseudo-inverse for invertible matrix
|
|
for sizes in [(5, 5), (3, 5, 5), (3, 7, 5, 5)]:
|
|
matsize = sizes[-1]
|
|
batchdims = sizes[:-2]
|
|
M = fullrank(matsize, *batchdims, dtype=dtype, device=device)
|
|
self.assertEqual(torch.eye(matsize, dtype=dtype, device=device).expand(sizes), M.pinverse().matmul(M),
|
|
atol=1e-7, rtol=0, msg='pseudo-inverse for invertible matrix')
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
def test_matrix_rank(self, device):
|
|
a = torch.eye(10, device=device)
|
|
self.assertEqual(torch.matrix_rank(a).item(), 10)
|
|
self.assertEqual(torch.matrix_rank(a, True).item(), 10)
|
|
|
|
a[5, 5] = 0
|
|
self.assertEqual(torch.matrix_rank(a).item(), 9)
|
|
self.assertEqual(torch.matrix_rank(a, True).item(), 9)
|
|
|
|
a = torch.randn(24, 42, device=device)
|
|
self.assertEqual(torch.matrix_rank(a), torch.matrix_rank(a.t()))
|
|
aaT = torch.mm(a, a.t())
|
|
self.assertEqual(torch.matrix_rank(aaT), torch.matrix_rank(aaT, True))
|
|
aTa = torch.mm(a.t(), a)
|
|
self.assertEqual(torch.matrix_rank(aTa), torch.matrix_rank(aTa, True))
|
|
|
|
if TEST_NUMPY:
|
|
from numpy.linalg import matrix_rank
|
|
a = torch.randn(35, 75, device=device)
|
|
self.assertEqual(torch.matrix_rank(a).item(), matrix_rank(a.cpu().numpy()))
|
|
self.assertEqual(torch.matrix_rank(a, 0.01).item(), matrix_rank(a.cpu().numpy(), 0.01))
|
|
|
|
aaT = torch.mm(a, a.t())
|
|
self.assertEqual(torch.matrix_rank(aaT).item(), matrix_rank(aaT.cpu().numpy()))
|
|
self.assertEqual(torch.matrix_rank(aaT, 0.01).item(), matrix_rank(aaT.cpu().numpy(), 0.01))
|
|
|
|
if np.lib.NumpyVersion(np.__version__) >= '1.14.0':
|
|
self.assertEqual(torch.matrix_rank(aaT, True).item(), matrix_rank(aaT.cpu().numpy(), True))
|
|
self.assertEqual(torch.matrix_rank(aaT, 0.01, True).item(),
|
|
matrix_rank(aaT.cpu().numpy(), 0.01, True))
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_matrix_power(self, device, dtype):
|
|
def run_test(M, sign=1):
|
|
if sign == -1:
|
|
M = M.inverse()
|
|
MP2 = torch.matrix_power(M, 2)
|
|
self.assertEqual(MP2, torch.matmul(M, M))
|
|
|
|
MP3 = torch.matrix_power(M, 3)
|
|
self.assertEqual(MP3, torch.matmul(MP2, M))
|
|
|
|
MP4 = torch.matrix_power(M, 4)
|
|
self.assertEqual(MP4, torch.matmul(MP2, MP2))
|
|
|
|
MP6 = torch.matrix_power(M, 6)
|
|
self.assertEqual(MP6, torch.matmul(MP3, MP3))
|
|
|
|
MP0 = torch.matrix_power(M, 0)
|
|
self.assertEqual(MP0, torch.eye(M.size(-2), dtype=dtype).expand_as(M))
|
|
|
|
# Single matrix
|
|
M = torch.randn(5, 5, dtype=dtype, device=device)
|
|
run_test(M)
|
|
|
|
# Batch matrices
|
|
M = torch.randn(3, 3, 3, dtype=dtype, device=device)
|
|
run_test(M)
|
|
|
|
# Many batch matrices
|
|
M = torch.randn(2, 3, 3, 3, dtype=dtype, device=device)
|
|
run_test(M)
|
|
|
|
# This is for negative powers
|
|
from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value
|
|
M = random_fullrank_matrix_distinct_singular_value(5, dtype=dtype, device=device)
|
|
run_test(M, sign=-1)
|
|
|
|
M = random_fullrank_matrix_distinct_singular_value(3, 3, dtype=dtype, device=device)
|
|
run_test(M, sign=-1)
|
|
|
|
M = random_fullrank_matrix_distinct_singular_value(3, 2, 3, dtype=dtype, device=device)
|
|
run_test(M, sign=-1)
|
|
|
|
@dtypes(torch.double)
|
|
def test_chain_matmul(self, device, dtype):
|
|
def product(matrices):
|
|
for mat in matrices[1:]:
|
|
matrices[0] = matrices[0].mm(mat)
|
|
return matrices[0]
|
|
|
|
def run_test(p):
|
|
matrices = []
|
|
for (pi, pi_1) in zip(p[:-1], p[1:]):
|
|
matrices.append(torch.randn(pi, pi_1, dtype=dtype, device=device))
|
|
self.assertEqual(torch.chain_matmul(*matrices), product(matrices))
|
|
|
|
run_test([10, 20, 30, 5])
|
|
run_test([15, 5, 10, 20, 25])
|
|
|
|
@slowTest
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_det_logdet_slogdet(self, device, dtype):
|
|
def reference_slogdet(M):
|
|
if TEST_NUMPY:
|
|
sdet, logabsdet = np.linalg.slogdet(M.detach().cpu().numpy())
|
|
return M.new_tensor(sdet), M.new_tensor(logabsdet)
|
|
else:
|
|
# naive row reduction
|
|
M = M.clone()
|
|
l = M.size(0)
|
|
multiplier = 1
|
|
for i in range(l):
|
|
if M[i, 0].item() != 0:
|
|
if i != 0:
|
|
M[0], M[i] = M[i], M[0]
|
|
multiplier = -1
|
|
break
|
|
else:
|
|
return 0
|
|
for i in range(1, l):
|
|
row = M[i]
|
|
for j in range(i):
|
|
row -= row[j] / M[j, j] * M[j]
|
|
M[i] = row
|
|
sdet = M.diag().sign().prod()
|
|
logabsdet = M.diag().abs_().log_().sum().add_(math.log(multiplier))
|
|
return sdet, logabsdet
|
|
|
|
def test_single_det(M, target, desc):
|
|
target_sdet, target_logabsdet = target
|
|
|
|
det = M.det()
|
|
logdet = M.logdet()
|
|
sdet, logabsdet = M.slogdet()
|
|
|
|
# Test det
|
|
self.assertEqual(det, target_sdet * target_logabsdet.exp(),
|
|
atol=1e-7, rtol=0, msg='{} (det)'.format(desc))
|
|
|
|
# Test slogdet
|
|
# Compare the overall value rather than individual parts because of
|
|
# precision issues when det is near zero.
|
|
self.assertEqual(sdet * logabsdet.exp(), target_sdet * target_logabsdet.exp(),
|
|
atol=1e-7, rtol=0, msg='{} (slogdet)'.format(desc))
|
|
|
|
# Test logdet
|
|
# Compare logdet against our own pytorch slogdet because they should
|
|
# be consistent, while it may behave slightly differently with other
|
|
# slogdet implementations when det is near zero due to precision
|
|
# issues.
|
|
if sdet.item() < 0:
|
|
self.assertTrue(logdet.item() != logdet.item(), '{} (logdet negative case)'.format(desc))
|
|
else:
|
|
self.assertEqual(logdet.exp(), target_logabsdet.exp(),
|
|
atol=1e-7, rtol=0, msg='{} (logdet non-negative case)'.format(desc))
|
|
|
|
eye = torch.eye(5, dtype=dtype, device=device)
|
|
test_single_det(eye, (torch.ones((), dtype=dtype, device=device), torch.zeros((), dtype=dtype, device=device)), 'identity')
|
|
|
|
def test(M):
|
|
assert M.size(0) >= 5, 'this helper fn assumes M to be at least 5x5'
|
|
M = M.to(device)
|
|
|
|
ref_M_sdet, ref_M_logabsdet = reference_slogdet(M)
|
|
|
|
test_single_det(M, (ref_M_sdet, ref_M_logabsdet), 'basic')
|
|
if ref_M_logabsdet.exp().item() >= 1e-6: # skip singular
|
|
M_inv = M.inverse()
|
|
test_single_det(M_inv, reference_slogdet(M_inv), 'inverse')
|
|
|
|
test_single_det(M, (ref_M_sdet, ref_M_logabsdet), 'transpose')
|
|
|
|
for x in [0, 2, 4]:
|
|
for scale in [-2, -0.1, 0, 10]:
|
|
if scale > 0:
|
|
target = ref_M_sdet, ref_M_logabsdet + math.log(scale)
|
|
elif scale == 0:
|
|
target = torch.zeros_like(ref_M_sdet), torch.full_like(ref_M_logabsdet, -inf)
|
|
else:
|
|
target = ref_M_sdet.neg(), ref_M_logabsdet + math.log(-scale)
|
|
|
|
# dim 0
|
|
M_clone = M.clone()
|
|
M_clone[:, x] *= scale
|
|
test_single_det(M_clone, target, 'scale a row')
|
|
# dim 1
|
|
M_clone = M.clone()
|
|
M_clone[x, :] *= scale
|
|
test_single_det(M_clone, target, 'scale a column')
|
|
|
|
for x1, x2 in [(0, 3), (4, 1), (3, 2)]:
|
|
assert x1 != x2, 'x1 and x2 needs to be different for this test'
|
|
target = torch.zeros_like(ref_M_sdet), torch.full_like(ref_M_logabsdet, -inf)
|
|
# dim 0
|
|
M_clone = M.clone()
|
|
M_clone[:, x2] = M_clone[:, x1]
|
|
test_single_det(M_clone, target, 'two rows are same')
|
|
# dim 1
|
|
M_clone = M.clone()
|
|
M_clone[x2, :] = M_clone[x1, :]
|
|
test_single_det(M_clone, target, 'two columns are same')
|
|
|
|
for scale1, scale2 in [(0.3, -1), (0, 2), (10, 0.1)]:
|
|
det_scale = scale1 * scale2 * -1
|
|
if det_scale > 0:
|
|
target = ref_M_sdet, ref_M_logabsdet + math.log(det_scale)
|
|
elif det_scale == 0:
|
|
target = torch.zeros_like(ref_M_sdet), torch.full_like(ref_M_logabsdet, -inf)
|
|
else:
|
|
target = ref_M_sdet.neg(), ref_M_logabsdet + math.log(-det_scale)
|
|
|
|
# dim 0
|
|
M_clone = M.clone()
|
|
t = M_clone[:, x1] * scale1
|
|
M_clone[:, x1] += M_clone[:, x2] * scale2
|
|
M_clone[:, x2] = t
|
|
test_single_det(M_clone, target, 'exchanging rows')
|
|
# dim 1
|
|
M_clone = M.clone()
|
|
t = M_clone[x1, :] * scale1
|
|
M_clone[x1, :] += M_clone[x2, :] * scale2
|
|
M_clone[x2, :] = t
|
|
test_single_det(M_clone, target, 'exchanging columns')
|
|
|
|
def get_random_mat_scale(n):
|
|
# For matrices with values i.i.d. with 0 mean, unit variance, and
|
|
# subexponential tail, we have:
|
|
# E[log det(A^2)] \approx log((n-1)!)
|
|
#
|
|
# Notice:
|
|
# log Var[det(A)] = log E[det(A^2)] >= E[log det(A^2)]
|
|
#
|
|
# So:
|
|
# stddev[det(A)] >= sqrt( (n-1)! )
|
|
#
|
|
# We use this as an intuitive guideline to scale random generated
|
|
# matrices so our closeness tests can work more robustly:
|
|
# scale by sqrt( (n-1)! )^(-1/n) = ( (n-1)! )^(-1/(2n))
|
|
#
|
|
# source: https://arxiv.org/pdf/1112.0752.pdf
|
|
|
|
# TODO: technically we need subexponential distn for this to hold,
|
|
# but we mostly use gaussian entries below. Consider switching
|
|
# to Chi-sq if this turns out not stable enough, since Chi-sq
|
|
# is easy enough to sample from.
|
|
return math.factorial(n - 1) ** (-1.0 / (2 * n))
|
|
|
|
for n in [5, 10, 25]:
|
|
scale = get_random_mat_scale(n)
|
|
test(torch.randn(n, n, dtype=dtype, device=device) * scale)
|
|
r = torch.randn(n, n, dtype=dtype, device=device) * scale
|
|
# symmetric psd
|
|
test(r.mm(r.t()))
|
|
# symmetric pd
|
|
r = torch.randn(n, n, dtype=dtype, device=device) * scale
|
|
test(r.mm(r.t()) + torch.eye(n, dtype=dtype, device=device) * 1e-6)
|
|
# symmetric
|
|
r = torch.randn(n, n, dtype=dtype, device=device) * scale
|
|
for i in range(n):
|
|
for j in range(i):
|
|
r[i, j] = r[j, i]
|
|
test(r)
|
|
# non-contiguous
|
|
test((torch.randn(n, n, n + 1, dtype=dtype, device=device) * scale)[:, 2, 1:])
|
|
# det = 0
|
|
r = torch.randn(n, n, dtype=dtype, device=device) * scale
|
|
u, s, v = r.svd()
|
|
if reference_slogdet(u)[0] < 0:
|
|
u = -u
|
|
if reference_slogdet(v)[0] < 0:
|
|
v = -v
|
|
s[0] *= -1
|
|
s[-1] = 0
|
|
test(u.mm(s.diag()).mm(v))
|
|
|
|
# Small values to test numerical stability. Note that we don't scale
|
|
# this matrix.
|
|
r = torch.randn(512, 512, dtype=dtype, device=device)
|
|
u, s, v = r.svd()
|
|
s.fill_(1. / (100 * s.numel()))
|
|
test(u.mm(s.diag()).mm(v))
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_det_logdet_slogdet_batched(self, device, dtype):
|
|
from torch.testing._internal.common_utils import (random_symmetric_matrix, random_symmetric_psd_matrix,
|
|
random_symmetric_pd_matrix, random_square_matrix_of_rank)
|
|
|
|
# mat_chars denotes matrix characteristics
|
|
# possible values are: sym, sym_psd, sym_pd, sing, non_sym
|
|
def run_test(matsize, batchdims, mat_chars):
|
|
num_matrices = reduce(lambda x, y: x * y, batchdims, 1)
|
|
list_of_matrices = []
|
|
|
|
for idx in range(num_matrices):
|
|
mat_type = idx % len(mat_chars)
|
|
if mat_chars[mat_type] == 'sym':
|
|
list_of_matrices.append(random_symmetric_matrix(matsize, dtype=dtype, device=device))
|
|
elif mat_chars[mat_type] == 'sym_psd':
|
|
list_of_matrices.append(random_symmetric_psd_matrix(matsize, dtype=dtype, device=device))
|
|
elif mat_chars[mat_type] == 'sym_pd':
|
|
list_of_matrices.append(random_symmetric_pd_matrix(matsize, dtype=dtype, device=device))
|
|
elif mat_chars[mat_type] == 'sing':
|
|
list_of_matrices.append(torch.ones(matsize, matsize, dtype=dtype, device=device))
|
|
elif mat_chars[mat_type] == 'non_sing':
|
|
list_of_matrices.append(random_square_matrix_of_rank(matsize, matsize, dtype=dtype, device=device))
|
|
full_tensor = torch.stack(list_of_matrices, dim=0).reshape(batchdims + (matsize, matsize))
|
|
# Scaling adapted from `get_random_mat_scale` in _test_det_logdet_slogdet
|
|
full_tensor *= (math.factorial(matsize - 1) ** (-1.0 / (2 * matsize)))
|
|
|
|
for fn in [torch.det, torch.logdet, torch.slogdet]:
|
|
expected_value = []
|
|
actual_value = fn(full_tensor)
|
|
for full_idx in product(*map(lambda x: list(range(x)), batchdims)):
|
|
expected_value.append(fn(full_tensor[full_idx]))
|
|
|
|
if fn == torch.slogdet:
|
|
sign_value = torch.stack([tup[0] for tup in expected_value], dim=0).reshape(batchdims)
|
|
expected_value = torch.stack([tup[1] for tup in expected_value], dim=0).reshape(batchdims)
|
|
self.assertEqual(sign_value, actual_value[0])
|
|
self.assertEqual(expected_value, actual_value[1])
|
|
else:
|
|
expected_value = torch.stack(expected_value, dim=0).reshape(batchdims)
|
|
self.assertEqual(actual_value, expected_value)
|
|
|
|
for matsize, batchdims in product([3, 5], [(3,), (5, 3)]):
|
|
run_test(matsize, batchdims, mat_chars=['sym_pd'])
|
|
run_test(matsize, batchdims, mat_chars=['sing'])
|
|
run_test(matsize, batchdims, mat_chars=['non_sing'])
|
|
run_test(matsize, batchdims, mat_chars=['sym', 'sym_pd', 'sym_psd'])
|
|
run_test(matsize, batchdims, mat_chars=['sing', 'non_sing'])
|
|
|
|
def solve_test_helper(self, A_dims, b_dims, device, dtype):
|
|
from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value
|
|
|
|
b = torch.randn(*b_dims, dtype=dtype, device=device)
|
|
A = random_fullrank_matrix_distinct_singular_value(*A_dims, dtype=dtype, device=device)
|
|
return b, A
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_solve(self, device, dtype):
|
|
for (k, n) in zip([2, 3, 5], [3, 5, 7]):
|
|
b, A = self.solve_test_helper((n,), (n, k), device, dtype)
|
|
x = torch.solve(b, A)[0]
|
|
self.assertLessEqual(b.dist(A.mm(x)), 1e-12)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_solve_batched(self, device, dtype):
|
|
def solve_batch_helper(A_dims, b_dims):
|
|
b, A = self.solve_test_helper(A_dims, b_dims, device, dtype)
|
|
x_exp_list = []
|
|
for i in range(b_dims[0]):
|
|
x_exp_list.append(torch.solve(b[i], A[i])[0])
|
|
x_exp = torch.stack(x_exp_list) # Stacked output
|
|
x_act = torch.solve(b, A)[0] # Actual output
|
|
self.assertEqual(x_exp, x_act) # Equality check
|
|
self.assertLessEqual(b.dist(torch.matmul(A, x_act)), 1e-12) # Correctness check
|
|
|
|
for batchsize in [1, 3, 4]:
|
|
solve_batch_helper((5, batchsize), (batchsize, 5, 10))
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
|
|
@dtypes(torch.double)
|
|
def test_solve_batched_non_contiguous(self, device, dtype):
|
|
from numpy.linalg import solve
|
|
from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value
|
|
A = random_fullrank_matrix_distinct_singular_value(2, 2, dtype=dtype,
|
|
device=device).permute(1, 0, 2)
|
|
b = torch.randn(2, 2, 2, dtype=dtype, device=device).permute(2, 1, 0)
|
|
x, _ = torch.solve(b, A)
|
|
x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy())).to(dtype=dtype, device=device)
|
|
self.assertEqual(x, x_exp)
|
|
|
|
@slowTest
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_solve_batched_many_batches(self, device, dtype):
|
|
b, A = self.solve_test_helper((5, 256, 256), (5, 1), device, dtype)
|
|
x, _ = torch.solve(b, A)
|
|
self.assertEqual(torch.matmul(A, x), b.expand(A.shape[:-2] + (5, 1)))
|
|
|
|
b, A = self.solve_test_helper((3,), (512, 512, 3, 1), device, dtype)
|
|
x, _ = torch.solve(b, A)
|
|
self.assertEqual(torch.matmul(A, x), b)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
|
|
@dtypes(torch.double)
|
|
def test_solve_batched_broadcasting(self, device, dtype):
|
|
from numpy.linalg import solve
|
|
|
|
def run_test(A_dims, b_dims):
|
|
A_matrix_size = A_dims[-1]
|
|
A_batch_dims = A_dims[:-2]
|
|
b, A = self.solve_test_helper((A_matrix_size,) + A_batch_dims, b_dims, device, dtype)
|
|
x, _ = torch.solve(b, A)
|
|
x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy())).to(dtype=dtype, device=device)
|
|
self.assertEqual(x, x_exp)
|
|
|
|
# test against numpy.linalg.solve
|
|
for upper in [True, False]:
|
|
run_test((2, 1, 3, 4, 4), (2, 1, 3, 4, 6)) # no broadcasting
|
|
run_test((2, 1, 3, 4, 4), (4, 6)) # broadcasting b
|
|
run_test((4, 4), (2, 1, 3, 4, 2)) # broadcasting A
|
|
run_test((1, 3, 1, 4, 4), (2, 1, 3, 4, 5)) # broadcasting A & b
|
|
|
|
def cholesky_solve_test_helper(self, A_dims, b_dims, upper, device, dtype):
|
|
from torch.testing._internal.common_utils import random_symmetric_pd_matrix
|
|
|
|
b = torch.randn(*b_dims, dtype=dtype, device=device)
|
|
A = random_symmetric_pd_matrix(*A_dims, dtype=dtype, device=device)
|
|
L = torch.cholesky(A, upper=upper)
|
|
return b, A, L
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_cholesky_solve(self, device, dtype):
|
|
for (k, n), upper in product(zip([2, 3, 5], [3, 5, 7]), [True, False]):
|
|
b, A, L = self.cholesky_solve_test_helper((n,), (n, k), upper, device, dtype)
|
|
x = torch.cholesky_solve(b, L, upper=upper)
|
|
self.assertLessEqual(b.dist(A.mm(x)), 1e-12)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_cholesky_solve_batched(self, device, dtype):
|
|
def cholesky_solve_batch_helper(A_dims, b_dims, upper):
|
|
b, A, L = self.cholesky_solve_test_helper(A_dims, b_dims, upper, device, dtype)
|
|
x_exp_list = []
|
|
for i in range(b_dims[0]):
|
|
x_exp_list.append(torch.cholesky_solve(b[i], L[i], upper=upper))
|
|
x_exp = torch.stack(x_exp_list) # Stacked output
|
|
x_act = torch.cholesky_solve(b, L, upper=upper) # Actual output
|
|
self.assertEqual(x_act, x_exp) # Equality check
|
|
self.assertLessEqual(b.dist(torch.matmul(A, x_act)), 2e-12) # Correctness check
|
|
|
|
for upper, batchsize in product([True, False], [1, 3, 4]):
|
|
cholesky_solve_batch_helper((5, batchsize), (batchsize, 5, 10), upper)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
|
|
@dtypes(torch.double)
|
|
def test_cholesky_solve_batched_non_contiguous(self, device, dtype):
|
|
from numpy.linalg import solve
|
|
from torch.testing._internal.common_utils import random_symmetric_pd_matrix
|
|
|
|
for upper in [True, False]:
|
|
A = random_symmetric_pd_matrix(2, 2, dtype=dtype, device='cpu')
|
|
b = torch.randn(2, 2, 2, dtype=dtype, device='cpu')
|
|
x_exp = torch.Tensor(solve(A.permute(0, 2, 1).numpy(), b.permute(2, 1, 0).numpy())).to(dtype=dtype, device=device)
|
|
A = A.to(device).permute(0, 2, 1)
|
|
b = b.to(device).permute(2, 1, 0)
|
|
assert not A.is_contiguous() and not b.is_contiguous(), "contiguous inputs"
|
|
L = torch.cholesky(A, upper)
|
|
x = torch.cholesky_solve(b, L, upper=upper)
|
|
self.assertEqual(x, x_exp)
|
|
|
|
@slowTest
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_cholesky_solve_batched_many_batches(self, device, dtype):
|
|
for upper in [True, False]:
|
|
b, A, L = self.cholesky_solve_test_helper((5, 256, 256), (5, 10), upper, device, dtype)
|
|
x = torch.cholesky_solve(b, L, upper)
|
|
self.assertEqual(torch.matmul(A, x), b.expand(A.shape[:-2] + (5, 10)))
|
|
|
|
b, A, L = self.cholesky_solve_test_helper((5,), (512, 512, 5, 10), upper, device, dtype)
|
|
x = torch.cholesky_solve(b, L, upper)
|
|
self.assertEqual(torch.matmul(A, x), b)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
|
|
@dtypes(torch.double)
|
|
def test_cholesky_solve_batched_broadcasting(self, device, dtype):
|
|
from numpy.linalg import solve
|
|
from torch.testing._internal.common_utils import random_symmetric_pd_matrix
|
|
|
|
def run_test(A_dims, b_dims, upper):
|
|
A_matrix_size = A_dims[-1]
|
|
A_batch_dims = A_dims[:-2]
|
|
A = random_symmetric_pd_matrix(A_matrix_size, *A_batch_dims,
|
|
dtype=dtype, device='cpu')
|
|
b = torch.randn(*b_dims, dtype=dtype, device='cpu')
|
|
x_exp = torch.tensor(solve(A.numpy(), b.numpy()), dtype=dtype, device=device)
|
|
A, b = A.to(dtype=dtype, device=device), b.to(dtype=dtype, device=device)
|
|
L = torch.cholesky(A, upper)
|
|
x = torch.cholesky_solve(b, L, upper=upper)
|
|
self.assertEqual(x, x_exp)
|
|
|
|
# test against numpy.linalg.solve
|
|
for upper in [True, False]:
|
|
run_test((2, 1, 3, 4, 4), (2, 1, 3, 4, 6), upper) # no broadcasting
|
|
run_test((2, 1, 3, 4, 4), (4, 6), upper) # broadcasting b
|
|
run_test((4, 4), (2, 1, 3, 4, 2), upper) # broadcasting A
|
|
run_test((1, 3, 1, 4, 4), (2, 1, 3, 4, 5), upper) # broadcasting A & b
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_cholesky_inverse(self, device, dtype):
|
|
from torch.testing._internal.common_utils import random_symmetric_pd_matrix
|
|
a = random_symmetric_pd_matrix(5, dtype=dtype, device=device)
|
|
|
|
# compute inverse directly
|
|
inv0 = torch.inverse(a)
|
|
|
|
# default case
|
|
chol = torch.cholesky(a)
|
|
inv1 = torch.cholesky_inverse(chol, False)
|
|
self.assertLessEqual(inv0.dist(inv1), 1e-12)
|
|
|
|
# upper Triangular Test
|
|
chol = torch.cholesky(a, True)
|
|
inv1 = torch.cholesky_inverse(chol, True)
|
|
self.assertLessEqual(inv0.dist(inv1), 1e-12)
|
|
|
|
# lower Triangular Test
|
|
chol = torch.cholesky(a, False)
|
|
inv1 = torch.cholesky_inverse(chol, False)
|
|
self.assertLessEqual(inv0.dist(inv1), 1e-12)
|
|
|
|
@slowTest
|
|
@skipCUDAIf(True, "See issue #26789.")
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_cholesky_batched_many_batches(self, device, dtype):
|
|
from torch.testing._internal.common_utils import random_symmetric_pd_matrix
|
|
|
|
def cholesky_test_helper(n, batchsize, device, upper):
|
|
A = random_symmetric_pd_matrix(n, batchsize, dtype=dtype, device=device)
|
|
chol_fact = torch.cholesky(A, upper=upper)
|
|
if upper:
|
|
# Correctness check
|
|
self.assertEqual(A, chol_fact.transpose(-2, -1).matmul(chol_fact))
|
|
# Upper triangular check
|
|
self.assertEqual(chol_fact, chol_fact.triu())
|
|
else:
|
|
# Correctness check
|
|
self.assertEqual(A, chol_fact.matmul(chol_fact.transpose(-2, -1)))
|
|
# Lower triangular check
|
|
self.assertEqual(chol_fact, chol_fact.tril())
|
|
|
|
for upper, batchsize in product([True, False], [262144, 524288]):
|
|
cholesky_test_helper(2, batchsize, device, upper)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_cholesky_batched(self, device, dtype):
|
|
from torch.testing._internal.common_utils import random_symmetric_pd_matrix
|
|
|
|
def cholesky_test_helper(n, batch_dims, upper):
|
|
A = random_symmetric_pd_matrix(n, *batch_dims, dtype=dtype, device=device)
|
|
cholesky_exp = torch.stack([m.cholesky(upper=upper) for m in A.reshape(-1, n, n)])
|
|
cholesky_exp = cholesky_exp.reshape_as(A)
|
|
self.assertEqual(cholesky_exp, torch.cholesky(A, upper=upper))
|
|
|
|
for upper, batchsize in product([True, False], [(3,), (3, 4), (2, 3, 4)]):
|
|
cholesky_test_helper(3, batchsize, upper)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_cholesky(self, device, dtype):
|
|
x = torch.rand(10, 10, dtype=dtype, device=device) + 1e-1
|
|
A = torch.mm(x, x.t())
|
|
|
|
# default Case
|
|
C = torch.cholesky(A)
|
|
B = torch.mm(C, C.t())
|
|
self.assertEqual(A, B, atol=1e-14, rtol=0)
|
|
|
|
# test Upper Triangular
|
|
U = torch.cholesky(A, True)
|
|
B = torch.mm(U.t(), U)
|
|
self.assertEqual(A, B, atol=1e-14, rtol=0, msg='cholesky (upper) did not allow rebuilding the original matrix')
|
|
|
|
# test Lower Triangular
|
|
L = torch.cholesky(A, False)
|
|
B = torch.mm(L, L.t())
|
|
self.assertEqual(A, B, atol=1e-14, rtol=0, msg='cholesky (lower) did not allow rebuilding the original matrix')
|
|
|
|
def test_view(self, device):
|
|
tensor = torch.rand(15, device=device)
|
|
template = torch.rand(3, 5, device=device)
|
|
empty = torch.empty(0, device=device)
|
|
target = template.size()
|
|
self.assertEqual(tensor.view_as(template).size(), target)
|
|
self.assertEqual(tensor.view(3, 5).size(), target)
|
|
self.assertEqual(tensor.view(torch.Size([3, 5])).size(), target)
|
|
self.assertEqual(tensor.view(-1, 5).size(), target)
|
|
self.assertEqual(tensor.view(3, -1).size(), target)
|
|
tensor_view = tensor.view(5, 3)
|
|
tensor_view.fill_(random.uniform(0, 1))
|
|
self.assertEqual(empty.view_as(empty), empty)
|
|
self.assertEqual(empty.view(0), empty)
|
|
self.assertEqual(empty.view(0, 3, 0, 1).size(), torch.Size([0, 3, 0, 1]))
|
|
self.assertEqual(empty.view(0, 3, 0, 1).view(0), empty)
|
|
|
|
# test size inference with empty tensors
|
|
self.assertEqual(empty.view(-1).size(), torch.Size([0]))
|
|
self.assertEqual(empty.view(10, 3, -1).size(), torch.Size([10, 3, 0]))
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"because the unspecified dimension size -1 can be any value"):
|
|
empty.view(-1, 0)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"because the unspecified dimension size -1 can be any value"):
|
|
empty.view(3, 0, -1, 0)
|
|
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(15, 0))
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(7, -1))
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(15, -1, -1))
|
|
|
|
# test view when tensor is not contiguous in every dimension, but only
|
|
# contiguous dimensions are touched.
|
|
tensor = torch.rand(4, 2, 5, 1, 6, 2, 9, 3, device=device).transpose(-1, 2).transpose(-2, 3)
|
|
# size: [ 4, 2, 3, 9, 6, 2, 1, 5]
|
|
# stride: [3840, 1620, 1, 3, 54, 27, 324, 324]
|
|
# contiguous dim chunks: [__________, ____, ____, __________, ____, ____]
|
|
# merging 1 to chunk after: [__________, ____, ____, __________, __________]
|
|
contig_tensor = tensor.clone()
|
|
# [4, 2] => [8, 1]
|
|
# [3] => [3]
|
|
# [9] => [3, 3]
|
|
# [6, 2] => [4, 1, 3]
|
|
# [1, 5] => [5]
|
|
view_size = [8, 1, 3, 3, 3, 4, 1, 3, 5]
|
|
self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size))
|
|
# [4, 2] => [2, 4]
|
|
# [3] => [3]
|
|
# [9] => [1, 9]
|
|
# [6, 2] => [2, 2, 3]
|
|
# [1, 5] => [5, 1]
|
|
view_size = [2, 4, 3, 1, 9, 2, 2, 3, 5, 1]
|
|
self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size))
|
|
# adding size 1 dims
|
|
view_size = [1, 1, 2, 1, 4, 3, 1, 1, 9, 1, 2, 1, 2, 3, 1, 5, 1, 1]
|
|
self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size))
|
|
|
|
# invalid views
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(-1))
|
|
# crossing [4, 2], [3]
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(24, 9, 6, 2, 1, 5))
|
|
# crossing [6, 2], [1, 5]
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(8, 3, 9, 6, 10))
|
|
# crossing [9], [6, 2]
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(8, 3, 54, 2, 1, 5))
|
|
|
|
# view with stride 0 dims
|
|
tensor = torch.empty(1, 1, device=device).expand(3, 4) # all dims are contiguous
|
|
contig_tensor = tensor.clone()
|
|
self.assertEqual(tensor.view(-1), contig_tensor.view(-1))
|
|
self.assertEqual(tensor.view(1, -1, 1), contig_tensor.view(1, -1, 1))
|
|
self.assertEqual(tensor.view(-1, 1), contig_tensor.view(-1, 1))
|
|
self.assertEqual(tensor.view(6, 2, 1), contig_tensor.view(6, 2, 1))
|
|
self.assertEqual(tensor.view(1, 6, 2, 1), contig_tensor.view(1, 6, 2, 1))
|
|
|
|
def test_flip(self, device):
|
|
data = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8], device=device).view(2, 2, 2)
|
|
|
|
self.assertEqual(torch.tensor([5, 6, 7, 8, 1, 2, 3, 4]).view(2, 2, 2), data.flip(0))
|
|
self.assertEqual(torch.tensor([3, 4, 1, 2, 7, 8, 5, 6]).view(2, 2, 2), data.flip(1))
|
|
self.assertEqual(torch.tensor([2, 1, 4, 3, 6, 5, 8, 7]).view(2, 2, 2), data.flip(2))
|
|
self.assertEqual(torch.tensor([7, 8, 5, 6, 3, 4, 1, 2]).view(2, 2, 2), data.flip(0, 1))
|
|
self.assertEqual(torch.tensor([8, 7, 6, 5, 4, 3, 2, 1]).view(2, 2, 2), data.flip(0, 1, 2))
|
|
|
|
# check for wrap dim
|
|
self.assertEqual(torch.tensor([2, 1, 4, 3, 6, 5, 8, 7]).view(2, 2, 2), data.flip(-1))
|
|
# check for permute
|
|
self.assertEqual(torch.tensor([6, 5, 8, 7, 2, 1, 4, 3]).view(2, 2, 2), data.flip(0, 2))
|
|
self.assertEqual(torch.tensor([6, 5, 8, 7, 2, 1, 4, 3]).view(2, 2, 2), data.flip(2, 0))
|
|
|
|
# not allow flip on the same dim more than once
|
|
self.assertRaises(RuntimeError, lambda: data.flip(0, 1, 1))
|
|
# not allow empty list as input
|
|
self.assertRaises(TypeError, lambda: data.flip())
|
|
|
|
# not allow size of flip dim > total dims
|
|
self.assertRaises(IndexError, lambda: data.flip(0, 1, 2, 3))
|
|
# not allow dim > max dim
|
|
self.assertRaises(IndexError, lambda: data.flip(3))
|
|
|
|
# test for non-contiguous case
|
|
expanded_data = torch.arange(1, 4, device=device).view(3, 1).expand(3, 2)
|
|
transposed_data = torch.arange(1, 9, device=device).view(2, 2, 2).transpose(0, 1)
|
|
self.assertEqual(torch.tensor([3, 3, 2, 2, 1, 1]).view(3, 2), expanded_data.flip(0))
|
|
self.assertEqual(torch.tensor([8, 7, 4, 3, 6, 5, 2, 1]).view(2, 2, 2), transposed_data.flip(0, 1, 2))
|
|
|
|
# test for shape
|
|
data = torch.randn(2, 3, 4, device=device)
|
|
size = [2, 3, 4]
|
|
test_dims = []
|
|
for i in range(1, 3):
|
|
test_dims += combinations(range(len(size)), i)
|
|
|
|
for ds in test_dims:
|
|
self.assertEqual(size, list(data.flip(ds).size()))
|
|
|
|
# test rectangular case
|
|
data = torch.tensor([1, 2, 3, 4, 5, 6]).view(2, 3).to(device)
|
|
flip0_result = torch.tensor([[4, 5, 6], [1, 2, 3]]).to(device)
|
|
flip1_result = torch.tensor([[3, 2, 1], [6, 5, 4]]).to(device)
|
|
|
|
self.assertEqual(flip0_result, data.flip(0))
|
|
self.assertEqual(flip1_result, data.flip(1))
|
|
|
|
# test empty tensor, should just return an empty tensor of the same shape
|
|
data = torch.tensor([])
|
|
self.assertEqual(data, data.flip(0))
|
|
|
|
# test bool tensor
|
|
a = torch.tensor([False, True])
|
|
self.assertEqual(a.flip(0), torch.tensor([True, False]))
|
|
|
|
def _rand_shape(self, dim, min_size, max_size):
|
|
shape = []
|
|
for i in range(dim):
|
|
shape.append(random.randint(min_size, max_size))
|
|
return tuple(shape)
|
|
|
|
@dtypes(torch.cfloat, torch.cdouble)
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_complex_flip(self, device, dtype):
|
|
rand_dim = random.randint(3, 4)
|
|
shape = self._rand_shape(rand_dim, 5, 10)
|
|
|
|
# Axis to sample for given shape.
|
|
for i in range(1, rand_dim):
|
|
# Check all combinations of `i` axis.
|
|
for flip_dim in combinations(range(rand_dim), i):
|
|
data = torch.randn(*shape, device=device, dtype=dtype)
|
|
torch_fn = partial(torch.flip, dims=flip_dim)
|
|
np_fn = partial(np.flip, axis=flip_dim)
|
|
self.compare_with_numpy(torch_fn, np_fn, data)
|
|
|
|
def _test_fliplr_flipud(self, torch_fn, np_fn, min_dim, max_dim, device, dtype):
|
|
for dim in range(min_dim, max_dim + 1):
|
|
shape = self._rand_shape(dim, 5, 10)
|
|
# Randomly scale the input
|
|
if dtype.is_floating_point or dtype.is_complex:
|
|
data = torch.randn(*shape, device=device, dtype=dtype)
|
|
else:
|
|
data = torch.randint(0, 10, shape, device=device, dtype=dtype)
|
|
self.compare_with_numpy(torch_fn, np_fn, data)
|
|
|
|
@dtypes(torch.int64, torch.double, torch.cdouble)
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_fliplr(self, device, dtype):
|
|
self._test_fliplr_flipud(torch.fliplr, np.fliplr, 2, 4, device, dtype)
|
|
|
|
@dtypes(torch.int64, torch.double, torch.cdouble)
|
|
def test_fliplr_invalid(self, device, dtype):
|
|
x = torch.randn(42).to(dtype)
|
|
with self.assertRaisesRegex(RuntimeError, "Input must be >= 2-d."):
|
|
torch.fliplr(x)
|
|
with self.assertRaisesRegex(RuntimeError, "Input must be >= 2-d."):
|
|
torch.fliplr(torch.tensor(42, device=device, dtype=dtype))
|
|
|
|
@dtypes(torch.int64, torch.double, torch.cdouble)
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_flipud(self, device, dtype):
|
|
self._test_fliplr_flipud(torch.flipud, np.flipud, 1, 4, device, dtype)
|
|
|
|
@dtypes(torch.int64, torch.double, torch.cdouble)
|
|
def test_flipud_invalid(self, device, dtype):
|
|
with self.assertRaisesRegex(RuntimeError, "Input must be >= 1-d."):
|
|
torch.flipud(torch.tensor(42, device=device, dtype=dtype))
|
|
|
|
def test_rot90(self, device):
|
|
data = torch.arange(1, 5, device=device).view(2, 2)
|
|
self.assertEqual(torch.tensor([1, 2, 3, 4]).view(2, 2), data.rot90(0, [0, 1]))
|
|
self.assertEqual(torch.tensor([2, 4, 1, 3]).view(2, 2), data.rot90(1, [0, 1]))
|
|
self.assertEqual(torch.tensor([4, 3, 2, 1]).view(2, 2), data.rot90(2, [0, 1]))
|
|
self.assertEqual(torch.tensor([3, 1, 4, 2]).view(2, 2), data.rot90(3, [0, 1]))
|
|
|
|
# test for default args k=1, dims=[0, 1]
|
|
self.assertEqual(data.rot90(), data.rot90(1, [0, 1]))
|
|
|
|
# test for reversed order of dims
|
|
self.assertEqual(data.rot90(3, [0, 1]), data.rot90(1, [1, 0]))
|
|
|
|
# test for modulo of k
|
|
self.assertEqual(data.rot90(5, [0, 1]), data.rot90(1, [0, 1]))
|
|
self.assertEqual(data.rot90(3, [0, 1]), data.rot90(-1, [0, 1]))
|
|
self.assertEqual(data.rot90(-5, [0, 1]), data.rot90(-1, [0, 1]))
|
|
|
|
# test for dims out-of-range error
|
|
self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, -3]))
|
|
self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 2]))
|
|
|
|
# test tensor with more than 2D
|
|
data = torch.arange(1, 9, device=device).view(2, 2, 2)
|
|
self.assertEqual(torch.tensor([2, 4, 1, 3, 6, 8, 5, 7]).view(2, 2, 2), data.rot90(1, [1, 2]))
|
|
self.assertEqual(data.rot90(1, [1, -1]), data.rot90(1, [1, 2]))
|
|
|
|
# test for errors
|
|
self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 3]))
|
|
self.assertRaises(RuntimeError, lambda: data.rot90(1, [1, 1]))
|
|
self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 1, 2]))
|
|
self.assertRaises(RuntimeError, lambda: data.rot90(1, [0]))
|
|
|
|
@dtypes(torch.cfloat, torch.cdouble)
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_complex_rot90(self, device, dtype):
|
|
shape = self._rand_shape(random.randint(2, 4), 5, 10)
|
|
for rot_times in range(4):
|
|
data = torch.randn(*shape, device=device, dtype=dtype)
|
|
torch_fn = partial(torch.rot90, k=rot_times, dims=[0, 1])
|
|
np_fn = partial(np.rot90, k=rot_times, axes=[0, 1])
|
|
self.compare_with_numpy(torch_fn, np_fn, data)
|
|
|
|
def test_signal_window_functions(self, device):
|
|
if not TEST_SCIPY:
|
|
raise unittest.SkipTest('Scipy not found')
|
|
|
|
def test(name):
|
|
torch_method = getattr(torch, name + '_window')
|
|
for size in [1, 2, 5, 10, 50, 100, 1024, 2048]:
|
|
for periodic in [True, False]:
|
|
res = torch_method(size, periodic=periodic, device=device)
|
|
# NB: scipy always returns a float32 result
|
|
ref = torch.from_numpy(signal.get_window(name, size, fftbins=periodic))
|
|
self.assertEqual(res, ref, exact_dtype=False)
|
|
with self.assertRaisesRegex(RuntimeError, r'not implemented for sparse types'):
|
|
torch_method(3, layout=torch.sparse_coo)
|
|
with self.assertRaisesRegex(RuntimeError, r'floating point'):
|
|
torch_method(3, dtype=torch.long)
|
|
self.assertTrue(torch_method(3, requires_grad=True).requires_grad)
|
|
self.assertFalse(torch_method(3).requires_grad)
|
|
|
|
for window in ['hann', 'hamming', 'bartlett', 'blackman']:
|
|
test(window)
|
|
|
|
def test_broadcast(self, device):
|
|
|
|
# all functions
|
|
fns = {
|
|
"dist", "atan2", "pow", "lerp", "add",
|
|
"sub", "mul", "div", "fmod", "remainder",
|
|
"eq", "ge", "gt", "le", "lt", "max", "min", "ne",
|
|
"addcdiv", "addcmul", "masked_scatter", "masked_select", "masked_fill",
|
|
"map", "map2", "copy"
|
|
}
|
|
# functions with three tensor arguments
|
|
fns_3_args = {"map2"}
|
|
fns_value_kwarg = {"addcdiv", "addcmul"}
|
|
|
|
for fn in fns:
|
|
(dims_small, dims_large, dims_full) = self._select_broadcastable_dims()
|
|
full1d = torch.randn(*dims_full, device=device).flatten().float()
|
|
small = torch.randn(*dims_small, device=device).float()
|
|
large = torch.randn(*dims_large, device=device).float()
|
|
small_expanded = small.expand(*dims_full)
|
|
large_expanded = large.expand(*dims_full)
|
|
small2 = None
|
|
small2_expanded = None
|
|
if fn in fns_3_args or fn in fns_value_kwarg:
|
|
# create another smaller tensor
|
|
(dims_small2, _, _) = self._select_broadcastable_dims(dims_full)
|
|
small2 = torch.randn(*dims_small2, device=device).float()
|
|
small2_expanded = small2.expand(*dims_full)
|
|
|
|
if small.is_cuda and fn in ['map', 'map2']:
|
|
# map and map2 are not implementd on CUDA tensors
|
|
continue
|
|
|
|
if hasattr(large_expanded, fn):
|
|
# run through tensor versions of functions
|
|
# and verify fully expanded inputs give same results
|
|
expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded}
|
|
|
|
def tensorfn(myfn, t1, t2):
|
|
if fn == "lerp":
|
|
return myfn(t1, 0.5)
|
|
elif fn == "masked_select":
|
|
return myfn(t1 < 0)
|
|
elif fn == "masked_scatter":
|
|
return myfn(t1 < 0.5, full1d)
|
|
elif fn == "masked_fill":
|
|
return myfn(t1 < 0.5, 1.0)
|
|
elif fn in fns_3_args:
|
|
return myfn(1, t1, t2)
|
|
elif fn in fns_value_kwarg:
|
|
return myfn(t1, t2, value=1)
|
|
else:
|
|
return myfn(t1)
|
|
|
|
# test various orders
|
|
for first, second, third in [(large, small, small2), (small, large, small2),
|
|
(small2, small, large), (small2, large, small)]:
|
|
if first is None:
|
|
break # ignore last iter when small2 is None
|
|
method_expanded = getattr(expanded[first], fn)
|
|
method = getattr(first, fn)
|
|
r1 = tensorfn(method_expanded, expanded[second], expanded[third])
|
|
r2 = tensorfn(method, second, third)
|
|
self.assertEqual(r1, r2)
|
|
|
|
# now for torch. versions of functions
|
|
if hasattr(torch, fn):
|
|
fntorch = getattr(torch, fn)
|
|
expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded}
|
|
|
|
def torchfn(t1, t2, t3):
|
|
if fn == "lerp":
|
|
return fntorch(t1, t2, 0.5)
|
|
elif fn == "masked_select":
|
|
return fntorch(t1, t2 < 0)
|
|
elif fn == "masked_scatter":
|
|
return fntorch(t1, t2 < 0.5, full1d)
|
|
elif fn == "masked_fill":
|
|
return fntorch(t1, t2 < 0.5, 1.0)
|
|
elif fn in fns_3_args:
|
|
return fntorch(t1, 1.0, t2, t3)
|
|
elif fn in fns_value_kwarg:
|
|
return fntorch(t1, t2, t3, value=1.0)
|
|
else:
|
|
return fntorch(t1, t2)
|
|
|
|
# test various orders
|
|
for first, second, third in [(large, small, small2), (small, large, small2),
|
|
(small2, small, large), (small2, large, small)]:
|
|
if first is None:
|
|
break # ignore last iter when small2 is None
|
|
r1 = torchfn(expanded[first], expanded[second], expanded[third])
|
|
r2 = torchfn(first, second, third)
|
|
self.assertEqual(r1, r2)
|
|
|
|
# now for in place functions
|
|
# in-place tensor is not broadcastable; test only guaranteed
|
|
# to work by broadcasting other argument(s)
|
|
if not hasattr(large_expanded, fn + "_"):
|
|
continue
|
|
|
|
# need to clone largeExpanded so we can reuse, since functions are in-place
|
|
large_expanded_clone = large_expanded.clone()
|
|
|
|
def tensorfn_inplace(t0, t1, t2=None):
|
|
t0_fn = getattr(t0, fn + "_")
|
|
if fn == "lerp":
|
|
return t0_fn(t1, 0.5)
|
|
elif fn == "masked_scatter":
|
|
return t0_fn(t1 < 0.5, full1d)
|
|
elif fn == "masked_fill":
|
|
return t0_fn(t1 < 0.5, 1.0)
|
|
elif fn == "map":
|
|
return t0_fn(t1, lambda x, y: x + y)
|
|
elif fn == "map2":
|
|
return t0_fn(t1, t2, lambda x, y, z: x + y + z)
|
|
elif fn in fns_3_args:
|
|
return t0_fn(1.0, t1, t2)
|
|
elif fn in fns_value_kwarg:
|
|
return t0_fn(t1, t2, value=1.0)
|
|
else:
|
|
return t0_fn(t1)
|
|
# in-place pointwise operations don't actually work if the in-place
|
|
# tensor is 0-strided (numpy has the same issue)
|
|
if (0 not in large_expanded.stride() and 0 not in large_expanded_clone.stride()):
|
|
r1 = tensorfn_inplace(large_expanded, small_expanded, small2_expanded)
|
|
r2 = tensorfn_inplace(large_expanded_clone, small, small2)
|
|
self.assertEqual(r1, r2)
|
|
|
|
def broadcastable(t0, t1, t2=None):
|
|
try:
|
|
t1.expand_as(t0)
|
|
if t2 is not None:
|
|
t2.expand_as(t0)
|
|
except RuntimeError:
|
|
return False
|
|
return True
|
|
|
|
def _test_in_place_broadcastable(t0, t1, t2=None):
|
|
if not broadcastable(t0, t1, t2):
|
|
same_size = t0.numel() == t1.numel() and (t0.numel() == t2.numel() if t2 is not None else True)
|
|
if not same_size:
|
|
self.assertRaises(RuntimeError, lambda: tensorfn_inplace(t0, t1, t2))
|
|
else:
|
|
tensorfn_inplace(t0, t1, t2)
|
|
|
|
if fn not in fns_3_args and fn not in fns_value_kwarg:
|
|
_test_in_place_broadcastable(small, large_expanded)
|
|
_test_in_place_broadcastable(small, large)
|
|
else:
|
|
_test_in_place_broadcastable(small2, small_expanded, large_expanded)
|
|
_test_in_place_broadcastable(small2, small, large)
|
|
|
|
def test_broadcast_fused_matmul(self, device):
|
|
fns = ["baddbmm", "addbmm", "addmm", "addmv", "addr"]
|
|
|
|
for fn in fns:
|
|
batch_dim = random.randint(1, 8)
|
|
n_dim = random.randint(1, 8)
|
|
m_dim = random.randint(1, 8)
|
|
p_dim = random.randint(1, 8)
|
|
|
|
def dims_full_for_fn():
|
|
if fn == "baddbmm":
|
|
return ([batch_dim, n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim])
|
|
elif fn == "addbmm":
|
|
return ([n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim])
|
|
elif fn == "addmm":
|
|
return ([n_dim, p_dim], [n_dim, m_dim], [m_dim, p_dim])
|
|
elif fn == "addmv":
|
|
return ([n_dim], [n_dim, m_dim], [m_dim])
|
|
elif fn == "addr":
|
|
return ([n_dim, m_dim], [n_dim], [m_dim])
|
|
else:
|
|
raise AssertionError("unknown function")
|
|
|
|
(t0_dims_full, t1_dims, t2_dims) = dims_full_for_fn()
|
|
(t0_dims_small, _, _) = self._select_broadcastable_dims(t0_dims_full)
|
|
|
|
t0_small = torch.randn(*t0_dims_small, device=device).float()
|
|
t1 = torch.randn(*t1_dims, device=device).float()
|
|
t2 = torch.randn(*t2_dims, device=device).float()
|
|
|
|
t0_full = t0_small.expand(*t0_dims_full).to(device)
|
|
|
|
fntorch = getattr(torch, fn)
|
|
r0 = fntorch(t0_small, t1, t2)
|
|
r1 = fntorch(t0_full, t1, t2)
|
|
self.assertEqual(r0, r1)
|
|
|
|
def test_broadcast_batched_matmul(self, device):
|
|
n_dim = random.randint(1, 8)
|
|
m_dim = random.randint(1, 8)
|
|
p_dim = random.randint(1, 8)
|
|
full_batch_dims = [random.randint(1, 3) for i in range(random.randint(1, 3))]
|
|
(batch_dims_small, _, _) = self._select_broadcastable_dims(full_batch_dims)
|
|
|
|
def verify_batched_matmul(full_lhs, one_dimensional):
|
|
if not one_dimensional:
|
|
lhs_dims = [n_dim, m_dim]
|
|
rhs_dims = [m_dim, p_dim]
|
|
result_dims = [n_dim, p_dim]
|
|
else:
|
|
lhs_dims = [n_dim, m_dim] if full_lhs else [m_dim]
|
|
rhs_dims = [m_dim, p_dim] if not full_lhs else [m_dim]
|
|
result_dims = [n_dim] if full_lhs else [p_dim]
|
|
|
|
lhs_mat_dims = lhs_dims if len(lhs_dims) != 1 else [1, m_dim]
|
|
rhs_mat_dims = rhs_dims if len(rhs_dims) != 1 else [m_dim, 1]
|
|
full_mat_dims = lhs_mat_dims if full_lhs else rhs_mat_dims
|
|
dim0_dims = rhs_dims if full_lhs else lhs_dims
|
|
small_dims = batch_dims_small + (rhs_mat_dims if full_lhs else lhs_mat_dims)
|
|
|
|
small = torch.randn(*(small_dims), device=device).float()
|
|
dim0 = torch.randn(*(dim0_dims), device=device).float()
|
|
full = torch.randn(*(full_batch_dims + full_mat_dims), device=device).float()
|
|
if not one_dimensional:
|
|
(lhsTensors, rhsTensors) = ((full,), (small, dim0)) if full_lhs else ((small, dim0), (full,))
|
|
else:
|
|
(lhsTensors, rhsTensors) = ((full,), (dim0,)) if full_lhs else ((dim0,), (full,))
|
|
|
|
def maybe_squeeze_result(l, r, result):
|
|
if len(lhs_dims) == 1 and l.dim() != 1:
|
|
return result.squeeze(-2)
|
|
elif len(rhs_dims) == 1 and r.dim() != 1:
|
|
return result.squeeze(-1)
|
|
else:
|
|
return result
|
|
|
|
for lhs in lhsTensors:
|
|
lhs_expanded = lhs.expand(*(torch.Size(full_batch_dims) + torch.Size(lhs_mat_dims)))
|
|
lhs_expanded_matmul_fn = lhs_expanded.matmul
|
|
for rhs in rhsTensors:
|
|
rhs_expanded = ((rhs if len(rhs_dims) != 1 else rhs.unsqueeze(-1)).
|
|
expand(*(torch.Size(full_batch_dims) + torch.Size(rhs_mat_dims))))
|
|
truth = maybe_squeeze_result(lhs_expanded, rhs_expanded, lhs_expanded_matmul_fn(rhs_expanded))
|
|
for l in (lhs, lhs_expanded):
|
|
for r in (rhs, rhs_expanded):
|
|
l_matmul_fn = l.matmul
|
|
result = maybe_squeeze_result(l, r, l_matmul_fn(r))
|
|
self.assertEqual(truth, result)
|
|
# test torch.matmul function as well
|
|
torch_result = maybe_squeeze_result(l, r, torch.matmul(l, r))
|
|
self.assertEqual(truth, torch_result)
|
|
# test torch.matmul with out
|
|
out = torch.zeros_like(torch_result)
|
|
torch.matmul(l, r, out=out)
|
|
self.assertEqual(truth, maybe_squeeze_result(l, r, out))
|
|
|
|
# compare to bmm
|
|
bmm_result = (torch.bmm(lhs_expanded.contiguous().view(-1, *lhs_mat_dims),
|
|
rhs_expanded.contiguous().view(-1, *rhs_mat_dims)))
|
|
self.assertEqual(truth.view(-1, *result_dims), bmm_result.view(-1, *result_dims))
|
|
|
|
for indices in product((True, False), repeat=2):
|
|
verify_batched_matmul(*indices)
|
|
|
|
def test_contiguous(self, device):
|
|
x = torch.randn(1, 16, 5, 5, device=device)
|
|
self.assertTrue(x.is_contiguous())
|
|
stride = list(x.stride())
|
|
stride[0] = 20
|
|
# change the stride in dimension 0. the tensor is still contiguous because size[0] is 1
|
|
x.set_(x.storage(), 0, x.size(), stride)
|
|
self.assertTrue(x.is_contiguous())
|
|
|
|
def test_index(self, device):
|
|
|
|
def consec(size, start=1):
|
|
sequence = torch.ones(int(torch.Tensor(size).prod(0))).cumsum(0)
|
|
sequence.add_(start - 1)
|
|
return sequence.view(*size)
|
|
|
|
reference = consec((3, 3, 3)).to(device)
|
|
|
|
# empty tensor indexing
|
|
self.assertEqual(reference[torch.LongTensor().to(device)], reference.new(0, 3, 3))
|
|
|
|
self.assertEqual(reference[0], consec((3, 3)), atol=0, rtol=0)
|
|
self.assertEqual(reference[1], consec((3, 3), 10), atol=0, rtol=0)
|
|
self.assertEqual(reference[2], consec((3, 3), 19), atol=0, rtol=0)
|
|
self.assertEqual(reference[0, 1], consec((3,), 4), atol=0, rtol=0)
|
|
self.assertEqual(reference[0:2], consec((2, 3, 3)), atol=0, rtol=0)
|
|
self.assertEqual(reference[2, 2, 2], 27, atol=0, rtol=0)
|
|
self.assertEqual(reference[:], consec((3, 3, 3)), atol=0, rtol=0)
|
|
|
|
# indexing with Ellipsis
|
|
self.assertEqual(reference[..., 2], torch.Tensor([[3, 6, 9],
|
|
[12, 15, 18],
|
|
[21, 24, 27]]), atol=0, rtol=0)
|
|
self.assertEqual(reference[0, ..., 2], torch.Tensor([3, 6, 9]), atol=0, rtol=0)
|
|
self.assertEqual(reference[..., 2], reference[:, :, 2], atol=0, rtol=0)
|
|
self.assertEqual(reference[0, ..., 2], reference[0, :, 2], atol=0, rtol=0)
|
|
self.assertEqual(reference[0, 2, ...], reference[0, 2], atol=0, rtol=0)
|
|
self.assertEqual(reference[..., 2, 2, 2], 27, atol=0, rtol=0)
|
|
self.assertEqual(reference[2, ..., 2, 2], 27, atol=0, rtol=0)
|
|
self.assertEqual(reference[2, 2, ..., 2], 27, atol=0, rtol=0)
|
|
self.assertEqual(reference[2, 2, 2, ...], 27, atol=0, rtol=0)
|
|
self.assertEqual(reference[...], reference, atol=0, rtol=0)
|
|
|
|
reference_5d = consec((3, 3, 3, 3, 3)).to(device)
|
|
self.assertEqual(reference_5d[..., 1, 0], reference_5d[:, :, :, 1, 0], atol=0, rtol=0)
|
|
self.assertEqual(reference_5d[2, ..., 1, 0], reference_5d[2, :, :, 1, 0], atol=0, rtol=0)
|
|
self.assertEqual(reference_5d[2, 1, 0, ..., 1], reference_5d[2, 1, 0, :, 1], atol=0, rtol=0)
|
|
self.assertEqual(reference_5d[...], reference_5d, atol=0, rtol=0)
|
|
|
|
# LongTensor indexing
|
|
reference = consec((5, 5, 5)).to(device)
|
|
idx = torch.LongTensor([2, 4]).to(device)
|
|
self.assertEqual(reference[idx], torch.stack([reference[2], reference[4]]))
|
|
# TODO: enable one indexing is implemented like in numpy
|
|
# self.assertEqual(reference[2, idx], torch.stack([reference[2, 2], reference[2, 4]]))
|
|
# self.assertEqual(reference[3, idx, 1], torch.stack([reference[3, 2], reference[3, 4]])[:, 1])
|
|
|
|
# None indexing
|
|
self.assertEqual(reference[2, None], reference[2].unsqueeze(0))
|
|
self.assertEqual(reference[2, None, None], reference[2].unsqueeze(0).unsqueeze(0))
|
|
self.assertEqual(reference[2:4, None], reference[2:4].unsqueeze(1))
|
|
self.assertEqual(reference[None, 2, None, None], reference.unsqueeze(0)[:, 2].unsqueeze(0).unsqueeze(0))
|
|
self.assertEqual(reference[None, 2:5, None, None], reference.unsqueeze(0)[:, 2:5].unsqueeze(2).unsqueeze(2))
|
|
|
|
# indexing 0-length slice
|
|
self.assertEqual(torch.empty(0, 5, 5), reference[slice(0)])
|
|
self.assertEqual(torch.empty(0, 5), reference[slice(0), 2])
|
|
self.assertEqual(torch.empty(0, 5), reference[2, slice(0)])
|
|
self.assertEqual(torch.tensor([]), reference[2, 1:1, 2])
|
|
|
|
# indexing with step
|
|
reference = consec((10, 10, 10)).to(device)
|
|
self.assertEqual(reference[1:5:2], torch.stack([reference[1], reference[3]], 0))
|
|
self.assertEqual(reference[1:6:2], torch.stack([reference[1], reference[3], reference[5]], 0))
|
|
self.assertEqual(reference[1:9:4], torch.stack([reference[1], reference[5]], 0))
|
|
self.assertEqual(reference[2:4, 1:5:2], torch.stack([reference[2:4, 1], reference[2:4, 3]], 1))
|
|
self.assertEqual(reference[3, 1:6:2], torch.stack([reference[3, 1], reference[3, 3], reference[3, 5]], 0))
|
|
self.assertEqual(reference[None, 2, 1:9:4], torch.stack([reference[2, 1], reference[2, 5]], 0).unsqueeze(0))
|
|
self.assertEqual(reference[:, 2, 1:6:2],
|
|
torch.stack([reference[:, 2, 1], reference[:, 2, 3], reference[:, 2, 5]], 1))
|
|
|
|
lst = [list(range(i, i + 10)) for i in range(0, 100, 10)]
|
|
tensor = torch.DoubleTensor(lst).to(device)
|
|
for _i in range(100):
|
|
idx1_start = random.randrange(10)
|
|
idx1_end = idx1_start + random.randrange(1, 10 - idx1_start + 1)
|
|
idx1_step = random.randrange(1, 8)
|
|
idx1 = slice(idx1_start, idx1_end, idx1_step)
|
|
if random.randrange(2) == 0:
|
|
idx2_start = random.randrange(10)
|
|
idx2_end = idx2_start + random.randrange(1, 10 - idx2_start + 1)
|
|
idx2_step = random.randrange(1, 8)
|
|
idx2 = slice(idx2_start, idx2_end, idx2_step)
|
|
lst_indexed = list(map(lambda l: l[idx2], lst[idx1]))
|
|
tensor_indexed = tensor[idx1, idx2]
|
|
else:
|
|
lst_indexed = lst[idx1]
|
|
tensor_indexed = tensor[idx1]
|
|
self.assertEqual(torch.DoubleTensor(lst_indexed), tensor_indexed)
|
|
|
|
self.assertRaises(ValueError, lambda: reference[1:9:0])
|
|
self.assertRaises(ValueError, lambda: reference[1:9:-1])
|
|
|
|
self.assertRaises(IndexError, lambda: reference[1, 1, 1, 1])
|
|
self.assertRaises(IndexError, lambda: reference[1, 1, 1, 1:1])
|
|
self.assertRaises(IndexError, lambda: reference[3, 3, 3, 3, 3, 3, 3, 3])
|
|
|
|
self.assertRaises(IndexError, lambda: reference[0.0])
|
|
self.assertRaises(TypeError, lambda: reference[0.0:2.0])
|
|
self.assertRaises(IndexError, lambda: reference[0.0, 0.0:2.0])
|
|
self.assertRaises(IndexError, lambda: reference[0.0, :, 0.0:2.0])
|
|
self.assertRaises(IndexError, lambda: reference[0.0, ..., 0.0:2.0])
|
|
self.assertRaises(IndexError, lambda: reference[0.0, :, 0.0])
|
|
|
|
def delitem():
|
|
del reference[0]
|
|
|
|
self.assertRaises(TypeError, delitem)
|
|
|
|
@dtypes(torch.half, torch.double)
|
|
def test_advancedindex(self, device, dtype):
|
|
# Tests for Integer Array Indexing, Part I - Purely integer array
|
|
# indexing
|
|
|
|
def consec(size, start=1):
|
|
# Creates the sequence in float since CPU half doesn't support the
|
|
# needed operations. Converts to dtype before returning.
|
|
numel = reduce(lambda x, y: x * y, size, 1)
|
|
sequence = torch.ones(numel, dtype=torch.float, device=device).cumsum(0)
|
|
sequence.add_(start - 1)
|
|
return sequence.view(*size).to(dtype=dtype)
|
|
|
|
# pick a random valid indexer type
|
|
def ri(indices):
|
|
choice = random.randint(0, 2)
|
|
if choice == 0:
|
|
return torch.LongTensor(indices).to(device)
|
|
elif choice == 1:
|
|
return list(indices)
|
|
else:
|
|
return tuple(indices)
|
|
|
|
def validate_indexing(x):
|
|
self.assertEqual(x[[0]], consec((1,)))
|
|
self.assertEqual(x[ri([0]), ], consec((1,)))
|
|
self.assertEqual(x[ri([3]), ], consec((1,), 4))
|
|
self.assertEqual(x[[2, 3, 4]], consec((3,), 3))
|
|
self.assertEqual(x[ri([2, 3, 4]), ], consec((3,), 3))
|
|
self.assertEqual(x[ri([0, 2, 4]), ], torch.tensor([1, 3, 5], dtype=dtype, device=device))
|
|
|
|
def validate_setting(x):
|
|
x[[0]] = -2
|
|
self.assertEqual(x[[0]], torch.tensor([-2], dtype=dtype, device=device))
|
|
x[[0]] = -1
|
|
self.assertEqual(x[ri([0]), ], torch.tensor([-1], dtype=dtype, device=device))
|
|
x[[2, 3, 4]] = 4
|
|
self.assertEqual(x[[2, 3, 4]], torch.tensor([4, 4, 4], dtype=dtype, device=device))
|
|
x[ri([2, 3, 4]), ] = 3
|
|
self.assertEqual(x[ri([2, 3, 4]), ], torch.tensor([3, 3, 3], dtype=dtype, device=device))
|
|
x[ri([0, 2, 4]), ] = torch.tensor([5, 4, 3], dtype=dtype, device=device)
|
|
self.assertEqual(x[ri([0, 2, 4]), ], torch.tensor([5, 4, 3], dtype=dtype, device=device))
|
|
|
|
# Only validates indexing and setting for halfs
|
|
if dtype == torch.half:
|
|
reference = consec((10,))
|
|
validate_indexing(reference)
|
|
validate_setting(reference)
|
|
return
|
|
|
|
# Case 1: Purely Integer Array Indexing
|
|
reference = consec((10,))
|
|
validate_indexing(reference)
|
|
|
|
# setting values
|
|
validate_setting(reference)
|
|
|
|
# Tensor with stride != 1
|
|
# strided is [1, 3, 5, 7]
|
|
reference = consec((10,))
|
|
strided = torch.tensor((), dtype=dtype, device=device)
|
|
strided.set_(reference.storage(), storage_offset=0,
|
|
size=torch.Size([4]), stride=[2])
|
|
|
|
self.assertEqual(strided[[0]], torch.tensor([1], dtype=dtype, device=device))
|
|
self.assertEqual(strided[ri([0]), ], torch.tensor([1], dtype=dtype, device=device))
|
|
self.assertEqual(strided[ri([3]), ], torch.tensor([7], dtype=dtype, device=device))
|
|
self.assertEqual(strided[[1, 2]], torch.tensor([3, 5], dtype=dtype, device=device))
|
|
self.assertEqual(strided[ri([1, 2]), ], torch.tensor([3, 5], dtype=dtype, device=device))
|
|
self.assertEqual(strided[ri([[2, 1], [0, 3]]), ],
|
|
torch.tensor([[5, 3], [1, 7]], dtype=dtype, device=device))
|
|
|
|
# stride is [4, 8]
|
|
strided = torch.tensor((), dtype=dtype, device=device)
|
|
strided.set_(reference.storage(), storage_offset=4,
|
|
size=torch.Size([2]), stride=[4])
|
|
self.assertEqual(strided[[0]], torch.tensor([5], dtype=dtype, device=device))
|
|
self.assertEqual(strided[ri([0]), ], torch.tensor([5], dtype=dtype, device=device))
|
|
self.assertEqual(strided[ri([1]), ], torch.tensor([9], dtype=dtype, device=device))
|
|
self.assertEqual(strided[[0, 1]], torch.tensor([5, 9], dtype=dtype, device=device))
|
|
self.assertEqual(strided[ri([0, 1]), ], torch.tensor([5, 9], dtype=dtype, device=device))
|
|
self.assertEqual(strided[ri([[0, 1], [1, 0]]), ],
|
|
torch.tensor([[5, 9], [9, 5]], dtype=dtype, device=device))
|
|
|
|
# reference is 1 2
|
|
# 3 4
|
|
# 5 6
|
|
reference = consec((3, 2))
|
|
self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.tensor([1, 3, 5], dtype=dtype, device=device))
|
|
self.assertEqual(reference[ri([0, 1, 2]), ri([1])], torch.tensor([2, 4, 6], dtype=dtype, device=device))
|
|
self.assertEqual(reference[ri([0]), ri([0])], consec((1,)))
|
|
self.assertEqual(reference[ri([2]), ri([1])], consec((1,), 6))
|
|
self.assertEqual(reference[[ri([0, 0]), ri([0, 1])]], torch.tensor([1, 2], dtype=dtype, device=device))
|
|
self.assertEqual(reference[[ri([0, 1, 1, 0, 2]), ri([1])]],
|
|
torch.tensor([2, 4, 4, 2, 6], dtype=dtype, device=device))
|
|
self.assertEqual(reference[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]],
|
|
torch.tensor([1, 2, 3, 3], dtype=dtype, device=device))
|
|
|
|
rows = ri([[0, 0],
|
|
[1, 2]])
|
|
columns = [0],
|
|
self.assertEqual(reference[rows, columns], torch.tensor([[1, 1],
|
|
[3, 5]], dtype=dtype, device=device))
|
|
|
|
rows = ri([[0, 0],
|
|
[1, 2]])
|
|
columns = ri([1, 0])
|
|
self.assertEqual(reference[rows, columns], torch.tensor([[2, 1],
|
|
[4, 5]], dtype=dtype, device=device))
|
|
rows = ri([[0, 0],
|
|
[1, 2]])
|
|
columns = ri([[0, 1],
|
|
[1, 0]])
|
|
self.assertEqual(reference[rows, columns], torch.tensor([[1, 2],
|
|
[4, 5]], dtype=dtype, device=device))
|
|
|
|
# setting values
|
|
reference[ri([0]), ri([1])] = -1
|
|
self.assertEqual(reference[ri([0]), ri([1])], torch.tensor([-1], dtype=dtype, device=device))
|
|
reference[ri([0, 1, 2]), ri([0])] = torch.tensor([-1, 2, -4], dtype=dtype, device=device)
|
|
self.assertEqual(reference[ri([0, 1, 2]), ri([0])],
|
|
torch.tensor([-1, 2, -4], dtype=dtype, device=device))
|
|
reference[rows, columns] = torch.tensor([[4, 6], [2, 3]], dtype=dtype, device=device)
|
|
self.assertEqual(reference[rows, columns],
|
|
torch.tensor([[4, 6], [2, 3]], dtype=dtype, device=device))
|
|
|
|
# Verify still works with Transposed (i.e. non-contiguous) Tensors
|
|
|
|
reference = torch.tensor([[0, 1, 2, 3],
|
|
[4, 5, 6, 7],
|
|
[8, 9, 10, 11]], dtype=dtype, device=device).t_()
|
|
|
|
# Transposed: [[0, 4, 8],
|
|
# [1, 5, 9],
|
|
# [2, 6, 10],
|
|
# [3, 7, 11]]
|
|
|
|
self.assertEqual(reference[ri([0, 1, 2]), ri([0])],
|
|
torch.tensor([0, 1, 2], dtype=dtype, device=device))
|
|
self.assertEqual(reference[ri([0, 1, 2]), ri([1])],
|
|
torch.tensor([4, 5, 6], dtype=dtype, device=device))
|
|
self.assertEqual(reference[ri([0]), ri([0])],
|
|
torch.tensor([0], dtype=dtype, device=device))
|
|
self.assertEqual(reference[ri([2]), ri([1])],
|
|
torch.tensor([6], dtype=dtype, device=device))
|
|
self.assertEqual(reference[[ri([0, 0]), ri([0, 1])]],
|
|
torch.tensor([0, 4], dtype=dtype, device=device))
|
|
self.assertEqual(reference[[ri([0, 1, 1, 0, 3]), ri([1])]],
|
|
torch.tensor([4, 5, 5, 4, 7], dtype=dtype, device=device))
|
|
self.assertEqual(reference[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]],
|
|
torch.tensor([0, 4, 1, 1], dtype=dtype, device=device))
|
|
|
|
rows = ri([[0, 0],
|
|
[1, 2]])
|
|
columns = [0],
|
|
self.assertEqual(reference[rows, columns],
|
|
torch.tensor([[0, 0], [1, 2]], dtype=dtype, device=device))
|
|
|
|
rows = ri([[0, 0],
|
|
[1, 2]])
|
|
columns = ri([1, 0])
|
|
self.assertEqual(reference[rows, columns],
|
|
torch.tensor([[4, 0], [5, 2]], dtype=dtype, device=device))
|
|
rows = ri([[0, 0],
|
|
[1, 3]])
|
|
columns = ri([[0, 1],
|
|
[1, 2]])
|
|
self.assertEqual(reference[rows, columns],
|
|
torch.tensor([[0, 4], [5, 11]], dtype=dtype, device=device))
|
|
|
|
# setting values
|
|
reference[ri([0]), ri([1])] = -1
|
|
self.assertEqual(reference[ri([0]), ri([1])],
|
|
torch.tensor([-1], dtype=dtype, device=device))
|
|
reference[ri([0, 1, 2]), ri([0])] = torch.tensor([-1, 2, -4], dtype=dtype, device=device)
|
|
self.assertEqual(reference[ri([0, 1, 2]), ri([0])],
|
|
torch.tensor([-1, 2, -4], dtype=dtype, device=device))
|
|
reference[rows, columns] = torch.tensor([[4, 6], [2, 3]], dtype=dtype, device=device)
|
|
self.assertEqual(reference[rows, columns],
|
|
torch.tensor([[4, 6], [2, 3]], dtype=dtype, device=device))
|
|
|
|
# stride != 1
|
|
|
|
# strided is [[1 3 5 7],
|
|
# [9 11 13 15]]
|
|
|
|
reference = torch.arange(0., 24, dtype=dtype, device=device).view(3, 8)
|
|
strided = torch.tensor((), dtype=dtype, device=device)
|
|
strided.set_(reference.storage(), 1, size=torch.Size([2, 4]),
|
|
stride=[8, 2])
|
|
|
|
self.assertEqual(strided[ri([0, 1]), ri([0])],
|
|
torch.tensor([1, 9], dtype=dtype, device=device))
|
|
self.assertEqual(strided[ri([0, 1]), ri([1])],
|
|
torch.tensor([3, 11], dtype=dtype, device=device))
|
|
self.assertEqual(strided[ri([0]), ri([0])],
|
|
torch.tensor([1], dtype=dtype, device=device))
|
|
self.assertEqual(strided[ri([1]), ri([3])],
|
|
torch.tensor([15], dtype=dtype, device=device))
|
|
self.assertEqual(strided[[ri([0, 0]), ri([0, 3])]],
|
|
torch.tensor([1, 7], dtype=dtype, device=device))
|
|
self.assertEqual(strided[[ri([1]), ri([0, 1, 1, 0, 3])]],
|
|
torch.tensor([9, 11, 11, 9, 15], dtype=dtype, device=device))
|
|
self.assertEqual(strided[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]],
|
|
torch.tensor([1, 3, 9, 9], dtype=dtype, device=device))
|
|
|
|
rows = ri([[0, 0],
|
|
[1, 1]])
|
|
columns = [0],
|
|
self.assertEqual(strided[rows, columns],
|
|
torch.tensor([[1, 1], [9, 9]], dtype=dtype, device=device))
|
|
|
|
rows = ri([[0, 1],
|
|
[1, 0]])
|
|
columns = ri([1, 2])
|
|
self.assertEqual(strided[rows, columns],
|
|
torch.tensor([[3, 13], [11, 5]], dtype=dtype, device=device))
|
|
rows = ri([[0, 0],
|
|
[1, 1]])
|
|
columns = ri([[0, 1],
|
|
[1, 2]])
|
|
self.assertEqual(strided[rows, columns],
|
|
torch.tensor([[1, 3], [11, 13]], dtype=dtype, device=device))
|
|
|
|
# setting values
|
|
|
|
# strided is [[10, 11],
|
|
# [17, 18]]
|
|
|
|
reference = torch.arange(0., 24, dtype=dtype, device=device).view(3, 8)
|
|
strided = torch.tensor((), dtype=dtype, device=device)
|
|
strided.set_(reference.storage(), 10, size=torch.Size([2, 2]),
|
|
stride=[7, 1])
|
|
self.assertEqual(strided[ri([0]), ri([1])],
|
|
torch.tensor([11], dtype=dtype, device=device))
|
|
strided[ri([0]), ri([1])] = -1
|
|
self.assertEqual(strided[ri([0]), ri([1])],
|
|
torch.tensor([-1], dtype=dtype, device=device))
|
|
|
|
reference = torch.arange(0., 24, dtype=dtype, device=device).view(3, 8)
|
|
strided = torch.tensor((), dtype=dtype, device=device)
|
|
strided.set_(reference.storage(), 10, size=torch.Size([2, 2]),
|
|
stride=[7, 1])
|
|
self.assertEqual(strided[ri([0, 1]), ri([1, 0])],
|
|
torch.tensor([11, 17], dtype=dtype, device=device))
|
|
strided[ri([0, 1]), ri([1, 0])] = torch.tensor([-1, 2], dtype=dtype, device=device)
|
|
self.assertEqual(strided[ri([0, 1]), ri([1, 0])],
|
|
torch.tensor([-1, 2], dtype=dtype, device=device))
|
|
|
|
reference = torch.arange(0., 24, dtype=dtype, device=device).view(3, 8)
|
|
strided = torch.tensor((), dtype=dtype, device=device)
|
|
strided.set_(reference.storage(), 10, size=torch.Size([2, 2]),
|
|
stride=[7, 1])
|
|
|
|
rows = ri([[0],
|
|
[1]])
|
|
columns = ri([[0, 1],
|
|
[0, 1]])
|
|
self.assertEqual(strided[rows, columns],
|
|
torch.tensor([[10, 11], [17, 18]], dtype=dtype, device=device))
|
|
strided[rows, columns] = torch.tensor([[4, 6], [2, 3]], dtype=dtype, device=device)
|
|
self.assertEqual(strided[rows, columns],
|
|
torch.tensor([[4, 6], [2, 3]], dtype=dtype, device=device))
|
|
|
|
# Tests using less than the number of dims, and ellipsis
|
|
|
|
# reference is 1 2
|
|
# 3 4
|
|
# 5 6
|
|
reference = consec((3, 2))
|
|
self.assertEqual(reference[ri([0, 2]), ],
|
|
torch.tensor([[1, 2], [5, 6]], dtype=dtype, device=device))
|
|
self.assertEqual(reference[ri([1]), ...],
|
|
torch.tensor([[3, 4]], dtype=dtype, device=device))
|
|
self.assertEqual(reference[..., ri([1])],
|
|
torch.tensor([[2], [4], [6]], dtype=dtype, device=device))
|
|
|
|
# verify too many indices fails
|
|
with self.assertRaises(IndexError):
|
|
reference[ri([1]), ri([0, 2]), ri([3])]
|
|
|
|
# test invalid index fails
|
|
reference = torch.empty(10, dtype=dtype, device=device)
|
|
# can't test cuda because it is a device assert
|
|
if not reference.is_cuda:
|
|
for err_idx in (10, -11):
|
|
with self.assertRaisesRegex(IndexError, r'out of'):
|
|
reference[err_idx]
|
|
with self.assertRaisesRegex(IndexError, r'out of'):
|
|
reference[torch.LongTensor([err_idx]).to(device)]
|
|
with self.assertRaisesRegex(IndexError, r'out of'):
|
|
reference[[err_idx]]
|
|
|
|
if TEST_NUMPY:
|
|
# we use numpy to compare against, to verify that our advanced
|
|
# indexing semantics are the same, and also for ease of test
|
|
# writing
|
|
|
|
def tensor_indices_to_np(tensor, indices):
|
|
# convert the Torch Tensor to a numpy array
|
|
tensor = tensor.to(device='cpu')
|
|
npt = tensor.numpy()
|
|
|
|
# convert indices
|
|
idxs = tuple(i.tolist() if isinstance(i, torch.LongTensor) else
|
|
i for i in indices)
|
|
|
|
return npt, idxs
|
|
|
|
def get_numpy(tensor, indices):
|
|
npt, idxs = tensor_indices_to_np(tensor, indices)
|
|
|
|
# index and return as a Torch Tensor
|
|
return torch.tensor(npt[idxs], dtype=dtype, device=device)
|
|
|
|
def set_numpy(tensor, indices, value):
|
|
if not isinstance(value, int):
|
|
if self.device_type != 'cpu':
|
|
value = value.cpu()
|
|
value = value.numpy()
|
|
|
|
npt, idxs = tensor_indices_to_np(tensor, indices)
|
|
npt[idxs] = value
|
|
return npt
|
|
|
|
def assert_get_eq(tensor, indexer):
|
|
self.assertEqual(tensor[indexer], get_numpy(tensor, indexer))
|
|
|
|
def assert_set_eq(tensor, indexer, val):
|
|
pyt = tensor.clone()
|
|
numt = tensor.clone()
|
|
pyt[indexer] = val
|
|
numt = torch.tensor(set_numpy(numt, indexer, val), dtype=dtype, device=device)
|
|
self.assertEqual(pyt, numt)
|
|
|
|
def assert_backward_eq(tensor, indexer):
|
|
cpu = tensor.float().clone().detach().requires_grad_(True)
|
|
outcpu = cpu[indexer]
|
|
gOcpu = torch.rand_like(outcpu)
|
|
outcpu.backward(gOcpu)
|
|
dev = cpu.to(device).detach().requires_grad_(True)
|
|
outdev = dev[indexer]
|
|
outdev.backward(gOcpu.to(device))
|
|
self.assertEqual(cpu.grad, dev.grad)
|
|
|
|
def get_set_tensor(indexed, indexer):
|
|
set_size = indexed[indexer].size()
|
|
set_count = indexed[indexer].numel()
|
|
set_tensor = torch.randperm(set_count).view(set_size).double().to(device)
|
|
return set_tensor
|
|
|
|
# Tensor is 0 1 2 3 4
|
|
# 5 6 7 8 9
|
|
# 10 11 12 13 14
|
|
# 15 16 17 18 19
|
|
reference = torch.arange(0., 20, dtype=dtype, device=device).view(4, 5)
|
|
|
|
indices_to_test = [
|
|
# grab the second, fourth columns
|
|
[slice(None), [1, 3]],
|
|
|
|
# first, third rows,
|
|
[[0, 2], slice(None)],
|
|
|
|
# weird shape
|
|
[slice(None), [[0, 1],
|
|
[2, 3]]],
|
|
# negatives
|
|
[[-1], [0]],
|
|
[[0, 2], [-1]],
|
|
[slice(None), [-1]],
|
|
]
|
|
|
|
# only test dupes on gets
|
|
get_indices_to_test = indices_to_test + [[slice(None), [0, 1, 1, 2, 2]]]
|
|
|
|
for indexer in get_indices_to_test:
|
|
assert_get_eq(reference, indexer)
|
|
if self.device_type != 'cpu':
|
|
assert_backward_eq(reference, indexer)
|
|
|
|
for indexer in indices_to_test:
|
|
assert_set_eq(reference, indexer, 44)
|
|
assert_set_eq(reference,
|
|
indexer,
|
|
get_set_tensor(reference, indexer))
|
|
|
|
reference = torch.arange(0., 160, dtype=dtype, device=device).view(4, 8, 5)
|
|
|
|
indices_to_test = [
|
|
[slice(None), slice(None), [0, 3, 4]],
|
|
[slice(None), [2, 4, 5, 7], slice(None)],
|
|
[[2, 3], slice(None), slice(None)],
|
|
[slice(None), [0, 2, 3], [1, 3, 4]],
|
|
[slice(None), [0], [1, 2, 4]],
|
|
[slice(None), [0, 1, 3], [4]],
|
|
[slice(None), [[0, 1], [1, 0]], [[2, 3]]],
|
|
[slice(None), [[0, 1], [2, 3]], [[0]]],
|
|
[slice(None), [[5, 6]], [[0, 3], [4, 4]]],
|
|
[[0, 2, 3], [1, 3, 4], slice(None)],
|
|
[[0], [1, 2, 4], slice(None)],
|
|
[[0, 1, 3], [4], slice(None)],
|
|
[[[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None)],
|
|
[[[0, 1], [1, 0]], [[2, 3]], slice(None)],
|
|
[[[0, 1], [2, 3]], [[0]], slice(None)],
|
|
[[[2, 1]], [[0, 3], [4, 4]], slice(None)],
|
|
[[[2]], [[0, 3], [4, 1]], slice(None)],
|
|
# non-contiguous indexing subspace
|
|
[[0, 2, 3], slice(None), [1, 3, 4]],
|
|
|
|
# less dim, ellipsis
|
|
[[0, 2], ],
|
|
[[0, 2], slice(None)],
|
|
[[0, 2], Ellipsis],
|
|
[[0, 2], slice(None), Ellipsis],
|
|
[[0, 2], Ellipsis, slice(None)],
|
|
[[0, 2], [1, 3]],
|
|
[[0, 2], [1, 3], Ellipsis],
|
|
[Ellipsis, [1, 3], [2, 3]],
|
|
[Ellipsis, [2, 3, 4]],
|
|
[Ellipsis, slice(None), [2, 3, 4]],
|
|
[slice(None), Ellipsis, [2, 3, 4]],
|
|
|
|
# ellipsis counts for nothing
|
|
[Ellipsis, slice(None), slice(None), [0, 3, 4]],
|
|
[slice(None), Ellipsis, slice(None), [0, 3, 4]],
|
|
[slice(None), slice(None), Ellipsis, [0, 3, 4]],
|
|
[slice(None), slice(None), [0, 3, 4], Ellipsis],
|
|
[Ellipsis, [[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None)],
|
|
[[[0, 1], [1, 0]], [[2, 1], [3, 5]], Ellipsis, slice(None)],
|
|
[[[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None), Ellipsis],
|
|
]
|
|
|
|
for indexer in indices_to_test:
|
|
assert_get_eq(reference, indexer)
|
|
assert_set_eq(reference, indexer, 212)
|
|
assert_set_eq(reference,
|
|
indexer,
|
|
get_set_tensor(reference, indexer))
|
|
if torch.cuda.is_available():
|
|
assert_backward_eq(reference, indexer)
|
|
|
|
reference = torch.arange(0., 1296, dtype=dtype, device=device).view(3, 9, 8, 6)
|
|
|
|
indices_to_test = [
|
|
[slice(None), slice(None), slice(None), [0, 3, 4]],
|
|
[slice(None), slice(None), [2, 4, 5, 7], slice(None)],
|
|
[slice(None), [2, 3], slice(None), slice(None)],
|
|
[[1, 2], slice(None), slice(None), slice(None)],
|
|
[slice(None), slice(None), [0, 2, 3], [1, 3, 4]],
|
|
[slice(None), slice(None), [0], [1, 2, 4]],
|
|
[slice(None), slice(None), [0, 1, 3], [4]],
|
|
[slice(None), slice(None), [[0, 1], [1, 0]], [[2, 3]]],
|
|
[slice(None), slice(None), [[0, 1], [2, 3]], [[0]]],
|
|
[slice(None), slice(None), [[5, 6]], [[0, 3], [4, 4]]],
|
|
[slice(None), [0, 2, 3], [1, 3, 4], slice(None)],
|
|
[slice(None), [0], [1, 2, 4], slice(None)],
|
|
[slice(None), [0, 1, 3], [4], slice(None)],
|
|
[slice(None), [[0, 1], [3, 4]], [[2, 3], [0, 1]], slice(None)],
|
|
[slice(None), [[0, 1], [3, 4]], [[2, 3]], slice(None)],
|
|
[slice(None), [[0, 1], [3, 2]], [[0]], slice(None)],
|
|
[slice(None), [[2, 1]], [[0, 3], [6, 4]], slice(None)],
|
|
[slice(None), [[2]], [[0, 3], [4, 2]], slice(None)],
|
|
[[0, 1, 2], [1, 3, 4], slice(None), slice(None)],
|
|
[[0], [1, 2, 4], slice(None), slice(None)],
|
|
[[0, 1, 2], [4], slice(None), slice(None)],
|
|
[[[0, 1], [0, 2]], [[2, 4], [1, 5]], slice(None), slice(None)],
|
|
[[[0, 1], [1, 2]], [[2, 0]], slice(None), slice(None)],
|
|
[[[2, 2]], [[0, 3], [4, 5]], slice(None), slice(None)],
|
|
[[[2]], [[0, 3], [4, 5]], slice(None), slice(None)],
|
|
[slice(None), [3, 4, 6], [0, 2, 3], [1, 3, 4]],
|
|
[slice(None), [2, 3, 4], [1, 3, 4], [4]],
|
|
[slice(None), [0, 1, 3], [4], [1, 3, 4]],
|
|
[slice(None), [6], [0, 2, 3], [1, 3, 4]],
|
|
[slice(None), [2, 3, 5], [3], [4]],
|
|
[slice(None), [0], [4], [1, 3, 4]],
|
|
[slice(None), [6], [0, 2, 3], [1]],
|
|
[slice(None), [[0, 3], [3, 6]], [[0, 1], [1, 3]], [[5, 3], [1, 2]]],
|
|
[[2, 2, 1], [0, 2, 3], [1, 3, 4], slice(None)],
|
|
[[2, 0, 1], [1, 2, 3], [4], slice(None)],
|
|
[[0, 1, 2], [4], [1, 3, 4], slice(None)],
|
|
[[0], [0, 2, 3], [1, 3, 4], slice(None)],
|
|
[[0, 2, 1], [3], [4], slice(None)],
|
|
[[0], [4], [1, 3, 4], slice(None)],
|
|
[[1], [0, 2, 3], [1], slice(None)],
|
|
[[[1, 2], [1, 2]], [[0, 1], [2, 3]], [[2, 3], [3, 5]], slice(None)],
|
|
|
|
# less dim, ellipsis
|
|
[Ellipsis, [0, 3, 4]],
|
|
[Ellipsis, slice(None), [0, 3, 4]],
|
|
[Ellipsis, slice(None), slice(None), [0, 3, 4]],
|
|
[slice(None), Ellipsis, [0, 3, 4]],
|
|
[slice(None), slice(None), Ellipsis, [0, 3, 4]],
|
|
[slice(None), [0, 2, 3], [1, 3, 4]],
|
|
[slice(None), [0, 2, 3], [1, 3, 4], Ellipsis],
|
|
[Ellipsis, [0, 2, 3], [1, 3, 4], slice(None)],
|
|
[[0], [1, 2, 4]],
|
|
[[0], [1, 2, 4], slice(None)],
|
|
[[0], [1, 2, 4], Ellipsis],
|
|
[[0], [1, 2, 4], Ellipsis, slice(None)],
|
|
[[1], ],
|
|
[[0, 2, 1], [3], [4]],
|
|
[[0, 2, 1], [3], [4], slice(None)],
|
|
[[0, 2, 1], [3], [4], Ellipsis],
|
|
[Ellipsis, [0, 2, 1], [3], [4]],
|
|
]
|
|
|
|
for indexer in indices_to_test:
|
|
assert_get_eq(reference, indexer)
|
|
assert_set_eq(reference, indexer, 1333)
|
|
assert_set_eq(reference,
|
|
indexer,
|
|
get_set_tensor(reference, indexer))
|
|
indices_to_test += [
|
|
[slice(None), slice(None), [[0, 1], [1, 0]], [[2, 3], [3, 0]]],
|
|
[slice(None), slice(None), [[2]], [[0, 3], [4, 4]]],
|
|
]
|
|
for indexer in indices_to_test:
|
|
assert_get_eq(reference, indexer)
|
|
assert_set_eq(reference, indexer, 1333)
|
|
if self.device_type != 'cpu':
|
|
assert_backward_eq(reference, indexer)
|
|
|
|
def test_advancedindex_big(self, device):
|
|
reference = torch.arange(0, 123344, dtype=torch.int, device=device)
|
|
|
|
self.assertEqual(reference[[0, 123, 44488, 68807, 123343], ],
|
|
torch.tensor([0, 123, 44488, 68807, 123343], dtype=torch.int))
|
|
|
|
@dtypes(torch.double)
|
|
def test_kthvalue(self, device, dtype):
|
|
SIZE = 50
|
|
x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device)
|
|
x0 = x.clone()
|
|
|
|
k = random.randint(1, SIZE)
|
|
res1val, res1ind = torch.kthvalue(x, k, keepdim=False)
|
|
res2val, res2ind = torch.sort(x)
|
|
|
|
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
|
|
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)
|
|
# test use of result tensors
|
|
k = random.randint(1, SIZE)
|
|
res1val = torch.tensor([], dtype=dtype, device=device)
|
|
res1ind = torch.tensor([], dtype=torch.long, device=device)
|
|
torch.kthvalue(x, k, keepdim=False, out=(res1val, res1ind))
|
|
res2val, res2ind = torch.sort(x)
|
|
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
|
|
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)
|
|
|
|
# test non-default dim
|
|
k = random.randint(1, SIZE)
|
|
res1val, res1ind = torch.kthvalue(x, k, 0, keepdim=False)
|
|
res2val, res2ind = torch.sort(x, 0)
|
|
self.assertEqual(res1val, res2val[k - 1], atol=0, rtol=0)
|
|
self.assertEqual(res1ind, res2ind[k - 1], atol=0, rtol=0)
|
|
|
|
# non-contiguous
|
|
y = x.narrow(1, 0, 1)
|
|
y0 = y.contiguous()
|
|
k = random.randint(1, SIZE)
|
|
res1val, res1ind = torch.kthvalue(y, k)
|
|
res2val, res2ind = torch.kthvalue(y0, k)
|
|
self.assertEqual(res1val, res2val, atol=0, rtol=0)
|
|
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
|
|
|
|
# check that the input wasn't modified
|
|
self.assertEqual(x, x0, atol=0, rtol=0)
|
|
|
|
# simple test case (with repetitions)
|
|
y = torch.tensor((3., 5, 4, 1, 1, 5), dtype=dtype, device=device)
|
|
self.assertEqual(torch.kthvalue(y, 3)[0], 3, atol=0, rtol=0)
|
|
self.assertEqual(torch.kthvalue(y, 2)[0], 1, atol=0, rtol=0)
|
|
|
|
# simple test case (with NaN)
|
|
SIZE = 50
|
|
x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device)
|
|
x[torch.arange(SIZE), :, torch.randint(50, (50,))] = nan
|
|
ks = [random.randint(1, SIZE), 1, SIZE, SIZE - 1]
|
|
res2val, res2ind = torch.sort(x)
|
|
for k in ks:
|
|
res1val, res1ind = torch.kthvalue(x, k, keepdim=False)
|
|
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
|
|
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
|
|
@dtypes(torch.double)
|
|
def test_lu_solve_batched_non_contiguous(self, device, dtype):
|
|
from numpy.linalg import solve
|
|
from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value
|
|
|
|
A = random_fullrank_matrix_distinct_singular_value(2, 2, dtype=dtype, device='cpu')
|
|
b = torch.randn(2, 2, 2, dtype=dtype, device='cpu')
|
|
x_exp = torch.as_tensor(solve(A.permute(0, 2, 1).numpy(), b.permute(2, 1, 0).numpy())).to(device)
|
|
A = A.to(device).permute(0, 2, 1)
|
|
b = b.to(device).permute(2, 1, 0)
|
|
assert not A.is_contiguous() and not b.is_contiguous(), "contiguous inputs"
|
|
LU_data, LU_pivots = torch.lu(A)
|
|
x = torch.lu_solve(b, LU_data, LU_pivots)
|
|
self.assertEqual(x, x_exp)
|
|
|
|
def lu_solve_test_helper(self, A_dims, b_dims, pivot, device, dtype):
|
|
from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value
|
|
|
|
b = torch.randn(*b_dims, dtype=dtype, device=device)
|
|
A = random_fullrank_matrix_distinct_singular_value(*A_dims, dtype=dtype, device=device)
|
|
LU_data, LU_pivots, info = torch.lu(A, get_infos=True, pivot=pivot)
|
|
self.assertEqual(info, torch.zeros_like(info))
|
|
return b, A, LU_data, LU_pivots
|
|
|
|
@skipCPUIfNoLapack
|
|
@skipCUDAIfNoMagma
|
|
@dtypes(torch.double)
|
|
def test_lu_solve(self, device, dtype):
|
|
def sub_test(pivot):
|
|
for k, n in zip([2, 3, 5], [3, 5, 7]):
|
|
b, A, LU_data, LU_pivots = self.lu_solve_test_helper((n,), (n, k), pivot, device, dtype)
|
|
x = torch.lu_solve(b, LU_data, LU_pivots)
|
|
self.assertLessEqual(b.dist(A.mm(x)), 1e-12)
|
|
|
|
sub_test(True)
|
|
if self.device_type == 'cuda':
|
|
sub_test(False)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_lu_solve_batched(self, device, dtype):
|
|
def sub_test(pivot):
|
|
def lu_solve_batch_test_helper(A_dims, b_dims, pivot):
|
|
b, A, LU_data, LU_pivots = self.lu_solve_test_helper(A_dims, b_dims, pivot, device, dtype)
|
|
x_exp_list = []
|
|
for i in range(b_dims[0]):
|
|
x_exp_list.append(torch.lu_solve(b[i], LU_data[i], LU_pivots[i]))
|
|
x_exp = torch.stack(x_exp_list) # Stacked output
|
|
x_act = torch.lu_solve(b, LU_data, LU_pivots) # Actual output
|
|
self.assertEqual(x_exp, x_act) # Equality check
|
|
self.assertLessEqual(b.dist(torch.matmul(A, x_act)), 1e-12) # Correctness check
|
|
|
|
for batchsize in [1, 3, 4]:
|
|
lu_solve_batch_test_helper((5, batchsize), (batchsize, 5, 10), pivot)
|
|
|
|
# Tests tensors with 0 elements
|
|
b = torch.randn(3, 0, 3, dtype=dtype, device=device)
|
|
A = torch.randn(3, 0, 0, dtype=dtype, device=device)
|
|
LU_data, LU_pivots = torch.lu(A)
|
|
self.assertEqual(torch.empty_like(b), b.lu_solve(LU_data, LU_pivots))
|
|
|
|
sub_test(True)
|
|
if self.device_type == 'cuda':
|
|
sub_test(False)
|
|
|
|
@slowTest
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_lu_solve_batched_many_batches(self, device, dtype):
|
|
def run_test(A_dims, b_dims):
|
|
b, A, LU_data, LU_pivots = self.lu_solve_test_helper(A_dims, b_dims, True, device, dtype)
|
|
x = torch.lu_solve(b, LU_data, LU_pivots)
|
|
b_ = torch.matmul(A, x)
|
|
self.assertEqual(b_, b.expand_as(b_))
|
|
|
|
run_test((5, 65536), (65536, 5, 10))
|
|
run_test((5, 262144), (262144, 5, 10))
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
|
|
@dtypes(torch.double)
|
|
def test_lu_solve_batched_broadcasting(self, device, dtype):
|
|
from numpy.linalg import solve
|
|
from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value
|
|
|
|
def run_test(A_dims, b_dims, pivot=True):
|
|
A_matrix_size = A_dims[-1]
|
|
A_batch_dims = A_dims[:-2]
|
|
A = random_fullrank_matrix_distinct_singular_value(A_matrix_size, *A_batch_dims, dtype=dtype)
|
|
b = torch.randn(*b_dims, dtype=dtype)
|
|
x_exp = torch.as_tensor(solve(A.numpy(), b.numpy())).to(dtype=dtype, device=device)
|
|
A, b = A.to(device), b.to(device)
|
|
LU_data, LU_pivots = torch.lu(A, pivot=pivot)
|
|
x = torch.lu_solve(b, LU_data, LU_pivots)
|
|
self.assertEqual(x, x_exp)
|
|
|
|
# test against numpy.linalg.solve
|
|
run_test((2, 1, 3, 4, 4), (2, 1, 3, 4, 6)) # no broadcasting
|
|
run_test((2, 1, 3, 4, 4), (4, 6)) # broadcasting b
|
|
run_test((4, 4), (2, 1, 3, 4, 2)) # broadcasting A
|
|
run_test((1, 3, 1, 4, 4), (2, 1, 3, 4, 5)) # broadcasting A & b
|
|
|
|
# Assert for illegal dtype would not be raised on XLA
|
|
@onlyOnCPUAndCUDA
|
|
def test_minmax_illegal_dtype(self, device):
|
|
x = torch.randn(5, 5, dtype=torch.float32, device=device)
|
|
valid_values = torch.empty(5, dtype=torch.float32, device=device)
|
|
valid_indices = torch.empty(5, dtype=torch.long, device=device)
|
|
illegal_values = torch.empty(5, dtype=torch.int, device=device)
|
|
illegal_indices = torch.empty(5, dtype=torch.double, device=device)
|
|
torch.max(x, dim=0, out=(valid_values, valid_indices))
|
|
torch.min(x, dim=0, out=(valid_values, valid_indices))
|
|
rmsg = r'scalar type|dtype'
|
|
with self.assertRaisesRegex(RuntimeError, rmsg):
|
|
torch.max(x, dim=0, out=(illegal_values, valid_indices))
|
|
with self.assertRaisesRegex(RuntimeError, rmsg):
|
|
torch.min(x, dim=0, out=(illegal_values, valid_indices))
|
|
with self.assertRaisesRegex(RuntimeError, rmsg):
|
|
torch.max(x, dim=0, out=(valid_values, illegal_indices))
|
|
with self.assertRaisesRegex(RuntimeError, rmsg):
|
|
torch.min(x, dim=0, out=(valid_values, illegal_indices))
|
|
with self.assertRaisesRegex(RuntimeError, rmsg):
|
|
torch.max(x, dim=0, out=(illegal_values, illegal_indices))
|
|
with self.assertRaisesRegex(RuntimeError, rmsg):
|
|
torch.min(x, dim=0, out=(illegal_values, illegal_indices))
|
|
|
|
@dtypes(torch.float, torch.double, torch.int64, torch.int32, torch.int16)
|
|
@dtypesIfCUDA(torch.float, torch.double, torch.int64, torch.int32, torch.int16, torch.half)
|
|
def test_dim_arg_reduction_scalar(self, device, dtype):
|
|
example = 4.0
|
|
|
|
x = torch.tensor(example, device=device, dtype=dtype)
|
|
self.assertEqual(x.argmax().item(), 0)
|
|
self.assertEqual(x.argmax(dim=None).item(), 0)
|
|
self.assertEqual(x.argmax(dim=0).item(), 0)
|
|
self.assertEqual(x.argmax(dim=0, keepdim=True), torch.tensor(0, dtype=torch.int64))
|
|
|
|
x = torch.tensor(example, device=device, dtype=dtype)
|
|
self.assertEqual(x.argmin().item(), 0)
|
|
self.assertEqual(x.argmin(dim=None).item(), 0)
|
|
self.assertEqual(x.argmin(dim=0).item(), 0)
|
|
self.assertEqual(x.argmin(dim=0, keepdim=True), torch.tensor(0, dtype=torch.int64))
|
|
|
|
|
|
def test_dim_reduction(self, device):
|
|
example = [[-1, 2, 1], [5, 3, 6]]
|
|
|
|
types = [torch.double,
|
|
torch.float,
|
|
torch.int64,
|
|
torch.int32,
|
|
torch.int16]
|
|
if self.device_type == 'cuda': # 'cpu' and 'xla' do not support half
|
|
types.append(torch.half)
|
|
|
|
sum_dtype = {
|
|
torch.double: torch.double,
|
|
torch.float: torch.float,
|
|
torch.half: torch.half,
|
|
torch.int64: torch.int64,
|
|
torch.int32: torch.int64,
|
|
torch.int16: torch.int64,
|
|
}
|
|
|
|
# This won't test for 256bit instructions, since we usually
|
|
# only work on 1 cacheline (1024bit) at a time and these
|
|
# examples aren't big enough to trigger that.
|
|
for dtype in types:
|
|
x = torch.tensor(example, device=device, dtype=dtype)
|
|
self.assertEqual(x.sum().item(), 16)
|
|
self.assertEqual(x.sum(0), torch.tensor([4, 5, 7], dtype=sum_dtype[dtype]))
|
|
self.assertEqual(x.sum(1), torch.tensor([2, 14], dtype=sum_dtype[dtype]))
|
|
y = torch.tensor(example, device=device, dtype=sum_dtype[dtype])
|
|
torch.sum(x, 0, out=y)
|
|
self.assertEqual(x.sum(0), y)
|
|
|
|
# Mean not supported for Int types
|
|
for dtype in types[:2]:
|
|
x = torch.tensor(example, device=device, dtype=dtype)
|
|
self.assertEqual(x.mean().item(), 16.0 / 6)
|
|
self.assertEqual(x.mean(0), torch.tensor([2.0, 2.5, 7.0 / 2], dtype=dtype))
|
|
self.assertEqual(x.mean(1), torch.tensor([2.0 / 3, 14.0 / 3], dtype=dtype))
|
|
self.assertEqual(x.mean(), x.mean((0, 1)))
|
|
|
|
prod_dtype = {
|
|
torch.double: torch.double,
|
|
torch.float: torch.float,
|
|
torch.half: torch.half,
|
|
torch.int64: torch.int64,
|
|
torch.int32: torch.int64,
|
|
torch.int16: torch.int64
|
|
}
|
|
|
|
for dtype in types:
|
|
x = torch.tensor(example, device=device, dtype=dtype)
|
|
self.assertEqual(x.prod().item(), -180)
|
|
self.assertEqual(x.prod(0), torch.tensor([-5, 6, 6], dtype=prod_dtype[dtype]))
|
|
self.assertEqual(x.prod(1), torch.tensor([-2, 90], dtype=prod_dtype[dtype]))
|
|
|
|
for dtype in types:
|
|
x = torch.tensor(example, device=device, dtype=dtype)
|
|
|
|
self.assertEqual(x.min().item(), -1)
|
|
self.assertEqual(x.argmin().item(), 0)
|
|
|
|
# TODO: torch.min does not support the same operation as argmin
|
|
# for the same case, should we enable it?
|
|
self.assertEqual(x.argmin(dim=None).item(), 0)
|
|
|
|
self.assertEqual(x.min(0), (torch.tensor([-1, 2, 1], dtype=dtype),
|
|
torch.tensor([0, 0, 0], dtype=torch.int64)))
|
|
self.assertEqual(x.argmin(0), torch.tensor([0, 0, 0], dtype=torch.int64))
|
|
|
|
self.assertEqual(x.min(dim=0, keepdim=True), (torch.tensor([[-1, 2, 1]], dtype=dtype),
|
|
torch.tensor([[0, 0, 0]], dtype=torch.int64)))
|
|
self.assertEqual(x.argmin(dim=0, keepdim=True), torch.tensor([[0, 0, 0]], dtype=torch.int64))
|
|
|
|
self.assertEqual(x.min(1), (torch.tensor([-1, 3], dtype=dtype),
|
|
torch.tensor([0, 1], dtype=torch.int64)))
|
|
self.assertEqual(x.argmin(1), torch.tensor([0, 1], dtype=torch.int64))
|
|
|
|
self.assertEqual(x.min(dim=1, keepdim=True), (torch.tensor([[-1], [3]], dtype=dtype),
|
|
torch.tensor([[0], [1]], dtype=torch.int64)))
|
|
self.assertEqual(x.argmin(dim=1, keepdim=True), torch.tensor([[0], [1]], dtype=torch.int64))
|
|
|
|
# test that non-contiguous tensors work
|
|
self.assertEqual(x[:, :2].min().item(), -1)
|
|
self.assertEqual(x[:, :2].argmin().item(), 0)
|
|
|
|
for dtype in types:
|
|
x = torch.tensor(example, device=device, dtype=dtype)
|
|
|
|
self.assertEqual(x.max().item(), 6)
|
|
self.assertEqual(x.argmax().item(), 5)
|
|
|
|
self.assertEqual(x.max(0), (torch.tensor([5, 3, 6], dtype=dtype),
|
|
torch.tensor([1, 1, 1], dtype=torch.int64)))
|
|
self.assertEqual(x.argmax(dim=0), torch.tensor([1, 1, 1], dtype=torch.int64))
|
|
|
|
self.assertEqual(x.max(dim=0, keepdim=True), (torch.tensor([[5, 3, 6]], dtype=dtype),
|
|
torch.tensor([[1, 1, 1]], dtype=torch.int64)))
|
|
self.assertEqual(x.argmax(dim=0, keepdim=True), torch.tensor([[1, 1, 1]], dtype=torch.int64))
|
|
|
|
self.assertEqual(x.max(1), (torch.tensor([2, 6], dtype=dtype),
|
|
torch.tensor([1, 2], dtype=torch.int64)))
|
|
self.assertEqual(x.argmax(dim=1), torch.tensor([1, 2], dtype=torch.int64))
|
|
|
|
self.assertEqual(x.max(1, keepdim=True), (torch.tensor([[2], [6]], dtype=dtype),
|
|
torch.tensor([[1], [2]], dtype=torch.int64)))
|
|
self.assertEqual(x.argmax(dim=1, keepdim=True), torch.tensor([[1], [2]], dtype=torch.int64))
|
|
|
|
# test that non-contiguous tensors work
|
|
self.assertEqual(x[:, :2].max().item(), 5)
|
|
self.assertEqual(x[:, :2].argmax().item(), 2)
|
|
|
|
dim_red_fns = [
|
|
"mean", "median", "mode", "norm", "prod",
|
|
"std", "sum", "var", "max", "min"]
|
|
|
|
def normfn_attr(t, dim, keepdim=False, out=None):
|
|
attr = torch.norm
|
|
return attr(t, 2, dim, keepdim, out=out)
|
|
|
|
for fn_name in dim_red_fns:
|
|
fn_attr = getattr(torch, fn_name) if fn_name != "norm" else normfn_attr
|
|
|
|
def fn(x, dim, keepdim=False, out=None):
|
|
ans = fn_attr(x, dim, keepdim=keepdim, out=out)
|
|
return ans if not istuple(ans) else ans[0]
|
|
|
|
def fn_tuple(x, dim, keepdim=False, out=None):
|
|
return fn_attr(x, dim, keepdim=keepdim, out=out)
|
|
|
|
def test_multidim(x, dim):
|
|
self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True))
|
|
self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension())
|
|
self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension())
|
|
|
|
# general case
|
|
x = torch.randn(3, 4, 5, device=device)
|
|
dim = random.randint(0, 2)
|
|
test_multidim(x, dim)
|
|
|
|
# check 1-d behavior
|
|
x = torch.randn(1, device=device)
|
|
dim = 0
|
|
self.assertEqual(fn(x, dim).shape, ())
|
|
self.assertEqual(fn(x, dim, keepdim=True).shape, (1,))
|
|
|
|
# check reducing of a singleton dimension
|
|
dims = [3, 4, 5]
|
|
singleton_dim = random.randint(0, 2)
|
|
dims[singleton_dim] = 1
|
|
x = torch.randn(dims, device=device)
|
|
test_multidim(x, singleton_dim)
|
|
|
|
# check reducing median with NaNs
|
|
# If the element in the median is a NaN, there can be issues
|
|
# when comparining with other nan elements
|
|
if fn_name == 'median':
|
|
y = torch.full((1, 3), np.nan, dtype=torch.float64, device=device)
|
|
y[:, :1] = 1.1
|
|
values, indices = fn_tuple(y, dim=1)
|
|
expected_values = torch.tensor([nan], dtype=torch.float64, device=device)
|
|
self.assertEqual(values, expected_values)
|
|
self.assertTrue(torch.isnan(y.flatten()[indices[0]]))
|
|
|
|
# check reducing with output kwargs
|
|
if fn_name in ['median', 'mode', 'max', 'min']:
|
|
y = torch.randn(5, 3, device=device)
|
|
values = torch.randn(5, 3, device=device)
|
|
indices = torch.zeros(5, 3, device=device).long() - 1
|
|
fn_tuple(y, 1, keepdim=False, out=(values[:, 1], indices[:, 1]))
|
|
values_expected, indices_expected = fn_tuple(y, 1, keepdim=False)
|
|
self.assertEqual(values[:, 1], values_expected,
|
|
msg='{} values with out= kwarg'.format(fn_name))
|
|
self.assertEqual(indices[:, 1], indices_expected,
|
|
msg='{} indices with out= kwarg'.format(fn_name))
|
|
continue
|
|
|
|
x = torch.randn(5, 3, device=device)
|
|
y = torch.randn(5, 3, device=device)
|
|
fn(y, 1, keepdim=False, out=x[:, 1])
|
|
expected = fn(y, 1, keepdim=False)
|
|
self.assertEqual(x[:, 1], expected, msg='{} with out= kwarg'.format(fn_name))
|
|
|
|
@largeCUDATensorTest('10GB')
|
|
def test_reduction_split(self, device):
|
|
# Test reduction when there is a 32bit-indexing split
|
|
# https://github.com/pytorch/pytorch/issues/37583
|
|
input_ = torch.randn(5, 14400, 14400, device=device)
|
|
result = input_.sum(dim=0)
|
|
expect = input_[0] + input_[1] + input_[2] + input_[3] + input_[4]
|
|
self.assertEqual(result, expect)
|
|
|
|
@onlyCUDA
|
|
@dtypes(torch.half, torch.float, torch.double)
|
|
def test_reduction_vectorize_along_input_corner(self, device, dtype):
|
|
# 1D case: sum
|
|
size = 1024 * 1024 * 64 + 3
|
|
shift = 1
|
|
x = torch.zeros(size, dtype=dtype, device=device)
|
|
y = x[shift:]
|
|
for i in range(100):
|
|
x.zero_()
|
|
x[i] = 1
|
|
self.assertEqual(x.sum(), 1.0)
|
|
if i < shift:
|
|
self.assertEqual(y.sum(), 0.0)
|
|
else:
|
|
self.assertEqual(y.sum(), 1.0)
|
|
for i in range(1, 100):
|
|
x.zero_()
|
|
x[-i] = 1
|
|
self.assertEqual(x.sum(), 1.0)
|
|
self.assertEqual(y.sum(), 1.0)
|
|
# 1D case: argmax
|
|
size = 1024 * 1024 * 64 + 3
|
|
shift = 1
|
|
ysize = size - shift
|
|
x = torch.zeros(size, dtype=dtype, device=device)
|
|
y = x[shift:]
|
|
for i in range(100):
|
|
x.zero_()
|
|
x[i] = 1
|
|
self.assertEqual(x.argmax().item(), i)
|
|
if i >= shift:
|
|
self.assertEqual(y.argmax().item(), i - shift)
|
|
for i in range(1, 100):
|
|
x.zero_()
|
|
x[-i] = 1
|
|
self.assertEqual(x.argmax().item(), size - i)
|
|
self.assertEqual(y.argmax().item(), ysize - i)
|
|
# 2D case: sum
|
|
size = (7, 1024 * 1024 + 3)
|
|
x = torch.zeros(size, dtype=dtype, device=device)
|
|
for i in range(100):
|
|
x.zero_()
|
|
for j in range(7):
|
|
x[j][i] = j
|
|
xs = x.sum(dim=-1)
|
|
for j in range(7):
|
|
self.assertEqual(xs[j].item(), float(j))
|
|
for i in range(100):
|
|
x.zero_()
|
|
for j in range(7):
|
|
x[j][-i] = j
|
|
xs = x.sum(dim=-1)
|
|
for j in range(7):
|
|
self.assertEqual(xs[j].item(), float(j))
|
|
# 2D case: max/argmax
|
|
size = (7, 1024 * 1024 + 3)
|
|
x = torch.zeros(size, dtype=dtype, device=device)
|
|
for i in range(100):
|
|
x.zero_()
|
|
for j in range(7):
|
|
x[j][i] = j + 1
|
|
xs1 = x.argmax(dim=-1)
|
|
xs2 = x.max(dim=-1).indices
|
|
for j in range(7):
|
|
self.assertEqual(xs1[j].item(), i)
|
|
self.assertEqual(xs2[j].item(), i)
|
|
for i in range(1, 100):
|
|
x.zero_()
|
|
for j in range(7):
|
|
x[j][-i] = j + 1
|
|
xs1 = x.argmax(dim=-1)
|
|
xs2 = x.max(dim=-1).indices
|
|
for j in range(7):
|
|
self.assertEqual(xs1[j].item(), size[1] - i)
|
|
self.assertEqual(xs2[j].item(), size[1] - i)
|
|
# 2D case: min/argmin
|
|
size = (7, 1024 * 1024 + 3)
|
|
x = torch.zeros(size, dtype=dtype, device=device)
|
|
for i in range(100):
|
|
x.zero_()
|
|
for j in range(7):
|
|
x[j][i] = -(j + 1)
|
|
xs1 = x.argmin(dim=-1)
|
|
xs2 = x.min(dim=-1).indices
|
|
for j in range(7):
|
|
self.assertEqual(xs1[j].item(), i)
|
|
self.assertEqual(xs2[j].item(), i)
|
|
for i in range(1, 100):
|
|
x.zero_()
|
|
for j in range(7):
|
|
x[j][-i] = -(j + 1)
|
|
xs1 = x.argmin(dim=-1)
|
|
xs2 = x.min(dim=-1).indices
|
|
for j in range(7):
|
|
self.assertEqual(xs1[j].item(), size[1] - i)
|
|
self.assertEqual(xs2[j].item(), size[1] - i)
|
|
|
|
@onlyCUDA
|
|
@dtypes(torch.half, torch.float, torch.double)
|
|
def test_reduction_vectorize_along_output(self, device, dtype):
|
|
def run_test(input_):
|
|
M, N = input_.shape
|
|
input_.zero_()
|
|
for i in range(min(M, N)):
|
|
input_[i][i] = 1
|
|
output1 = input_.argmax(dim=0)
|
|
output2 = input_.sum(dim=0)
|
|
for i in range(min(M, N)):
|
|
self.assertEqual(output1[i], i)
|
|
self.assertEqual(output2[i], 1)
|
|
# vec 4
|
|
run_test(torch.zeros(64, 64, dtype=dtype, device=device))
|
|
# vec 2
|
|
run_test(torch.zeros(64 * 64 + 2, dtype=dtype, device=device)[2:].view(64, 64))
|
|
run_test(torch.zeros(64, 62, dtype=dtype, device=device))
|
|
run_test(torch.zeros(64, 2, dtype=dtype, device=device))
|
|
# vec 1
|
|
run_test(torch.zeros(64 * 64 + 1, dtype=dtype, device=device)[1:].view(64, 64))
|
|
run_test(torch.zeros(64, 61, dtype=dtype, device=device))
|
|
run_test(torch.zeros(64, 1, dtype=dtype, device=device))
|
|
|
|
@slowTest
|
|
def test_argminmax_large_axis(self, device):
|
|
# Regression test for gh-32863
|
|
x = torch.zeros(2**31, device=device, dtype=torch.int8)
|
|
x[-1] = 1
|
|
self.assertEqual(x.argmax(0), x.shape[0] - 1)
|
|
self.assertEqual(x.max(0).indices, x.shape[0] - 1)
|
|
x[-1] = -1
|
|
self.assertEqual(x.argmin(0), x.shape[0] - 1)
|
|
self.assertEqual(x.min(0).indices, x.shape[0] - 1)
|
|
|
|
def test_argminmax_axis_with_dim_one(self, device):
|
|
# See: https://github.com/pytorch/pytorch/issues/38922
|
|
n = 32768
|
|
x = torch.zeros(1, n)
|
|
self.assertEqual(x.argmax(dim=0), torch.zeros(n, dtype=torch.int64))
|
|
self.assertEqual(x.argmin(dim=0), torch.zeros(n, dtype=torch.int64))
|
|
|
|
self.assertEqual(x.argmax(dim=-2), torch.zeros(n, dtype=torch.int64))
|
|
self.assertEqual(x.argmin(dim=-2), torch.zeros(n, dtype=torch.int64))
|
|
|
|
self.assertEqual(x.argmax(dim=0, keepdim=True), torch.zeros(1, n, dtype=torch.int64))
|
|
self.assertEqual(x.argmin(dim=0, keepdim=True), torch.zeros(1, n, dtype=torch.int64))
|
|
|
|
self.assertEqual(x.argmax(dim=-2, keepdim=True), torch.zeros(1, n, dtype=torch.int64))
|
|
self.assertEqual(x.argmin(dim=-2, keepdim=True), torch.zeros(1, n, dtype=torch.int64))
|
|
|
|
def test_remainder_overflow(self, device):
|
|
# Check Integer Overflows
|
|
x = torch.tensor(23500, dtype=torch.int64, device=device)
|
|
q = 392486996410368
|
|
self.assertEqual(x % q, x)
|
|
self.assertEqual(-x % q, q - x)
|
|
self.assertEqual(x % -q, x - q)
|
|
self.assertEqual(-x % -q, -x)
|
|
|
|
def test_rpow(self, device):
|
|
m = torch.randn(10, 10, device=device)
|
|
self.assertEqual(torch.pow(2, m), 2**m)
|
|
|
|
# test with scalar
|
|
m = torch.randn(1, device=device).squeeze()
|
|
assert m.dim() == 0, "m is intentionally a scalar"
|
|
self.assertEqual(torch.pow(2, m), 2**m)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_symeig(self, device, dtype):
|
|
from torch.testing._internal.common_utils import random_symmetric_matrix
|
|
|
|
def run_test(dims, eigenvectors, upper):
|
|
x = random_symmetric_matrix(*dims, dtype=dtype, device=device)
|
|
oute = torch.empty(dims[1:] + dims[:1], dtype=dtype, device=device)
|
|
outv = torch.empty(dims[1:] + dims[:1] * 2, dtype=dtype, device=device)
|
|
torch.symeig(x, eigenvectors=eigenvectors, upper=upper, out=(oute, outv))
|
|
|
|
if eigenvectors:
|
|
x_recon = torch.matmul(torch.matmul(outv, torch.diag_embed(oute)), outv.transpose(-2, -1))
|
|
self.assertEqual(x, x_recon, atol=1e-8, rtol=0, msg='Incorrect reconstruction using V @ diag(e) @ V.T')
|
|
else:
|
|
eigvals, _ = torch.symeig(x, eigenvectors=True, upper=upper)
|
|
self.assertEqual(eigvals, oute, msg='Eigenvalues mismatch')
|
|
self.assertEqual(torch.empty(0, device=device, dtype=dtype), outv, msg='Eigenvector matrix not empty')
|
|
|
|
rese, resv = x.symeig(eigenvectors=eigenvectors, upper=upper)
|
|
self.assertEqual(rese, oute, msg="outputs of symeig and symeig with out don't match")
|
|
self.assertEqual(resv, outv, msg="outputs of symeig and symeig with out don't match")
|
|
|
|
# test non-contiguous
|
|
x = random_symmetric_matrix(*dims, dtype=dtype, device=device)
|
|
n_dim = len(dims) + 1
|
|
# Reverse the batch dimensions and the matrix dimensions and then concat them
|
|
x = x.permute(tuple(range(n_dim - 3, -1, -1)) + (n_dim - 1, n_dim - 2))
|
|
assert not x.is_contiguous(), "x is intentionally non-contiguous"
|
|
rese, resv = torch.symeig(x, eigenvectors=eigenvectors, upper=upper)
|
|
if eigenvectors:
|
|
x_recon = torch.matmul(torch.matmul(resv, torch.diag_embed(rese)), resv.transpose(-2, -1))
|
|
self.assertEqual(x, x_recon, atol=1e-8, rtol=0, msg='Incorrect reconstruction using V @ diag(e) @ V.T')
|
|
else:
|
|
eigvals, _ = torch.symeig(x, eigenvectors=True, upper=upper)
|
|
self.assertEqual(eigvals, rese, msg='Eigenvalues mismatch')
|
|
self.assertEqual(torch.empty(0, device=device, dtype=dtype), resv, msg='Eigenvector matrix not empty')
|
|
|
|
batch_dims_set = [(), (3,), (3, 5), (5, 3, 5)]
|
|
for batch_dims, eigenvectors, upper in product(batch_dims_set, (True, False), (True, False)):
|
|
run_test((5,) + batch_dims, eigenvectors, upper)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_svd(self, device, dtype):
|
|
def run_test(dims, some, compute_uv):
|
|
x = torch.randn(*dims, dtype=dtype, device=device)
|
|
outu = torch.tensor((), dtype=dtype, device=device)
|
|
outs = torch.tensor((), dtype=dtype, device=device)
|
|
outv = torch.tensor((), dtype=dtype, device=device)
|
|
torch.svd(x, some=some, compute_uv=compute_uv, out=(outu, outs, outv))
|
|
|
|
if compute_uv:
|
|
if some:
|
|
x_recon = torch.matmul(outu, torch.matmul(outs.diag_embed(), outv.transpose(-2, -1)))
|
|
self.assertEqual(x, x_recon, atol=1e-8, rtol=0, msg='Incorrect reconstruction using U @ diag(S) @ V.T')
|
|
else:
|
|
narrow_u = outu[..., :min(*dims[-2:])]
|
|
narrow_v = outv[..., :min(*dims[-2:])]
|
|
x_recon = torch.matmul(narrow_u, torch.matmul(outs.diag_embed(), narrow_v.transpose(-2, -1)))
|
|
self.assertEqual(x, x_recon, atol=1e-8, rtol=0, msg='Incorrect reconstruction using U @ diag(S) @ V.T')
|
|
else:
|
|
_, singvals, _ = torch.svd(x, compute_uv=True)
|
|
self.assertEqual(singvals, outs, msg='Singular values mismatch')
|
|
self.assertEqual(outu, torch.zeros_like(outu), msg='U not zero')
|
|
self.assertEqual(outv, torch.zeros_like(outv), msg='V not zero')
|
|
|
|
resu, ress, resv = torch.svd(x, some=some, compute_uv=compute_uv)
|
|
self.assertEqual(resu, outu, msg='outputs of svd and svd with out differ')
|
|
self.assertEqual(ress, outs, msg='outputs of svd and svd with out differ')
|
|
self.assertEqual(resv, outv, msg='outputs of svd and svd with out differ')
|
|
|
|
# test non-contiguous
|
|
x = torch.randn(*dims, dtype=dtype, device=device)
|
|
n_dim = len(dims)
|
|
# Reverse the batch dimensions and the matrix dimensions and then concat them
|
|
x = x.permute(tuple(range(n_dim - 3, -1, -1)) + (n_dim - 1, n_dim - 2))
|
|
assert not x.is_contiguous(), "x is intentionally non-contiguous"
|
|
resu, ress, resv = torch.svd(x, some=some, compute_uv=compute_uv)
|
|
if compute_uv:
|
|
if some:
|
|
x_recon = torch.matmul(resu, torch.matmul(ress.diag_embed(), resv.transpose(-2, -1)))
|
|
self.assertEqual(x, x_recon, atol=1e-8, rtol=0, msg='Incorrect reconstruction using U @ diag(S) @ V.T')
|
|
else:
|
|
narrow_u = resu[..., :min(*dims[-2:])]
|
|
narrow_v = resv[..., :min(*dims[-2:])]
|
|
x_recon = torch.matmul(narrow_u, torch.matmul(ress.diag_embed(), narrow_v.transpose(-2, -1)))
|
|
self.assertEqual(x, x_recon, atol=1e-8, rtol=0, msg='Incorrect reconstruction using U @ diag(S) @ V.T')
|
|
else:
|
|
_, singvals, _ = torch.svd(x, compute_uv=True)
|
|
self.assertEqual(singvals, ress, msg='Singular values mismatch')
|
|
self.assertEqual(resu, torch.zeros_like(resu), msg='U not zero')
|
|
self.assertEqual(resv, torch.zeros_like(resv), msg='V not zero')
|
|
|
|
shapes = [(3, 3), (5, 3, 3), (7, 5, 3, 3), # square matrices
|
|
(7, 3), (5, 7, 3), (7, 5, 7, 3), # fat matrices
|
|
(3, 7), (5, 3, 7), (7, 5, 3, 7)] # thin matrices
|
|
for dims, some, compute_uv in product(shapes, [True, False], [True, False]):
|
|
run_test(dims, some, compute_uv)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
def test_svd_no_singularvectors(self, device):
|
|
for size in [(5, 5), (5, 20), (20, 5)]:
|
|
a = torch.randn(*size, device=device)
|
|
u, s_expect, v = torch.svd(a)
|
|
u, s_actual, v = torch.svd(a, compute_uv=False)
|
|
self.assertEqual(s_expect, s_actual, msg="Singular values don't match")
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
def test_svd_lowrank(self, device):
|
|
import torch
|
|
from torch.testing._internal.common_utils import random_lowrank_matrix, random_sparse_matrix
|
|
|
|
dtype = torch.double
|
|
|
|
def run_subtest(actual_rank, matrix_size, batches, device, svd_lowrank, **options):
|
|
density = options.pop('density', 1)
|
|
if isinstance(matrix_size, int):
|
|
rows = columns = matrix_size
|
|
else:
|
|
rows, columns = matrix_size
|
|
if density == 1:
|
|
a_input = random_lowrank_matrix(actual_rank, rows, columns, *batches, device=device, dtype=dtype)
|
|
a = a_input
|
|
else:
|
|
assert batches == ()
|
|
a_input = random_sparse_matrix(rows, columns, density, device=device, dtype=dtype)
|
|
a = a_input.to_dense()
|
|
|
|
q = min(*size)
|
|
u, s, v = svd_lowrank(a_input, q=q, **options)
|
|
|
|
# check if u, s, v is a SVD
|
|
u, s, v = u[..., :q], s[..., :q], v[..., :q]
|
|
A = u.matmul(s.diag_embed()).matmul(v.transpose(-2, -1))
|
|
self.assertEqual(A, a)
|
|
|
|
# check if svd_lowrank produces same singular values as torch.svd
|
|
U, S, V = torch.svd(a)
|
|
self.assertEqual(s.shape, S.shape)
|
|
self.assertEqual(u.shape, U.shape)
|
|
self.assertEqual(v.shape, V.shape)
|
|
self.assertEqual(s, S)
|
|
|
|
if density == 1:
|
|
# actual_rank is known only for dense inputs
|
|
#
|
|
# check if pairs (u, U) and (v, V) span the same
|
|
# subspaces, respectively
|
|
u, s, v = u[..., :actual_rank], s[..., :actual_rank], v[..., :actual_rank]
|
|
U, S, V = U[..., :actual_rank], S[..., :actual_rank], V[..., :actual_rank]
|
|
self.assertEqual(u.transpose(-2, -1).matmul(U).det().abs(), torch.ones(batches, device=device, dtype=dtype))
|
|
self.assertEqual(v.transpose(-2, -1).matmul(V).det().abs(), torch.ones(batches, device=device, dtype=dtype))
|
|
|
|
all_batches = [(), (1,), (3,), (2, 3)]
|
|
for actual_rank, size, all_batches in [
|
|
(2, (17, 4), all_batches),
|
|
(4, (17, 4), all_batches),
|
|
(4, (17, 17), all_batches),
|
|
(10, (100, 40), all_batches),
|
|
(7, (1000, 1000), [()]),
|
|
]:
|
|
# dense input
|
|
for batches in all_batches:
|
|
run_subtest(actual_rank, size, batches, device, torch.svd_lowrank)
|
|
if size != size[::-1]:
|
|
run_subtest(actual_rank, size[::-1], batches, device, torch.svd_lowrank)
|
|
|
|
# sparse input
|
|
for size in [(17, 4), (4, 17), (17, 17), (100, 40), (40, 100), (1000, 1000)]:
|
|
for density in [0.005, 0.1]:
|
|
run_subtest(None, size, (), device, torch.svd_lowrank, density=density)
|
|
|
|
# jitting support
|
|
jitted = torch.jit.script(torch.svd_lowrank)
|
|
actual_rank, size, batches = 2, (17, 4), ()
|
|
run_subtest(actual_rank, size, batches, device, jitted)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
def test_pca_lowrank(self, device):
|
|
from torch.testing._internal.common_utils import random_lowrank_matrix, random_sparse_matrix
|
|
|
|
dtype = torch.double
|
|
|
|
def run_subtest(guess_rank, actual_rank, matrix_size, batches, device, pca, **options):
|
|
density = options.pop('density', 1)
|
|
if isinstance(matrix_size, int):
|
|
rows = columns = matrix_size
|
|
else:
|
|
rows, columns = matrix_size
|
|
if density == 1:
|
|
a_input = random_lowrank_matrix(actual_rank, rows, columns, *batches, device=device, dtype=dtype)
|
|
a = a_input
|
|
else:
|
|
a_input = random_sparse_matrix(rows, columns, density, device=device, dtype=dtype)
|
|
a = a_input.to_dense()
|
|
|
|
u, s, v = pca(a_input, q=guess_rank, **options)
|
|
|
|
self.assertEqual(s.shape[-1], guess_rank)
|
|
self.assertEqual(u.shape[-2], rows)
|
|
self.assertEqual(u.shape[-1], guess_rank)
|
|
self.assertEqual(v.shape[-1], guess_rank)
|
|
self.assertEqual(v.shape[-2], columns)
|
|
|
|
A1 = u.matmul(s.diag_embed()).matmul(v.transpose(-2, -1))
|
|
ones_m1 = torch.ones(batches + (rows, 1), dtype=a.dtype, device=device)
|
|
c = a.sum(axis=-2) / rows
|
|
c = c.reshape(batches + (1, columns))
|
|
A2 = a - ones_m1.matmul(c)
|
|
self.assertEqual(A1, A2)
|
|
|
|
if density == 1:
|
|
# actual rank is known only for dense input
|
|
detect_rank = (s.abs() > 1e-5).sum(axis=-1)
|
|
self.assertEqual(actual_rank * torch.ones(batches, device=device, dtype=torch.int64), detect_rank)
|
|
U, S, V = torch.svd(A2)
|
|
self.assertEqual(s[..., :actual_rank], S[..., :actual_rank])
|
|
|
|
all_batches = [(), (1,), (3,), (2, 3)]
|
|
for actual_rank, size, all_batches in [
|
|
(2, (17, 4), all_batches),
|
|
(2, (100, 4), all_batches),
|
|
(6, (100, 40), all_batches),
|
|
(12, (1000, 1000), [()]),
|
|
]:
|
|
for batches in all_batches:
|
|
for guess_rank in [
|
|
actual_rank,
|
|
actual_rank + 2,
|
|
actual_rank + 6,
|
|
]:
|
|
if guess_rank <= min(*size):
|
|
run_subtest(guess_rank, actual_rank, size, batches, device, torch.pca_lowrank)
|
|
run_subtest(guess_rank, actual_rank, size[::-1], batches, device, torch.pca_lowrank)
|
|
|
|
# sparse input
|
|
for guess_rank, size in [
|
|
(4, (17, 4)), (4, (4, 17)), (16, (17, 17)),
|
|
(21, (100, 40)), (20, (40, 100)), (600, (1000, 1000))]:
|
|
for density in [0.005, 0.1]:
|
|
run_subtest(guess_rank, None, size, (), device, torch.pca_lowrank, density=density)
|
|
|
|
# jitting support
|
|
jitted = torch.jit.script(torch.pca_lowrank)
|
|
guess_rank, actual_rank, size, batches = 2, 2, (17, 4), ()
|
|
run_subtest(guess_rank, actual_rank, size, batches, device, jitted)
|
|
|
|
def test_lerp(self, device):
|
|
start_end_shapes = [(), (5,), (5, 5), (5, 5, 5)]
|
|
for shapes in product(start_end_shapes, start_end_shapes):
|
|
start = torch.randn(shapes[0], device=device)
|
|
end = torch.randn(shapes[1], device=device)
|
|
|
|
# Tensor weights
|
|
for weight in [torch.randn(shapes[0], device=device), random.random()]:
|
|
actual = torch.lerp(start, end, weight)
|
|
actual_method = start.lerp(end, weight)
|
|
self.assertEqual(actual, actual_method)
|
|
actual_out = torch.Tensor().to(device)
|
|
torch.lerp(start, end, weight, out=actual_out)
|
|
self.assertEqual(actual, actual_out)
|
|
expected = start + weight * (end - start)
|
|
self.assertEqual(expected, actual)
|
|
|
|
def _test_logaddexp(self, device, dtype, base2):
|
|
if base2:
|
|
ref_func = np.logaddexp2
|
|
our_func = torch.logaddexp2
|
|
else:
|
|
ref_func = np.logaddexp
|
|
our_func = torch.logaddexp
|
|
|
|
def _test_helper(a, b):
|
|
ref = ref_func(a.cpu().numpy(), b.cpu().numpy())
|
|
v = our_func(a, b)
|
|
self.assertEqual(ref, v)
|
|
|
|
# simple test
|
|
a = torch.randn(64, 2, dtype=dtype, device=device) - 0.5
|
|
b = torch.randn(64, 2, dtype=dtype, device=device) - 0.5
|
|
_test_helper(a, b)
|
|
_test_helper(a[:3], b[:3])
|
|
|
|
# large value test for numerical stability
|
|
a *= 10000
|
|
b *= 10000
|
|
_test_helper(a, b)
|
|
_test_helper(a[:3], b[:3])
|
|
|
|
a = torch.tensor([float('inf'), float('-inf'), float('inf'), float("nan")], dtype=dtype, device=device)
|
|
b = torch.tensor([float('inf'), float('-inf'), float('-inf'), float("nan")], dtype=dtype, device=device)
|
|
_test_helper(a, b)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
@dtypes(torch.float32, torch.float64)
|
|
def test_logaddexp(self, device, dtype):
|
|
self._test_logaddexp(device, dtype, base2=False)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
@dtypes(torch.float32, torch.float64)
|
|
def test_logaddexp2(self, device, dtype):
|
|
self._test_logaddexp(device, dtype, base2=True)
|
|
|
|
def test_diagflat(self, device):
|
|
dtype = torch.float32
|
|
# Basic sanity test
|
|
x = torch.randn((100,), dtype=dtype, device=device)
|
|
result = torch.diagflat(x)
|
|
expected = torch.diag(x)
|
|
self.assertEqual(result, expected)
|
|
|
|
# Test offset
|
|
x = torch.randn((100,), dtype=dtype, device=device)
|
|
result = torch.diagflat(x, 17)
|
|
expected = torch.diag(x, 17)
|
|
self.assertEqual(result, expected)
|
|
|
|
# Test where input has more than one dimension
|
|
x = torch.randn((2, 3, 4), dtype=dtype, device=device)
|
|
result = torch.diagflat(x)
|
|
expected = torch.diag(x.contiguous().view(-1))
|
|
self.assertEqual(result, expected)
|
|
|
|
# Noncontig input
|
|
x = torch.randn((2, 3, 4), dtype=dtype, device=device).transpose(2, 0)
|
|
self.assertFalse(x.is_contiguous())
|
|
result = torch.diagflat(x)
|
|
expected = torch.diag(x.contiguous().view(-1))
|
|
self.assertEqual(result, expected)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_norm(self, device):
|
|
# full reduction
|
|
x = torch.randn(25, device=device)
|
|
xn = x.cpu().numpy()
|
|
for p in [0, 1, 2, 3, 4, inf, -inf]:
|
|
res = x.norm(p).item()
|
|
expected = np.linalg.norm(xn, p)
|
|
self.assertEqual(res, expected, atol=1e-5, rtol=0, msg="full reduction failed for {}-norm".format(p))
|
|
|
|
# one dimension
|
|
x = torch.randn(25, 25, device=device)
|
|
xn = x.cpu().numpy()
|
|
for p in [0, 1, 2, 3, 4, inf, -inf]:
|
|
res = x.norm(p, 1).cpu()
|
|
expected = np.linalg.norm(xn, p, 1)
|
|
self.assertEqual(res.shape, expected.shape)
|
|
self.assertEqual(res, expected, msg="dim reduction failed for {}-norm".format(p))
|
|
|
|
# matrix norm
|
|
for p in ['fro', 'nuc']:
|
|
res = x.norm(p).cpu()
|
|
expected = np.linalg.norm(xn, p)
|
|
self.assertEqual(res.shape, expected.shape)
|
|
self.assertEqual(res, expected, msg="dim reduction failed for {}-norm".format(p))
|
|
|
|
# larger tensor sanity check
|
|
self.assertEqual(2 * torch.norm(torch.ones(10000)), torch.norm(torch.ones(40000)))
|
|
|
|
@skipCUDAIfNoMagma
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_nuclear_norm_axes_small_brute_force(self, device):
|
|
def check_single_nuclear_norm(x, axes):
|
|
if self.device_type != 'cpu' and randrange(100) < 95:
|
|
return # too many cpu <==> device copies
|
|
|
|
a = np.array(x.cpu(), copy=False)
|
|
expected = np.linalg.norm(a, "nuc", axis=axes)
|
|
|
|
ans = torch.norm(x, "nuc", dim=axes)
|
|
self.assertTrue(ans.is_contiguous())
|
|
self.assertEqual(ans.shape, expected.shape)
|
|
self.assertEqual(ans.cpu(), expected, rtol=1e-02, atol=1e-03, equal_nan=True)
|
|
|
|
out = torch.zeros(expected.shape, dtype=x.dtype, device=x.device)
|
|
ans = torch.norm(x, "nuc", dim=axes, out=out)
|
|
self.assertIs(ans, out)
|
|
self.assertTrue(ans.is_contiguous())
|
|
self.assertEqual(ans.shape, expected.shape)
|
|
self.assertEqual(ans.cpu(), expected, rtol=1e-02, atol=1e-03, equal_nan=True)
|
|
|
|
for n in range(1, 3):
|
|
for m in range(1, 3):
|
|
for axes in permutations([0, 1], 2):
|
|
# 2d, inner dimensions C
|
|
x = torch.randn(n, m, device=device)
|
|
check_single_nuclear_norm(x, axes)
|
|
|
|
# 2d, inner dimensions Fortran
|
|
x = torch.randn(m, n, device=device).transpose(-1, -2)
|
|
check_single_nuclear_norm(x, axes)
|
|
|
|
# 2d, inner dimensions non-contiguous
|
|
x = torch.randn(n, 2 * m, device=device)[:, ::2]
|
|
check_single_nuclear_norm(x, axes)
|
|
|
|
# 2d, all dimensions non-contiguous
|
|
x = torch.randn(7 * n, 2 * m, device=device)[::7, ::2]
|
|
check_single_nuclear_norm(x, axes)
|
|
|
|
for o in range(1, 3):
|
|
for axes in permutations([0, 1, 2], 2):
|
|
# 3d, inner dimensions C
|
|
x = torch.randn(o, n, m, device=device)
|
|
check_single_nuclear_norm(x, axes)
|
|
|
|
# 3d, inner dimensions Fortran
|
|
x = torch.randn(o, m, n, device=device).transpose(-1, -2)
|
|
check_single_nuclear_norm(x, axes)
|
|
|
|
# 3d, inner dimensions non-contiguous
|
|
x = torch.randn(o, n, 2 * m, device=device)[:, :, ::2]
|
|
check_single_nuclear_norm(x, axes)
|
|
|
|
# 3d, all dimensions non-contiguous
|
|
x = torch.randn(7 * o, 5 * n, 2 * m, device=device)[::7, ::5, ::2]
|
|
check_single_nuclear_norm(x, axes)
|
|
|
|
for r in range(1, 3):
|
|
for axes in permutations([0, 1, 2, 3], 2):
|
|
# 4d, inner dimensions C
|
|
x = torch.randn(r, o, n, m, device=device)
|
|
check_single_nuclear_norm(x, axes)
|
|
|
|
# 4d, inner dimensions Fortran
|
|
x = torch.randn(r, o, n, m, device=device).transpose(-1, -2)
|
|
check_single_nuclear_norm(x, axes)
|
|
|
|
# 4d, inner dimensions non-contiguous
|
|
x = torch.randn(r, o, n, 2 * m, device=device)[:, :, :, ::2]
|
|
check_single_nuclear_norm(x, axes)
|
|
|
|
# 4d, all dimensions non-contiguous
|
|
x = torch.randn(7 * r, 5 * o, 11 * n, 2 * m, device=device)[::7, ::5, ::11, ::2]
|
|
check_single_nuclear_norm(x, axes)
|
|
|
|
@skipCUDAIfNoMagma
|
|
def test_nuclear_norm_exceptions(self, device):
|
|
for lst in [], [1], [1, 2]:
|
|
for axes in (), (0,), (0, 1):
|
|
x = torch.tensor(lst, dtype=torch.double, device=device)
|
|
self.assertRaises(RuntimeError, torch.norm, x, "nuc", axes)
|
|
|
|
x = torch.tensor([[0, 1, 2], [3, 4, 5]], dtype=torch.double, device=device)
|
|
self.assertRaisesRegex(RuntimeError, "duplicate or invalid", torch.norm, x, "nuc", (0, 0))
|
|
self.assertRaisesRegex(RuntimeError, "duplicate or invalid", torch.norm, x, "nuc", (0, 2))
|
|
|
|
def test_dist(self, device):
|
|
def run_test(x, y):
|
|
for p in [0, 1, 2, 3, 4, inf, -inf]:
|
|
dist_xy = torch.dist(x, y, p)
|
|
dist_xy_norm = torch.norm(x - y, p)
|
|
self.assertEqual(dist_xy, dist_xy_norm)
|
|
|
|
run_test(torch.randn(5, device=device), torch.randn(5, device=device))
|
|
|
|
x = torch.zeros(3, device=device)
|
|
y = torch.zeros(3, device=device)
|
|
y[1] = 1.
|
|
run_test(x, y)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
def test_geqrf(self, device):
|
|
a = torch.randn(5, 5, device=device)
|
|
b, c = torch.geqrf(a)
|
|
b_placeholder, c_placeholder = torch.empty_like(b), torch.empty_like(c)
|
|
torch.geqrf(a, out=(b_placeholder, c_placeholder))
|
|
self.assertEqual(b, b_placeholder)
|
|
self.assertEqual(c, c_placeholder)
|
|
|
|
def triangular_solve_test_helper(self, A_dims, b_dims, upper, unitriangular,
|
|
device, dtype):
|
|
triangle_function = torch.triu if upper else torch.tril
|
|
b = torch.randn(*b_dims, dtype=dtype, device=device)
|
|
A = torch.randn(*A_dims, dtype=dtype, device=device)
|
|
A_triangular = triangle_function(A)
|
|
if unitriangular:
|
|
A_triangular.diagonal(dim1=-2, dim2=-1).fill_(1.)
|
|
return b, A_triangular
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_triangular_solve(self, device, dtype):
|
|
for (k, n), (upper, unitriangular, transpose) in product(zip([2, 3, 5], [3, 5, 7]),
|
|
product([True, False], repeat=3)):
|
|
b, A = self.triangular_solve_test_helper((n, n), (n, k), upper,
|
|
unitriangular, device, dtype)
|
|
x = torch.triangular_solve(b, A, upper=upper, unitriangular=unitriangular, transpose=transpose)[0]
|
|
if transpose:
|
|
self.assertLessEqual(b.dist(A.t().mm(x)), 4e-12)
|
|
else:
|
|
self.assertLessEqual(b.dist(A.mm(x)), 4e-12)
|
|
|
|
@skipCPUIfNoLapack
|
|
@skipCUDAIfNoMagma
|
|
@dtypes(torch.double)
|
|
def test_triangular_solve_batched(self, device, dtype):
|
|
def triangular_solve_batch_helper(A_dims, b_dims, upper, unitriangular, transpose):
|
|
b, A = self.triangular_solve_test_helper(A_dims, b_dims, upper,
|
|
unitriangular, device, dtype)
|
|
x_exp_list = []
|
|
for i in range(b_dims[0]):
|
|
x_exp_list.append(torch.triangular_solve(b[i], A[i], upper=upper,
|
|
unitriangular=unitriangular,
|
|
transpose=transpose)[0])
|
|
x_exp = torch.stack(x_exp_list) # Stacked output
|
|
x_act = torch.triangular_solve(b, A, upper=upper,
|
|
unitriangular=unitriangular,
|
|
transpose=transpose)[0] # Actual output
|
|
self.assertEqual(x_act, x_exp) # Equality check
|
|
if transpose:
|
|
self.assertLessEqual(b.dist(torch.matmul(A.transpose(-2, -1), x_act)), 3e-12) # Correctness check
|
|
else:
|
|
self.assertLessEqual(b.dist(torch.matmul(A, x_act)), 3e-12) # Correctness check
|
|
|
|
for (upper, unitriangular, transpose), batchsize in product(product([True, False], repeat=3), [1, 3, 4]):
|
|
triangular_solve_batch_helper((batchsize, 5, 5), (batchsize, 5, 10),
|
|
upper, unitriangular, transpose)
|
|
|
|
|
|
@slowTest
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_triangular_solve_batched_many_batches(self, device, dtype):
|
|
for upper, transpose, unitriangular in product([True, False], repeat=3):
|
|
b, A = self.triangular_solve_test_helper((256, 256, 5, 5), (5, 1),
|
|
upper, unitriangular, device, dtype)
|
|
x, _ = torch.triangular_solve(b, A,
|
|
upper=upper, transpose=transpose, unitriangular=unitriangular)
|
|
if transpose:
|
|
A = A.transpose(-2, -1)
|
|
self.assertEqual(torch.matmul(A, x), b.expand(A.shape[:-2] + (5, 1)))
|
|
|
|
b, A = self.triangular_solve_test_helper((3, 3), (512, 512, 3, 1),
|
|
upper, unitriangular, device, dtype)
|
|
x, _ = torch.triangular_solve(b, A, upper=upper, transpose=transpose,
|
|
unitriangular=unitriangular)
|
|
if transpose:
|
|
A = A.transpose(-2, -1)
|
|
self.assertEqual(torch.matmul(A, x), b)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
@dtypes(torch.double)
|
|
def test_triangular_solve_batched_broadcasting(self, device, dtype):
|
|
from scipy.linalg import solve_triangular as tri_solve
|
|
|
|
def scipy_tri_solve_batched(A, B, upper, trans, diag):
|
|
batch_dims_A, batch_dims_B = A.shape[:-2], B.shape[:-2]
|
|
single_dim_A, single_dim_B = A.shape[-2:], B.shape[-2:]
|
|
expand_dims = tuple(torch._C._infer_size(torch.Size(batch_dims_A),
|
|
torch.Size(batch_dims_B)))
|
|
expand_A = np.broadcast_to(A, expand_dims + single_dim_A)
|
|
expand_B = np.broadcast_to(B, expand_dims + single_dim_B)
|
|
flat_A = expand_A.reshape((-1,) + single_dim_A)
|
|
flat_B = expand_B.reshape((-1,) + single_dim_B)
|
|
flat_X = np.vstack([tri_solve(a, b, lower=(not upper), trans=int(trans), unit_diagonal=diag)
|
|
for a, b in zip(flat_A, flat_B)])
|
|
return flat_X.reshape(expand_B.shape)
|
|
|
|
def run_test(A_dims, b_dims, device, upper, transpose, unitriangular):
|
|
b, A = self.triangular_solve_test_helper(A_dims, b_dims, upper,
|
|
unitriangular, device, dtype)
|
|
x_exp = torch.as_tensor(scipy_tri_solve_batched(A.cpu().numpy(), b.cpu().numpy(),
|
|
upper, transpose, unitriangular))
|
|
x = torch.triangular_solve(b, A, upper=upper, transpose=transpose, unitriangular=unitriangular)[0]
|
|
|
|
self.assertEqual(x, x_exp.to(device))
|
|
|
|
for upper, transpose, unitriangular in product([True, False], repeat=3):
|
|
# test against scipy.linalg.solve_triangular
|
|
run_test((2, 1, 3, 4, 4), (2, 1, 3, 4, 6), device, upper, transpose, unitriangular) # no broadcasting
|
|
run_test((2, 1, 3, 4, 4), (4, 6), device, upper, transpose, unitriangular) # broadcasting b
|
|
run_test((4, 4), (2, 1, 3, 4, 2), device, upper, transpose, unitriangular) # broadcasting A
|
|
run_test((1, 3, 1, 4, 4), (2, 1, 3, 4, 5), device, upper, transpose, unitriangular) # broadcasting A & b
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_lstsq(self, device, dtype):
|
|
def _test_underdetermined(a, b, expectedNorm):
|
|
# underdetermined systems are only supported on CPU
|
|
if self.device_type != 'cpu':
|
|
return
|
|
|
|
m = a.size()[0]
|
|
n = a.size()[1]
|
|
assert(m <= n)
|
|
|
|
a_copy = a.clone()
|
|
b_copy = b.clone()
|
|
res1 = torch.lstsq(b, a)[0]
|
|
self.assertEqual(a, a_copy, atol=0, rtol=0)
|
|
self.assertEqual(b, b_copy, atol=0, rtol=0)
|
|
self.assertEqual((torch.mm(a, res1) - b).norm(), expectedNorm, atol=1e-8, rtol=0)
|
|
|
|
ta = torch.tensor((), dtype=dtype, device=device)
|
|
tb = torch.tensor((), dtype=dtype, device=device)
|
|
res2 = torch.lstsq(b, a, out=(tb, ta))[0]
|
|
self.assertEqual(a, a_copy, atol=0, rtol=0)
|
|
self.assertEqual(b, b_copy, atol=0, rtol=0)
|
|
self.assertEqual((torch.mm(a, res1) - b).norm(), expectedNorm, atol=1e-8, rtol=0)
|
|
|
|
res3 = torch.lstsq(b, a, out=(b, a))[0]
|
|
self.assertEqual((torch.mm(a_copy, b) - b_copy).norm(), expectedNorm, atol=1e-8, rtol=0)
|
|
self.assertEqual(res1, tb, atol=0, rtol=0)
|
|
self.assertEqual(res1, b, atol=0, rtol=0)
|
|
self.assertEqual(res1, res2, atol=0, rtol=0)
|
|
self.assertEqual(res1, res3, atol=0, rtol=0)
|
|
|
|
def _test_overdetermined(a, b, expectedNorm):
|
|
m = a.size()[0]
|
|
n = a.size()[1]
|
|
assert(m > n)
|
|
|
|
def check_norm(a, b, expected_norm, gels_result):
|
|
# Checks |ax - b| and the residual info from the result
|
|
|
|
# The first n rows is the least square solution.
|
|
# Rows n to m-1 contain residual information.
|
|
x = gels_result[:n]
|
|
resid_info = gels_result[n:]
|
|
|
|
resid_norm = (torch.mm(a, x) - b).norm()
|
|
self.assertEqual(resid_norm, expectedNorm, atol=1e-8, rtol=0)
|
|
self.assertEqual(resid_info.norm(), resid_norm, atol=1e-8, rtol=0)
|
|
|
|
a_copy = a.clone()
|
|
b_copy = b.clone()
|
|
res1 = torch.lstsq(b, a)[0]
|
|
self.assertEqual(a, a_copy, atol=0, rtol=0)
|
|
self.assertEqual(b, b_copy, atol=0, rtol=0)
|
|
check_norm(a, b, expectedNorm, res1)
|
|
|
|
ta = torch.tensor((), dtype=dtype, device=device)
|
|
tb = torch.tensor((), dtype=dtype, device=device)
|
|
res2 = torch.lstsq(b, a, out=(tb, ta))[0]
|
|
self.assertEqual(a, a_copy, atol=0, rtol=0)
|
|
self.assertEqual(b, b_copy, atol=0, rtol=0)
|
|
check_norm(a, b, expectedNorm, res2)
|
|
|
|
res3 = torch.lstsq(b, a, out=(b, a))[0]
|
|
check_norm(a_copy, b_copy, expectedNorm, res3)
|
|
|
|
self.assertEqual(res1, tb, atol=0, rtol=0)
|
|
self.assertEqual(res1, b, atol=0, rtol=0)
|
|
self.assertEqual(res1, res2, atol=0, rtol=0)
|
|
self.assertEqual(res1, res3, atol=0, rtol=0)
|
|
|
|
# basic test
|
|
expectedNorm = 0
|
|
a = torch.tensor(((1.44, -9.96, -7.55, 8.34),
|
|
(-7.84, -0.28, 3.24, 8.09),
|
|
(-4.39, -3.24, 6.27, 5.28),
|
|
(4.53, 3.83, -6.64, 2.06)), dtype=dtype, device=device).t()
|
|
b = torch.tensor(((8.58, 8.26, 8.48, -5.28),
|
|
(9.35, -4.43, -0.70, -0.26)), dtype=dtype, device=device).t()
|
|
_test_underdetermined(a, b, expectedNorm)
|
|
|
|
# test overdetermined
|
|
expectedNorm = 17.390200628863
|
|
a = torch.tensor(((1.44, -9.96, -7.55, 8.34, 7.08, -5.45),
|
|
(-7.84, -0.28, 3.24, 8.09, 2.52, -5.70),
|
|
(-4.39, -3.24, 6.27, 5.28, 0.74, -1.19),
|
|
(4.53, 3.83, -6.64, 2.06, -2.47, 4.70)), dtype=dtype, device=device).t()
|
|
b = torch.tensor(((8.58, 8.26, 8.48, -5.28, 5.72, 8.93),
|
|
(9.35, -4.43, -0.70, -0.26, -7.36, -2.52)), dtype=dtype, device=device).t()
|
|
_test_overdetermined(a, b, expectedNorm)
|
|
|
|
# test underdetermined
|
|
expectedNorm = 0
|
|
a = torch.tensor(((1.44, -9.96, -7.55),
|
|
(-7.84, -0.28, 3.24),
|
|
(-4.39, -3.24, 6.27),
|
|
(4.53, 3.83, -6.64)), dtype=dtype, device=device).t()
|
|
b = torch.tensor(((8.58, 8.26, 8.48),
|
|
(9.35, -4.43, -0.70)), dtype=dtype, device=device).t()
|
|
_test_underdetermined(a, b, expectedNorm)
|
|
|
|
# test reuse
|
|
expectedNorm = 0
|
|
a = torch.tensor(((1.44, -9.96, -7.55, 8.34),
|
|
(-7.84, -0.28, 3.24, 8.09),
|
|
(-4.39, -3.24, 6.27, 5.28),
|
|
(4.53, 3.83, -6.64, 2.06)), dtype=dtype, device=device).t()
|
|
b = torch.tensor(((8.58, 8.26, 8.48, -5.28),
|
|
(9.35, -4.43, -0.70, -0.26)), dtype=dtype, device=device).t()
|
|
ta = torch.tensor((), dtype=dtype, device=device)
|
|
tb = torch.tensor((), dtype=dtype, device=device)
|
|
torch.lstsq(b, a, out=(tb, ta))
|
|
self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, atol=1e-8, rtol=0)
|
|
torch.lstsq(b, a, out=(tb, ta))
|
|
self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, atol=1e-8, rtol=0)
|
|
torch.lstsq(b, a, out=(tb, ta))
|
|
self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, atol=1e-8, rtol=0)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
def test_qr(self, device):
|
|
def run_test(tensor_dims, some):
|
|
A = torch.randn(*tensor_dims, device=device)
|
|
Q, R = torch.qr(A, some=some)
|
|
|
|
# Check0: Q[-2:] = (m, n_columns), R[-2:] = (n_columns, n)
|
|
m, n = tensor_dims[-2:]
|
|
n_columns = m if (not some) and m > n else min(m, n)
|
|
self.assertEqual(Q.size(-2), m)
|
|
self.assertEqual(R.size(-1), n)
|
|
self.assertEqual(Q.size(-1), n_columns)
|
|
|
|
# Check1: A = QR
|
|
self.assertEqual(A, torch.matmul(Q, R))
|
|
|
|
# Check2: A = QR (with out)
|
|
Q_out, R_out = torch.Tensor().to(device), torch.Tensor().to(device)
|
|
torch.qr(A, some=some, out=(Q_out, R_out))
|
|
self.assertEqual(A, torch.matmul(Q_out, R_out))
|
|
|
|
# Check3: Q == Q_out, R == R_out
|
|
self.assertEqual(Q, Q_out)
|
|
self.assertEqual(R, R_out)
|
|
|
|
# Check4: Q^{T}Q = I, triu(R) = R
|
|
self.assertEqual(torch.matmul(Q.transpose(-2, -1), Q),
|
|
torch.eye(n_columns, device=device).expand(Q.shape[:-2] + (n_columns, n_columns)))
|
|
self.assertEqual(R.triu(), R)
|
|
|
|
tensor_dims_list = [(3, 5), (5, 5), (5, 3), # Single matrix
|
|
(7, 3, 5), (7, 5, 5), (7, 5, 3), # 3-dim Tensors
|
|
(7, 5, 3, 5), (7, 5, 5, 5), (7, 5, 5, 3)] # 4-dim Tensors
|
|
for tensor_dims, some in product(tensor_dims_list, [True, False]):
|
|
run_test(tensor_dims, some)
|
|
|
|
@slowTest
|
|
def test_randperm(self, device):
|
|
if device == 'cpu':
|
|
rng_device = None
|
|
else:
|
|
rng_device = [device]
|
|
|
|
# Test core functionality. On CUDA, for small n, randperm is offloaded to CPU instead. For large n, randperm is
|
|
# executed on GPU.
|
|
for n in (100, 50000, 100000):
|
|
# Ensure both integer and floating-point numbers are tested. Half follows an execution path that is
|
|
# different from others on CUDA.
|
|
for dtype in (torch.long, torch.half, torch.float):
|
|
if n > 2049 and dtype == torch.half: # Large n for torch.half will raise an exception, do not test here.
|
|
continue
|
|
with torch.random.fork_rng(devices=rng_device):
|
|
res1 = torch.randperm(n, dtype=dtype, device=device)
|
|
res2 = torch.empty(0, dtype=dtype, device=device)
|
|
torch.randperm(n, out=res2, dtype=dtype, device=device)
|
|
self.assertEqual(res1, res2, atol=0, rtol=0)
|
|
|
|
# Default type is long
|
|
for n in (100, 10000):
|
|
self.assertEqual(torch.randperm(n, device=device).dtype, torch.long)
|
|
|
|
# randperm of 0 elements is an empty tensor
|
|
res1 = torch.randperm(0)
|
|
res2 = torch.tensor(5, dtype=dtype, device=device)
|
|
torch.randperm(0, out=res2)
|
|
self.assertEqual(res1.numel(), 0)
|
|
self.assertEqual(res2.numel(), 0)
|
|
|
|
# Test exceptions when n is too large for a floating point type
|
|
for dtype, small_n, large_n in ((torch.half, 2**11 + 1, 2**11 + 2),
|
|
(torch.float, 2**24 + 1, 2**24 + 2),
|
|
(torch.double, 2**25, # 2**53 + 1 is too large to run
|
|
2**53 + 2)):
|
|
res = torch.empty(0, dtype=dtype, device=device)
|
|
torch.randperm(small_n, out=res) # No exception expected
|
|
self.assertRaises(RuntimeError, lambda: torch.randperm(large_n, out=res, device=device))
|
|
|
|
# Test non-contiguous tensors
|
|
for n in (4, 5, 6, 10, 20):
|
|
non_contiguous_tensor = torch.zeros((2, 3), dtype=torch.long, device=device).t()
|
|
self.assertFalse(non_contiguous_tensor.is_contiguous())
|
|
with torch.random.fork_rng(devices=rng_device):
|
|
res = torch.randperm(n, dtype=torch.long, device=device)
|
|
torch.randperm(n, out=non_contiguous_tensor)
|
|
self.assertEqual(non_contiguous_tensor, res)
|
|
|
|
def test_random_neg_values(self, device):
|
|
signed_dtypes = [torch.double, torch.float, torch.long, torch.int, torch.short]
|
|
for dtype in signed_dtypes:
|
|
res = torch.rand(SIZE, SIZE).to(device=device, dtype=dtype)
|
|
res.random_(-10, -1)
|
|
self.assertLessEqual(res.max().item(), 9)
|
|
self.assertGreaterEqual(res.min().item(), -10)
|
|
|
|
@slowTest
|
|
def test_triu_tril(self, device):
|
|
def gen_mask(shape, diagonal, device, upper):
|
|
mask = torch.zeros(*shape[-2:]).byte()
|
|
for i in range(shape[-2]):
|
|
for j in range(shape[-1]):
|
|
cond = j - i < diagonal if upper else j - i > diagonal
|
|
if cond:
|
|
mask[i, j] = 1
|
|
return mask.expand(*shape).to(device)
|
|
|
|
torch_functions = {True: torch.triu, False: torch.tril}
|
|
if TEST_NUMPY:
|
|
numpy_functions = {True: np.triu, False: np.tril}
|
|
|
|
# TODO: remove this when bool and half are supported for torch.where
|
|
def bool_half_compat_where(pred, true_tensor, false_tensor, dtype):
|
|
if dtype == torch.bool or dtype == torch.half:
|
|
return torch.where(pred.byte(), true_tensor.byte(), false_tensor.byte()).to(dtype=dtype)
|
|
else:
|
|
return torch.where(pred, true_tensor, false_tensor)
|
|
|
|
def run_test(shape, device, diagonal, dtype):
|
|
x = torch.empty(*shape, device=device, dtype=dtype).fill_(2)
|
|
|
|
for upper in [True, False]:
|
|
# normal test with mask
|
|
torch_tri_func = torch_functions[upper]
|
|
res1 = torch_tri_func(x, diagonal=diagonal)
|
|
res2 = torch.empty(0, device=device, dtype=dtype)
|
|
torch_tri_func(x, diagonal=diagonal, out=res2)
|
|
exp_mask = gen_mask(shape, diagonal, device, upper)
|
|
expected = bool_half_compat_where(exp_mask, torch.tensor(0).type_as(x), x, dtype)
|
|
self.assertEqual(res1, res2, atol=0, rtol=0)
|
|
self.assertEqual(expected, res1, atol=0, rtol=0)
|
|
|
|
# non-contiguous and expanded tensors test
|
|
if 0 not in shape:
|
|
for s in range(-len(shape), -1):
|
|
# non-contiguous tensors
|
|
x_nc = x.clone().transpose(s, s + 1)
|
|
exp_mask = gen_mask(x_nc.size(), diagonal, device, upper)
|
|
if 1 not in shape:
|
|
assert not x_nc.is_contiguous(), "x is intentionally non-contiguous"
|
|
exp_nc = bool_half_compat_where(exp_mask, torch.tensor(0).type_as(x), x_nc, dtype)
|
|
self.assertEqual(torch_tri_func(x_nc, diagonal), exp_nc, atol=0, rtol=0)
|
|
x_nc_is_contiguous = x_nc.is_contiguous()
|
|
if upper:
|
|
self.assertEqual(x_nc.triu_(diagonal), exp_nc, atol=0, rtol=0)
|
|
else:
|
|
self.assertEqual(x_nc.tril_(diagonal), exp_nc, atol=0, rtol=0)
|
|
|
|
self.assertTrue(x_nc.is_contiguous() == x_nc_is_contiguous,
|
|
"contiguity of x_nc should not be changed")
|
|
|
|
# expanded tensors
|
|
expanded_size = (x.size(0),) + x.size()
|
|
x_expanded = x.clone().expand(*expanded_size)
|
|
if x.size(0) != 1:
|
|
assert 0 in x_expanded.stride(), "x intentionally has 0 in its stride"
|
|
output = torch_tri_func(x_expanded, diagonal)
|
|
self.assertEqual(output, expected.expand(expanded_size), atol=0, rtol=0)
|
|
if x.size(0) != 1:
|
|
self.assertTrue(0 in x_expanded.stride(),
|
|
"geometry of x_expanded should be the same")
|
|
if upper:
|
|
self.assertEqual(output, x_expanded.triu_(diagonal), atol=0, rtol=0)
|
|
else:
|
|
self.assertEqual(output, x_expanded.tril_(diagonal), atol=0, rtol=0)
|
|
|
|
if not TEST_NUMPY:
|
|
continue
|
|
|
|
# numpy test
|
|
numpy_tri_func = numpy_functions[upper]
|
|
self.assertEqual(numpy_tri_func(x.to('cpu').numpy(), diagonal), res1.cpu().numpy())
|
|
|
|
diagonals = [-2, -1, 0, 1, 2]
|
|
shapes = [(3, 3), (5, 3, 3), (7, 5, 3, 3), # square matrices
|
|
(7, 3), (5, 7, 3), (7, 5, 7, 3), # fat matrices
|
|
(3, 7), (5, 3, 7), (7, 5, 3, 7), # thin matrices
|
|
(3, 0), (0, 3, 3), (3, 3, 0, 0), # no numel matrices
|
|
(3, 1), (5, 3, 1), (7, 5, 3, 1), # very fat matrices
|
|
(1, 3), (5, 1, 3), (7, 5, 1, 3), # very thin matrices
|
|
(1, 3, 3, 3), (3, 1, 3, 3, 3)] # unsqueezed batch dimensions
|
|
dtypes = [dtype for dtype in torch.testing.get_all_dtypes() if dtype != torch.bfloat16]
|
|
for s, d, dtype in product(shapes, diagonals, dtypes):
|
|
run_test(s, device, d, dtype)
|
|
|
|
@skipCUDANonDefaultStreamIf(True)
|
|
def test_multinomial_alias(self, device):
|
|
# Get probs vector to use in setup
|
|
def get_probs(length, is_contiguous):
|
|
probs = torch.softmax(torch.randn(length), 0)
|
|
if not is_contiguous:
|
|
probs = torch.softmax(torch.randn(length, 2), 0)[:, 1]
|
|
assert not (is_contiguous ^ probs.is_contiguous()), "contiguity requirement not met"
|
|
return probs.to(device)
|
|
|
|
for is_contiguous in [True, False]:
|
|
probs = get_probs(4, is_contiguous)
|
|
alias_table, prob_table = torch._multinomial_alias_setup(probs)
|
|
for n_samples in [-1, 1, 10]:
|
|
if n_samples > 0:
|
|
samples = torch._multinomial_alias_draw(prob_table, alias_table, n_samples)
|
|
self.assertEqual(prob_table.size(), torch.Size([4]), msg="size mismatch: probability table")
|
|
self.assertEqual(alias_table.size(), torch.Size([4]), msg="size mismatch: alias table")
|
|
self.assertEqual(samples.size(), torch.Size([n_samples]), msg="wrong number of samples")
|
|
else:
|
|
with self.assertRaisesRegex(RuntimeError, "cannot sample <= 0 samples"):
|
|
torch._multinomial_alias_draw(prob_table, alias_table, n_samples)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "expected 1-D"):
|
|
probs = probs.view(2, 2)
|
|
torch._multinomial_alias_setup(probs)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "expected 1-D"):
|
|
a_t, p_t = torch._multinomial_alias_setup(probs)
|
|
torch._multinomial_alias_draw(p_t.view(2, 2), a_t.view(2, 2))
|
|
|
|
MAX_SAMPLES = 200000
|
|
for probs in [get_probs(4, True),
|
|
torch.tensor([0.8, 0.2], device=device),
|
|
torch.tensor([0.7, 0.2, 0.1], device=device)]:
|
|
# Check how different the alias distribution and the original distribution are
|
|
alias_dist = torch.zeros_like(probs)
|
|
alias_table, prob_table = torch._multinomial_alias_setup(probs)
|
|
alias_samples = torch._multinomial_alias_draw(prob_table, alias_table, MAX_SAMPLES)
|
|
alias_dist = torch.unique(alias_samples, return_counts=True)[1].to(dtype=probs.dtype) / MAX_SAMPLES
|
|
self.assertEqual(alias_dist, probs, rtol=0.02, atol=0.0,
|
|
msg="Actual: {}\nExpected: {}".format(alias_dist, probs))
|
|
|
|
for probs in [torch.tensor([0.2501, 0.25, 0.2499, 0.25], device=device),
|
|
torch.tensor([0.8, 0.199, 0.001], device=device),
|
|
torch.tensor([0.25001, 0.25, 0.24999, 0.25], device=device),
|
|
torch.tensor([0.33, 0.34, 0.33], device=device),
|
|
torch.tensor([0.8, 0.1999, 0.0001], device=device)]:
|
|
# Check the difference between the original probabilities and the reconstructed
|
|
# probabilities from the alias and probability tables output by _multinomial_alias_setup
|
|
alias_table, prob_table = torch._multinomial_alias_setup(probs)
|
|
actual = torch.zeros_like(probs)
|
|
for i, vals in enumerate(zip(alias_table, prob_table)):
|
|
idx, p = vals
|
|
actual[i] += p
|
|
actual[idx] += 1. - p
|
|
actual = actual / len(probs)
|
|
self.assertEqual(actual, probs, atol=1e-6, rtol=0)
|
|
|
|
# Some special cases
|
|
test_cases = [torch.tensor([1.0, 0.0, 0.0], device=device), torch.tensor([0.0, 1.0], device=device)]
|
|
for probs in test_cases:
|
|
alias_table, prob_table = torch._multinomial_alias_setup(probs)
|
|
alias_samples = torch._multinomial_alias_draw(prob_table, alias_table, MAX_SAMPLES)
|
|
self.assertEqual(alias_samples.unique(), probs.nonzero().squeeze(-1))
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
def test_lapack_empty(self, device):
|
|
# FIXME: these are just a selection of LAPACK functions -- we need a general strategy here.
|
|
# The LAPACK functions themselves generally do NOT work with zero sized dimensions, although
|
|
# numpy/sci often has a direct wrapper (e.g. lu_factor) and a wrapper that "does the right thing"
|
|
# (e.g. lu). We often name our functions identically to the lapack function, so it will take work
|
|
# to name / migrate-to better wrappers.
|
|
def fn(torchfn, *args):
|
|
return torchfn(*tuple(torch.randn(shape, device=device) if isinstance(shape, tuple) else shape
|
|
for shape in args))
|
|
|
|
# inverse, pinverse
|
|
self.assertEqual((0, 0), fn(torch.inverse, (0, 0)).shape)
|
|
self.assertEqual((5, 0), fn(torch.pinverse, (0, 5)).shape)
|
|
self.assertEqual((0, 5), fn(torch.pinverse, (5, 0)).shape)
|
|
self.assertEqual((0, 0), fn(torch.pinverse, (0, 0)).shape)
|
|
|
|
# det, logdet, slogdet
|
|
self.assertEqual(torch.tensor(1., device=device), fn(torch.det, (0, 0)))
|
|
self.assertEqual(torch.tensor(0., device=device), fn(torch.logdet, (0, 0)))
|
|
self.assertEqual((torch.tensor(1., device=device), torch.tensor(0., device=device)),
|
|
fn(torch.slogdet, (0, 0)))
|
|
|
|
# eig, symeig
|
|
evalues, evectors = fn(torch.eig, (0, 0), True)
|
|
self.assertEqual([(0, 2), (0, 0)], [evalues.shape, evectors.shape])
|
|
evalues, evectors = fn(torch.symeig, (0, 0), True)
|
|
self.assertEqual([(0,), (0, 0)], [evalues.shape, evectors.shape])
|
|
|
|
# qr
|
|
q, r = fn(torch.qr, (3, 0), True)
|
|
self.assertEqual([(3, 0), (0, 0)], [q.shape, r.shape])
|
|
q, r = fn(torch.qr, (0, 3), True)
|
|
self.assertEqual([(0, 0), (0, 3)], [q.shape, r.shape])
|
|
q, r = fn(torch.qr, (3, 0), False)
|
|
self.assertEqual([(3, 3), (3, 0)], [q.shape, r.shape])
|
|
|
|
# lstsq
|
|
self.assertRaises(RuntimeError, lambda: torch.lstsq(torch.randn(0, 0), torch.randn(0, 0)))
|
|
self.assertRaises(RuntimeError, lambda: torch.lstsq(torch.randn(0,), torch.randn(0, 0)))
|
|
|
|
def test_roll(self, device):
|
|
numbers = torch.arange(1, 9, device=device)
|
|
|
|
single_roll = numbers.roll(1, 0)
|
|
expected = torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device)
|
|
self.assertEqual(single_roll, expected, msg="{} did not equal expected result".format(single_roll))
|
|
|
|
roll_backwards = numbers.roll(-2, 0)
|
|
expected = torch.tensor([3, 4, 5, 6, 7, 8, 1, 2], device=device)
|
|
self.assertEqual(roll_backwards, expected, msg="{} did not equal expected result".format(roll_backwards))
|
|
|
|
data = numbers.view(2, 2, 2)
|
|
rolled = data.roll(1, 0)
|
|
expected = torch.tensor([5, 6, 7, 8, 1, 2, 3, 4], device=device).view(2, 2, 2)
|
|
self.assertEqual(expected, rolled, msg="{} did not equal expected result: {}".format(rolled, expected))
|
|
|
|
data = data.view(2, 4)
|
|
# roll a loop until back where started
|
|
loop_rolled = data.roll(2, 0).roll(4, 1)
|
|
self.assertEqual(data, loop_rolled, msg="{} did not equal the original: {}".format(loop_rolled, data))
|
|
# multiple inverse loops
|
|
self.assertEqual(data, data.roll(-20, 0).roll(-40, 1))
|
|
self.assertEqual(torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device), numbers.roll(1, 0))
|
|
|
|
# test non-contiguous
|
|
# strided equivalent to numbers.as_strided(size=(4, 2), stride=(1, 4))
|
|
strided = numbers.view(2, 4).transpose(0, 1)
|
|
self.assertFalse(strided.is_contiguous(), "this test needs a non-contiguous tensor")
|
|
expected = torch.tensor([4, 8, 1, 5, 2, 6, 3, 7]).view(4, 2)
|
|
rolled = strided.roll(1, 0)
|
|
self.assertEqual(expected, rolled,
|
|
msg="non contiguous tensor rolled to {} instead of {} ".format(rolled, expected))
|
|
|
|
# test roll with no dimension specified
|
|
expected = numbers.roll(1, 0).view(2, 4)
|
|
self.assertEqual(expected, data.roll(1), msg="roll with no dims should flatten and roll.")
|
|
self.assertEqual(expected, data.roll(1, dims=None), msg="roll with no dims should flatten and roll.")
|
|
|
|
# test roll over multiple dimensions
|
|
expected = torch.tensor([[7, 8, 5, 6], [3, 4, 1, 2]], device=device)
|
|
double_rolled = data.roll(shifts=(2, -1), dims=(1, 0))
|
|
self.assertEqual(double_rolled, expected,
|
|
msg="should be able to roll over two dimensions, got {}".format(double_rolled))
|
|
|
|
self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=()))
|
|
self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=1))
|
|
# shifts/dims should align
|
|
self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1, 2), dims=(1,)))
|
|
self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1,), dims=(1, 2)))
|
|
|
|
# test bool tensor
|
|
t = torch.zeros(6, dtype=torch.bool, device=device)
|
|
t[0] = True
|
|
t[3] = True
|
|
self.assertEqual(torch.tensor([False, True, False, False, True, False]), t.roll(1, 0))
|
|
|
|
# test complex tensor
|
|
t = torch.tensor([1, 2 + 1j, 3.5, 4. + 2j, 5j, 6.], device=device)
|
|
t[0] = 1 + 0.5j
|
|
t[3] = 4.
|
|
expected = torch.tensor([6., 1 + 0.5j, 2 + 1j, 3.5, 4., 5j], device=device)
|
|
self.assertEqual(expected, t.roll(1, 0))
|
|
|
|
def test_nonzero_empty(self, device):
|
|
def assert_tuple_empty(tup, dim):
|
|
self.assertEqual(dim, len(tup))
|
|
for t in tup:
|
|
self.assertEqual(torch.Size([0]), t.shape)
|
|
|
|
x = torch.randn(0, 2, 0, 5, 0, device=device)
|
|
y = torch.nonzero(x)
|
|
z = torch.nonzero(x, as_tuple=True)
|
|
|
|
self.assertEqual(0, y.numel())
|
|
self.assertEqual(torch.Size([0, 5]), y.shape)
|
|
assert_tuple_empty(z, 5)
|
|
|
|
x = torch.tensor(0.5, device=device)
|
|
y = torch.nonzero(x)
|
|
# nonzero with as_tuple returns a
|
|
# tuple of len 1 for a zero-dim tensor.
|
|
# This is done to match Numpy behavior.
|
|
z = torch.nonzero(x, as_tuple=True)
|
|
self.assertEqual(1, len(z))
|
|
self.assertEqual(torch.zeros(1, dtype=torch.long), z[0])
|
|
|
|
x = torch.zeros((), device=device)
|
|
y = torch.nonzero(x)
|
|
z = torch.nonzero(x, as_tuple=True)
|
|
self.assertEqual(torch.Size([0, 0]), y.shape)
|
|
self.assertEqual(1, len(z))
|
|
self.assertEqual(torch.empty(0, dtype=torch.long), z[0])
|
|
|
|
@onlyOnCPUAndCUDA
|
|
def test_nonzero_deprecated(self, device):
|
|
x = torch.randn((2, 3), device=device)
|
|
with self.maybeWarnsRegex(UserWarning, "This overload of nonzero is deprecated"):
|
|
x.nonzero()
|
|
|
|
with self.maybeWarnsRegex(UserWarning, "This overload of nonzero is deprecated"):
|
|
torch.nonzero(x)
|
|
|
|
# TODO: add torch.complex64, torch.complex128
|
|
@dtypes(torch.float, torch.double)
|
|
def test_normal(self, device, dtype):
|
|
|
|
def helper(self, device, dtype, ptype, t_transform, std_transform):
|
|
q = torch.empty(100, 100, dtype=dtype, device=device)
|
|
|
|
q.normal_()
|
|
self.assertEqual(t_transform(q).mean(), 0, atol=0.2, rtol=0)
|
|
self.assertEqual(t_transform(q).std(), std_transform(1), atol=0.2, rtol=0)
|
|
|
|
q.normal_(2, 3)
|
|
self.assertEqual(t_transform(q).mean(), 2, atol=0.3, rtol=0)
|
|
self.assertEqual(t_transform(q).std(), std_transform(3), atol=0.3, rtol=0)
|
|
|
|
q = torch.empty(100, 100, dtype=dtype, device=device)
|
|
q_row1 = q[0:1].clone()
|
|
q[99:100].normal_()
|
|
self.assertEqual(t_transform(q[99:100]).mean(), 0, atol=0.2, rtol=0)
|
|
self.assertEqual(t_transform(q[99:100]).std(), std_transform(1), atol=0.2, rtol=0)
|
|
self.assertEqual(t_transform(q[0:1]).clone(), t_transform(q_row1))
|
|
|
|
mean = torch.empty(100, 100, dtype=dtype, device=device)
|
|
mean[:50].fill_(ptype(0))
|
|
mean[50:].fill_(ptype(1))
|
|
|
|
std = torch.empty(100, 100, dtype=torch.float, device=device)
|
|
std[:, :50] = 4
|
|
std[:, 50:] = 1
|
|
|
|
r = torch.normal(mean)
|
|
self.assertEqual(r.dtype, dtype)
|
|
self.assertEqual(str(r.device), device)
|
|
self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0)
|
|
self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0)
|
|
self.assertEqual(t_transform(r).std(), std_transform(1), atol=0.2, rtol=0)
|
|
|
|
r.fill_(42)
|
|
r = torch.normal(mean, 3)
|
|
self.assertEqual(r.dtype, dtype)
|
|
self.assertEqual(str(r.device), device)
|
|
self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0)
|
|
self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0)
|
|
self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.2, rtol=0)
|
|
|
|
r.fill_(42)
|
|
torch.normal(mean, 3, out=r)
|
|
self.assertEqual(r.dtype, dtype)
|
|
self.assertEqual(str(r.device), device)
|
|
self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0)
|
|
self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0)
|
|
self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.2, rtol=0)
|
|
|
|
r.fill_(42)
|
|
r = torch.normal(2, std)
|
|
self.assertFalse(r.dtype.is_complex)
|
|
self.assertEqual(str(r.device), device)
|
|
self.assertEqual(r.mean(), 2, atol=0.2, rtol=0)
|
|
self.assertEqual(r[:, :50].std(), 4, atol=0.3, rtol=0)
|
|
self.assertEqual(r[:, 50:].std(), 1, atol=0.2, rtol=0)
|
|
|
|
r.fill_(42)
|
|
torch.normal(2, std, out=r)
|
|
self.assertFalse(r.dtype.is_complex)
|
|
self.assertEqual(str(r.device), device)
|
|
self.assertEqual(r.mean(), 2, atol=0.2, rtol=0)
|
|
self.assertEqual(r[:, :50].std(), 4, atol=0.3, rtol=0)
|
|
self.assertEqual(r[:, 50:].std(), 1, atol=0.2, rtol=0)
|
|
|
|
r.fill_(42)
|
|
r = torch.normal(mean, std)
|
|
self.assertEqual(r.dtype, dtype)
|
|
self.assertEqual(str(r.device), device)
|
|
self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0)
|
|
self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0)
|
|
self.assertEqual(t_transform(r[:, :50]).std(), std_transform(4), atol=0.3, rtol=0)
|
|
self.assertEqual(t_transform(r[:, 50:]).std(), std_transform(1), atol=0.2, rtol=0)
|
|
|
|
r.fill_(42)
|
|
torch.normal(mean, std, out=r)
|
|
self.assertEqual(r.dtype, dtype)
|
|
self.assertEqual(str(r.device), device)
|
|
self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0)
|
|
self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0)
|
|
self.assertEqual(t_transform(r[:, :50]).std(), std_transform(4), atol=0.3, rtol=0)
|
|
self.assertEqual(t_transform(r[:, 50:]).std(), std_transform(1), atol=0.2, rtol=0)
|
|
|
|
r.fill_(42)
|
|
r = torch.normal(2, 3, (100, 100), dtype=dtype, device=device)
|
|
self.assertEqual(r.dtype, dtype)
|
|
self.assertEqual(str(r.device), device)
|
|
self.assertEqual(t_transform(r).mean(), 2, atol=0.3, rtol=0)
|
|
self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.3, rtol=0)
|
|
|
|
r.fill_(42)
|
|
torch.normal(2, 3, (100, 100), dtype=dtype, device=device, out=r)
|
|
self.assertEqual(r.dtype, dtype)
|
|
self.assertEqual(str(r.device), device)
|
|
self.assertEqual(t_transform(r).mean(), 2, atol=0.3, rtol=0)
|
|
self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.3, rtol=0)
|
|
|
|
if dtype.is_complex:
|
|
helper(self, device, dtype, lambda x: complex(x, x),
|
|
lambda t: torch.real(t).to(torch.float), lambda mean: mean / math.sqrt(2))
|
|
helper(self, device, dtype, lambda x: complex(x, x),
|
|
lambda t: torch.imag(t).to(torch.float), lambda mean: mean / math.sqrt(2))
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "normal expects standard deviation to be non-complex",
|
|
lambda: torch.normal(0, torch.empty(100, 100, dtype=dtype, device=device)))
|
|
out = torch.empty(100, 100, dtype=dtype, device=device)
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "normal expects standard deviation to be non-complex",
|
|
lambda: torch.normal(0, torch.empty(100, 100, dtype=dtype, device=device), out=out))
|
|
else:
|
|
helper(self, device, dtype, lambda x: x, lambda t: t, lambda mean: mean)
|
|
|
|
@dtypes(torch.float, torch.double, torch.half)
|
|
@dtypesIfCUDA(torch.float, torch.double, torch.half, torch.bfloat16)
|
|
def test_uniform_from_to(self, device, dtype):
|
|
# TODO: https://github.com/pytorch/pytorch/issues/33793
|
|
if IS_WINDOWS and device.startswith('cuda') and dtype == torch.bfloat16:
|
|
raise unittest.SkipTest("Crashes with CUDA error: unspecified launch failure")
|
|
|
|
size = 2000
|
|
alpha = 0.1
|
|
|
|
float_min = torch.finfo(torch.float).min
|
|
float_max = torch.finfo(torch.float).max
|
|
double_min = torch.finfo(torch.double).min
|
|
double_max = torch.finfo(torch.double).max
|
|
|
|
if dtype == torch.bfloat16:
|
|
min_val = -3.389531389251535e+38
|
|
max_val = 3.389531389251535e+38
|
|
else:
|
|
min_val = torch.finfo(dtype).min
|
|
max_val = torch.finfo(dtype).max
|
|
|
|
values = [double_min, float_min, -42, 0, 42, float_max, double_max]
|
|
|
|
for from_ in values:
|
|
for to_ in values:
|
|
t = torch.empty(size, dtype=dtype, device=device)
|
|
if not (min_val <= from_ <= max_val) or not (min_val <= to_ <= max_val):
|
|
pass
|
|
elif to_ < from_:
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"uniform_ expects to return",
|
|
lambda: t.uniform_(from_, to_)
|
|
)
|
|
elif to_ - from_ > max_val:
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"uniform_ expects to-from",
|
|
lambda: t.uniform_(from_, to_)
|
|
)
|
|
else:
|
|
t.uniform_(from_, to_)
|
|
range_ = to_ - from_
|
|
if not (dtype == torch.bfloat16) and not (
|
|
dtype == torch.half and device == 'cpu') and not torch.isnan(t).all():
|
|
delta = alpha * range_
|
|
double_t = t.to(torch.double)
|
|
if range_ == 0:
|
|
self.assertTrue(double_t.min() == from_)
|
|
self.assertTrue(double_t.max() == to_)
|
|
elif dtype == torch.half:
|
|
self.assertTrue(from_ <= double_t.min() <= (from_ + delta))
|
|
self.assertTrue((to_ - delta) <= double_t.max() <= to_)
|
|
else:
|
|
self.assertTrue(from_ <= double_t.min() <= (from_ + delta))
|
|
self.assertTrue((to_ - delta) <= double_t.max() < to_)
|
|
|
|
@dtypes(torch.float, torch.double, torch.complex64, torch.complex128)
|
|
def test_randn(self, device, dtype):
|
|
for size in [0, SIZE]:
|
|
torch.manual_seed(123456)
|
|
res1 = torch.randn(size, size, dtype=dtype, device=device)
|
|
res2 = torch.tensor([], dtype=dtype, device=device)
|
|
torch.manual_seed(123456)
|
|
torch.randn(size, size, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
@dtypes(torch.float, torch.double, torch.complex64, torch.complex128)
|
|
def test_rand(self, device, dtype):
|
|
for size in [0, SIZE]:
|
|
torch.manual_seed(123456)
|
|
res1 = torch.rand(size, size, dtype=dtype, device=device)
|
|
res2 = torch.tensor([], dtype=dtype, device=device)
|
|
torch.manual_seed(123456)
|
|
torch.rand(size, size, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
@dtypes(*torch.testing.get_all_fp_dtypes())
|
|
def test_log_normal(self, device, dtype):
|
|
a = torch.tensor([10], dtype=dtype, device=device).log_normal_()
|
|
self.assertEqual(a.dtype, dtype)
|
|
self.assertEqual(a.size(), torch.Size([1]))
|
|
|
|
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes()))
|
|
def test_geometric(self, device, dtype):
|
|
a = torch.tensor([10], dtype=dtype, device=device).geometric_(0.5)
|
|
self.assertEqual(a.dtype, dtype)
|
|
self.assertEqual(a.size(), torch.Size([1]))
|
|
|
|
@dtypes(*(torch.testing.get_all_fp_dtypes(include_half=False, include_bfloat16=False)))
|
|
@dtypesIfCUDA(*(torch.testing.get_all_fp_dtypes(include_bfloat16=False)))
|
|
def test_bernoulli_p(self, device, dtype):
|
|
for trivial_p in ([0, 1], [1, 0, 1, 1, 0, 1]):
|
|
x = torch.tensor(trivial_p, dtype=dtype, device=device)
|
|
self.assertEqual(x.bernoulli().tolist(), trivial_p)
|
|
|
|
def isBinary(t):
|
|
return torch.ne(t, 0).mul_(torch.ne(t, 1)).sum().item() == 0
|
|
|
|
p = torch.rand(5, 5, dtype=dtype, device=device)
|
|
self.assertTrue(isBinary(p.bernoulli()))
|
|
|
|
p = torch.rand(5, dtype=dtype, device=device).expand(5, 5)
|
|
self.assertTrue(isBinary(p.bernoulli()))
|
|
|
|
p = torch.rand(5, 5, dtype=dtype, device=device)
|
|
torch.bernoulli(torch.rand_like(p), out=p)
|
|
self.assertTrue(isBinary(p))
|
|
|
|
p = torch.rand(5, dtype=dtype, device=device).expand(5, 5)
|
|
torch.bernoulli(torch.rand_like(p), out=p)
|
|
self.assertTrue(isBinary(p))
|
|
|
|
# RngUniform not implemented for Integral type in XLA test
|
|
@dtypes(*(torch.testing.get_all_fp_dtypes(include_half=False, include_bfloat16=False)))
|
|
@dtypesIfCPU(*(torch.testing.get_all_dtypes(include_half=False, include_bfloat16=False, include_complex=False)))
|
|
@dtypesIfCUDA(*(torch.testing.get_all_dtypes(include_bfloat16=False, include_complex=False)))
|
|
def test_bernoulli_self(self, device, dtype):
|
|
|
|
def isBinary(t):
|
|
return torch.ne(t, 0).mul_(torch.ne(t, 1)).sum().item() == 0
|
|
|
|
t = torch.empty(10, 10, dtype=dtype, device=device)
|
|
|
|
t.fill_(2)
|
|
t.bernoulli_(0.5)
|
|
self.assertTrue(isBinary(t))
|
|
|
|
for p_dtype in torch.testing.get_all_fp_dtypes(include_half=device.startswith('cuda'),
|
|
include_bfloat16=False):
|
|
p = torch.rand(10, dtype=p_dtype, device=device).expand(10, 10)
|
|
t.fill_(2)
|
|
t.bernoulli_(p)
|
|
self.assertTrue(isBinary(t))
|
|
|
|
t.fill_(2)
|
|
torch.bernoulli(torch.rand_like(t, dtype=p_dtype), out=t)
|
|
self.assertTrue(isBinary(t))
|
|
|
|
t.fill_(2)
|
|
t.bernoulli_(torch.rand_like(t, dtype=p_dtype))
|
|
self.assertTrue(isBinary(t))
|
|
|
|
@slowTest
|
|
@dtypes(*(torch.testing.get_all_fp_dtypes(include_half=False, include_bfloat16=False)))
|
|
@dtypesIfCUDA(*(torch.testing.get_all_fp_dtypes(include_bfloat16=False)))
|
|
def test_bernoulli_edge_cases(self, device, dtype):
|
|
# Need to draw a lot of samples to cover every random floating point number.
|
|
a = torch.zeros(10000, 10000, dtype=dtype, device=device) # probability of drawing "1" is 0
|
|
num_ones = (torch.bernoulli(a) == 1).sum()
|
|
self.assertEqual(num_ones, 0)
|
|
|
|
b = torch.ones(10000, 10000, dtype=dtype, device=device) # probability of drawing "1" is 1
|
|
num_zeros = (torch.bernoulli(b) == 0).sum()
|
|
self.assertEqual(num_zeros, 0)
|
|
|
|
@dtypes(*torch.testing.get_all_fp_dtypes())
|
|
def test_exponential(self, device, dtype):
|
|
a = torch.tensor([10], dtype=dtype, device=device).exponential_(0.5)
|
|
self.assertEqual(a.dtype, dtype)
|
|
self.assertEqual(a.size(), torch.Size([1]))
|
|
|
|
# Tests extremal behavior
|
|
tests = ((-0, float('inf')), (0, float('inf')), (float('inf'), 0))
|
|
for test in tests:
|
|
t = torch.empty((1,), device=device, dtype=dtype).exponential_(test[0])
|
|
self.assertTrue(t.item() == test[1])
|
|
|
|
# Tests that negative lambda fails
|
|
with self.assertRaises(RuntimeError):
|
|
torch.empty((1,), device=device, dtype=dtype).exponential_(-0.5)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
@dtypes(*(torch.testing.get_all_fp_dtypes(include_half=False) +
|
|
torch.testing.get_all_complex_dtypes()))
|
|
@dtypesIfCUDA(*(torch.testing.get_all_fp_dtypes(include_half=True) +
|
|
torch.testing.get_all_complex_dtypes()))
|
|
def test_exp(self, device, dtype):
|
|
for v in (2, -2) + ((1j, 1 + 1j) if dtype.is_complex else ()):
|
|
if dtype == torch.bfloat16:
|
|
# Currently multiply a bfloat16 type with floating-point causes error:
|
|
# RuntimeError: dtype != ScalarType::Undefined INTERNAL ASSERT FAILED at
|
|
# "/pytorch/aten/src/ATen/native/TensorIterator.cpp":125, please report a bug to PyTorch.
|
|
# We skip bfloat16 for now, but we should fix it. https://github.com/pytorch/pytorch/issues/40580
|
|
if self.device_type == 'cpu' or self.device_type == 'cuda':
|
|
with self.assertRaises(RuntimeError):
|
|
torch.tensor(v, dtype=dtype, device=device) * torch.arange(18, device=device)
|
|
return
|
|
elif self.device_type == 'xla':
|
|
# Error:
|
|
# Traceback (most recent call last):
|
|
# File "/opt/conda/lib/python3.6/site-packages/torch/testing/_internal/common_device_type.py",
|
|
# line 241, in instantiated_test
|
|
# result = test(self, device_arg, dtype)
|
|
# File "/var/lib/jenkins/workspace/xla/test/../../test/test_torch.py", line 11062, in test_exp
|
|
# self.compare_with_numpy(torch.exp, np.exp, a)
|
|
# File "/opt/conda/lib/python3.6/site-packages/torch/testing/_internal/common_utils.py", line 878,
|
|
# in compare_with_numpy
|
|
# a = tensor_like.detach().cpu().numpy()
|
|
# TypeError: Got unsupported ScalarType BFloat16
|
|
return
|
|
|
|
a = torch.tensor(v, dtype=dtype, device=device) * torch.arange(18, device=device) / 3 * math.pi
|
|
a = a.to(dtype)
|
|
self.compare_with_numpy(torch.exp, np.exp, a)
|
|
|
|
if dtype.is_complex:
|
|
inf_real_zero_imag_in = torch.tensor(complex(float('inf'), 0), device=device, dtype=dtype)
|
|
inf_real_zero_imag_out = torch.exp(inf_real_zero_imag_in).item()
|
|
self.assertTrue(math.isinf(inf_real_zero_imag_out.real))
|
|
if self.device_type == 'cpu':
|
|
pass
|
|
# These are commented out because it cannot be consistently reproduced.
|
|
# This is incorrect. It should be zero. Need fix!
|
|
# https://github.com/pytorch/pytorch/issues/40590
|
|
# self.assertNotEqual(inf_real_zero_imag_out.imag, 0)
|
|
# This is incorrect. They should equal. Need fix!
|
|
# https://github.com/pytorch/pytorch/issues/40590
|
|
# with self.assertRaises(AssertionError):
|
|
# self.compare_with_numpy(torch.exp, np.exp, inf_real_zero_imag_in)
|
|
else:
|
|
self.assertEqual(inf_real_zero_imag_out.imag, 0, atol=0, rtol=0)
|
|
self.compare_with_numpy(torch.exp, np.exp, inf_real_zero_imag_in)
|
|
|
|
zero_real_inf_imag_in = torch.tensor(complex(0, float('inf')), device=device, dtype=dtype)
|
|
zero_real_inf_imag_out = torch.exp(zero_real_inf_imag_in).item()
|
|
self.assertTrue(math.isnan(zero_real_inf_imag_out.real))
|
|
self.assertTrue(math.isnan(zero_real_inf_imag_out.imag))
|
|
# Ensure we are notified when NumPy changes its behavior
|
|
self.compare_with_numpy(torch.exp, np.exp, zero_real_inf_imag_in)
|
|
|
|
inf_real_imag_in = torch.tensor(complex(float('inf'), float('inf')), device=device, dtype=dtype)
|
|
inf_real_imag_out = torch.exp(inf_real_imag_in).item()
|
|
if self.device_type == 'cpu':
|
|
pass
|
|
# This is incorrect. Need fix! https://github.com/pytorch/pytorch/issues/40590
|
|
# This is commented out because it cannot be consistently reproduced.
|
|
# with self.assertRaises(AssertionError):
|
|
# self.compare_with_numpy(torch.exp, np.exp, inf_real_imag_in)
|
|
else:
|
|
self.assertTrue(math.isinf(inf_real_imag_out.real))
|
|
self.assertTrue(math.isnan(inf_real_imag_out.imag))
|
|
self.compare_with_numpy(torch.exp, np.exp, inf_real_imag_in)
|
|
|
|
inf_real_nan_imag_in = torch.tensor(complex(float('inf'), float('nan')), device=device, dtype=dtype)
|
|
inf_real_nan_imag_out = torch.exp(inf_real_nan_imag_in).item()
|
|
if self.device_type == 'cpu':
|
|
pass
|
|
# This is incorrect. It should be inf. Need fix! https://github.com/pytorch/pytorch/issues/40590
|
|
# This is commented out because it cannot be consistently reproduced.
|
|
# with self.assertRaises(AssertionError):
|
|
# self.compare_with_numpy(torch.exp, np.exp, inf_real_nan_imag_in)
|
|
else:
|
|
self.assertTrue(math.isinf(inf_real_nan_imag_out.real))
|
|
self.assertTrue(math.isnan(inf_real_nan_imag_out.imag))
|
|
self.compare_with_numpy(torch.exp, np.exp, inf_real_nan_imag_in)
|
|
|
|
nan_real_inf_imag_in = torch.tensor(complex(float('nan'), float('inf')), device=device, dtype=dtype)
|
|
nan_real_inf_imag_out = torch.exp(nan_real_inf_imag_in).item()
|
|
self.assertTrue(math.isnan(nan_real_inf_imag_out.real))
|
|
self.assertTrue(math.isnan(nan_real_inf_imag_out.imag))
|
|
# Ensure we are notified when NumPy changes its behavior
|
|
self.compare_with_numpy(torch.exp, np.exp, nan_real_inf_imag_in)
|
|
|
|
@skipIfNoSciPy
|
|
@dtypes(*torch.testing.get_all_fp_dtypes())
|
|
def test_uniform_kstest(self, device, dtype):
|
|
# TODO: https://github.com/pytorch/pytorch/issues/33793
|
|
if IS_WINDOWS and device.startswith('cuda') and dtype == torch.bfloat16:
|
|
raise unittest.SkipTest("Crashes with CUDA error: unspecified launch failure")
|
|
|
|
from scipy import stats
|
|
size = 1000
|
|
for from_ in [-42, 0, 4.2]:
|
|
for to_ in [-4.2, 0, 42]:
|
|
if to_ > from_:
|
|
t = torch.empty(size, dtype=dtype, device=device).uniform_(from_, to_)
|
|
res = stats.kstest(t.cpu().to(torch.double), 'uniform', args=(from_, (to_ - from_)))
|
|
self.assertTrue(res.statistic < 0.1)
|
|
|
|
@skipIfNoSciPy
|
|
@dtypes(*torch.testing.get_all_fp_dtypes(include_bfloat16=False))
|
|
@dtypesIfCUDA(*torch.testing.get_all_fp_dtypes())
|
|
def test_normal_kstest(self, device, dtype):
|
|
from scipy import stats
|
|
size = 1000
|
|
for mean in [-10, 0, 50]:
|
|
for std in [1, 5, 10]:
|
|
t = torch.empty(size, dtype=dtype, device=device).normal_(mean=mean, std=std)
|
|
res = stats.kstest(t.cpu().to(torch.double), 'norm', args=(mean, std))
|
|
self.assertTrue(res.statistic < 0.1)
|
|
|
|
@skipIfNoSciPy
|
|
@dtypes(*torch.testing.get_all_fp_dtypes())
|
|
def test_lognormal_kstest(self, device, dtype):
|
|
from scipy import stats
|
|
size = 1000
|
|
for mean in [-3, 0, 7]:
|
|
for std in [1, 5, 7]:
|
|
t = torch.empty(size, dtype=dtype, device=device).log_normal_(mean=mean, std=std)
|
|
res = stats.kstest(t.cpu().to(torch.double), 'lognorm', args=(std, 0, math.exp(mean)))
|
|
if dtype == torch.half:
|
|
self.assertTrue(res.statistic < 0.3)
|
|
else:
|
|
self.assertTrue(res.statistic < 0.1)
|
|
|
|
@skipIfNoSciPy
|
|
@dtypes(*torch.testing.get_all_fp_dtypes())
|
|
def test_exponential_kstest(self, device, dtype):
|
|
from scipy import stats
|
|
size = 1000
|
|
for lambd in [0.5, 1.0, 5.0]:
|
|
t = torch.empty(size, dtype=dtype, device=device).exponential_(lambd=lambd)
|
|
res = stats.kstest(t.cpu().to(torch.double), 'expon', args=(0, 1 / lambd,))
|
|
self.assertTrue(res.statistic < 0.1)
|
|
|
|
@skipIfNoSciPy
|
|
@dtypes(*torch.testing.get_all_fp_dtypes())
|
|
def test_cauchy_kstest(self, device, dtype):
|
|
from scipy import stats
|
|
size = 1000
|
|
for median in [-10, 0, 50]:
|
|
for sigma in [0.5, 1.0, 10.0]:
|
|
t = torch.empty(size, dtype=dtype, device=device).cauchy_(median=median, sigma=sigma)
|
|
res = stats.kstest(t.cpu().to(torch.double), 'cauchy', args=(median, sigma))
|
|
self.assertTrue(res.statistic < 0.1)
|
|
|
|
@skipIfNoSciPy
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes()))
|
|
def test_geometric_kstest(self, device, dtype):
|
|
from scipy import stats
|
|
size = 1000
|
|
for p in [0.2, 0.5, 0.8]:
|
|
t = torch.empty(size, dtype=dtype, device=device).geometric_(p=p)
|
|
actual = np.histogram(t.cpu().to(torch.double), np.arange(1, 100))[0]
|
|
expected = stats.geom(p).pmf(np.arange(1, 99)) * size
|
|
res = stats.chisquare(actual, expected)
|
|
self.assertEqual(res.pvalue, 1.0, atol=0.1, rtol=0)
|
|
|
|
def test_empty_strided(self, device):
|
|
for shape in [(2, 3, 4), (0, 2, 0)]:
|
|
# some of these cases are pretty strange, just verifying that if as_strided
|
|
# allows them then empty_strided can as well.
|
|
for strides in [(12, 4, 1), (2, 4, 6), (0, 0, 0)]:
|
|
empty_strided = torch.empty_strided(shape, strides, device=device)
|
|
# as_strided checks the storage size is big enough to support such a strided tensor;
|
|
# instead of repeating this calculation, we just use empty_strided which does the same
|
|
# calculation when setting the storage size.
|
|
as_strided = torch.empty(empty_strided.storage().size(),
|
|
device=device).as_strided(shape, strides)
|
|
self.assertEqual(empty_strided.shape, as_strided.shape)
|
|
self.assertEqual(empty_strided.stride(), as_strided.stride())
|
|
|
|
def test_strided_mismatched_stride_shape(self, device):
|
|
for shape, strides in [((1, ), ()), ((1, 2), (1, ))]:
|
|
with self.assertRaisesRegex(RuntimeError, "mismatch in length of strides and shape"):
|
|
torch.tensor(0.42, device=device).as_strided(shape, strides)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "mismatch in length of strides and shape"):
|
|
torch.tensor(0.42, device=device).as_strided_(shape, strides)
|
|
|
|
def test_sign(self, device):
|
|
for dtype in torch.testing.get_all_math_dtypes(device):
|
|
if dtype.is_complex:
|
|
continue
|
|
|
|
# Include NaN for floating point numbers
|
|
if dtype.is_floating_point:
|
|
dt_info = torch.finfo(dtype)
|
|
|
|
# Create tensor (with NaN checking)
|
|
a = torch.tensor([float('nan'), -12, 0, 71, dt_info.min, dt_info.max], device=device, dtype=dtype)
|
|
a_target = torch.tensor([0, -1, 0, 1, -1, 1], device=device, dtype=dtype)
|
|
|
|
else:
|
|
dt_info = torch.iinfo(dtype)
|
|
|
|
# If unsigned type, everything should be >= 0
|
|
if dt_info.min == 0:
|
|
a = torch.tensor([12, 0, 71, dt_info.min, dt_info.max], device=device, dtype=dtype)
|
|
a_target = torch.tensor([1, 0, 1, 0, 1], device=device, dtype=dtype)
|
|
else:
|
|
a = torch.tensor([-12, 0, 71, dt_info.min, dt_info.max], device=device, dtype=dtype)
|
|
a_target = torch.tensor([-1, 0, 1, -1, 1], device=device, dtype=dtype)
|
|
|
|
self.assertEqual(a.sign(), a_target, msg='sign device={} dtype={}'.format(device, dtype))
|
|
self.assertEqual(torch.sign(a), a_target, msg='sign device={} dtype={}'.format(device, dtype))
|
|
|
|
out = torch.empty_like(a)
|
|
torch.sign(a, out=out)
|
|
self.assertEqual(out, a_target, msg='sign_out device={} dtype={}'.format(device, dtype))
|
|
|
|
a.sign_()
|
|
self.assertEqual(a, a_target, msg='sign_ device={} dtype={}'.format(device, dtype))
|
|
|
|
# Include test for bool dtype
|
|
a_bool = torch.tensor([True, True, False, float('nan')], device=device).bool()
|
|
a_bool_target = torch.tensor([True, True, False, True], device=device).bool()
|
|
self.assertEqual(a_bool.sign(), a_bool_target, msg='sign device={} dtype=bool'.format(device))
|
|
self.assertEqual(torch.sign(a_bool), a_bool_target, msg='sign device={} dtype=bool'.format(device))
|
|
|
|
a_out = torch.empty_like(a_bool)
|
|
torch.sign(a_bool, out=a_out)
|
|
self.assertEqual(a_out, a_bool_target, msg='sign_out device={} dtype=bool'.format(device))
|
|
|
|
a_bool.sign_()
|
|
self.assertEqual(a_bool, a_bool_target, msg='sign_ device={} dtype=bool'.format(device))
|
|
|
|
def test_logical_any(self, device):
|
|
x = torch.zeros([2, 3, 400], dtype=torch.uint8, device=device)
|
|
|
|
self.assertEqual(
|
|
torch.tensor(0, dtype=torch.uint8, device=device),
|
|
x.any())
|
|
|
|
self.assertEqual(
|
|
torch.zeros([1, 3, 400], dtype=torch.uint8, device=device),
|
|
x.any(0, keepdim=True))
|
|
|
|
self.assertEqual(
|
|
torch.zeros([2, 1, 400], dtype=torch.uint8, device=device),
|
|
x.any(1, keepdim=True))
|
|
|
|
self.assertEqual(
|
|
torch.zeros([2, 3, 1], dtype=torch.uint8, device=device),
|
|
x.any(2, keepdim=True))
|
|
|
|
# set the last element to 0
|
|
x[-1][-1][-1] = 1
|
|
|
|
self.assertEqual(
|
|
torch.tensor(1, dtype=torch.uint8, device=device),
|
|
x.any())
|
|
|
|
y = torch.zeros([1, 3, 400], dtype=torch.uint8, device=device)
|
|
y[-1][-1][-1] = 1
|
|
self.assertEqual(y, x.any(0, keepdim=True))
|
|
|
|
y = torch.zeros([2, 1, 400], dtype=torch.uint8, device=device)
|
|
y[-1][-1][-1] = 1
|
|
self.assertEqual(y, x.any(1, keepdim=True))
|
|
|
|
y = torch.zeros([2, 3, 1], dtype=torch.uint8, device=device)
|
|
y[-1][-1][-1] = 1
|
|
self.assertEqual(y, x.any(2, keepdim=True))
|
|
|
|
def test_logical_all(self, device):
|
|
x = torch.ones([2, 3, 400], dtype=torch.uint8, device=device)
|
|
|
|
self.assertEqual(
|
|
torch.tensor(1, dtype=torch.uint8, device=device),
|
|
x.all())
|
|
|
|
self.assertEqual(
|
|
torch.ones([1, 3, 400], dtype=torch.uint8, device=device),
|
|
x.all(0, keepdim=True))
|
|
|
|
self.assertEqual(
|
|
torch.ones([2, 1, 400], dtype=torch.uint8, device=device),
|
|
x.all(1, keepdim=True))
|
|
|
|
self.assertEqual(
|
|
torch.ones([2, 3, 1], dtype=torch.uint8, device=device),
|
|
x.all(2, keepdim=True))
|
|
|
|
# set the last element to 0
|
|
x[-1][-1][-1] = 0
|
|
|
|
self.assertEqual(
|
|
torch.tensor(0, dtype=torch.uint8, device=device),
|
|
x.all())
|
|
|
|
y = torch.ones([1, 3, 400], dtype=torch.uint8, device=device)
|
|
y[-1][-1][-1] = 0
|
|
self.assertEqual(y, x.all(0, keepdim=True))
|
|
|
|
y = torch.ones([2, 1, 400], dtype=torch.uint8, device=device)
|
|
y[-1][-1][-1] = 0
|
|
self.assertEqual(y, x.all(1, keepdim=True))
|
|
|
|
y = torch.ones([2, 3, 1], dtype=torch.uint8, device=device)
|
|
y[-1][-1][-1] = 0
|
|
self.assertEqual(y, x.all(2, keepdim=True))
|
|
|
|
def test_pairwise_distance_empty(self, device):
|
|
shape = (2, 0)
|
|
x = torch.randn(shape, device=device)
|
|
y = torch.randn(shape, device=device)
|
|
|
|
self.assertEqual(torch.zeros(2, device=device), torch.pairwise_distance(x, y))
|
|
self.assertEqual(torch.zeros((2, 1), device=device), torch.pairwise_distance(x, y, keepdim=True))
|
|
|
|
shape = (0, 2)
|
|
x = torch.randn(shape, device=device)
|
|
y = torch.randn(shape, device=device)
|
|
self.assertEqual(torch.zeros(0, device=device), torch.pairwise_distance(x, y))
|
|
self.assertEqual(torch.zeros((0, 1), device=device), torch.pairwise_distance(x, y, keepdim=True))
|
|
|
|
def test_pdist_empty(self, device):
|
|
shape = (0, 2)
|
|
x = torch.randn(shape, device=device)
|
|
self.assertEqual(torch.empty(0, device=device), torch.pdist(x))
|
|
|
|
shape = (1, 2)
|
|
x = torch.randn(shape, device=device)
|
|
self.assertEqual(torch.empty(0, device=device), torch.pdist(x))
|
|
|
|
shape = (3, 0)
|
|
x = torch.randn(shape, device=device)
|
|
self.assertEqual(torch.zeros(3, device=device), torch.pdist(x))
|
|
|
|
def test_cdist_empty(self, device):
|
|
x = torch.randn((0, 5), device=device)
|
|
y = torch.randn((4, 5), device=device)
|
|
self.assertEqual(torch.empty(0, 4, device=device), torch.cdist(x, y))
|
|
|
|
x = torch.randn((2, 5), device=device)
|
|
y = torch.randn((0, 5), device=device)
|
|
self.assertEqual(torch.empty(2, 0, device=device), torch.cdist(x, y))
|
|
|
|
x = torch.randn((2, 0), device=device)
|
|
y = torch.randn((3, 0), device=device)
|
|
self.assertEqual(torch.zeros(2, 3, device=device), torch.cdist(x, y))
|
|
|
|
x = torch.randn((2, 0), device=device)
|
|
y = torch.randn((0, 0), device=device)
|
|
self.assertEqual(torch.empty(2, 0, device=device), torch.cdist(x, y))
|
|
|
|
def _brute_cdist(self, x, y, p=2):
|
|
r1 = x.shape[-2]
|
|
r2 = y.shape[-2]
|
|
if r1 == 0 or r2 == 0:
|
|
return torch.empty(r1, r2, device=x.device)
|
|
return torch.norm(x[..., None, :] - y[..., None, :, :], p=p, dim=-1)
|
|
|
|
def test_cdist_norm(self, device):
|
|
for r1 in [3, 4, 5, 6]:
|
|
for m in [2, 3, 4, 10]:
|
|
for r2 in [4, 6, 7, 8]:
|
|
for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]:
|
|
x = torch.randn(r1, m, device=device)
|
|
y = torch.randn(r2, m, device=device)
|
|
if p == 2:
|
|
for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertEqual(expected, actual, rtol=0, atol=0.02)
|
|
else:
|
|
actual = torch.cdist(x, y, p=p)
|
|
expected = self._brute_cdist(x, y, p=p)
|
|
self.assertEqual(expected, actual)
|
|
|
|
def test_cdist_norm_batch(self, device):
|
|
for r1 in [3, 4, 5, 6]:
|
|
for m in [2, 3, 4, 10]:
|
|
for r2 in [4, 6, 7, 8]:
|
|
for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]:
|
|
x = torch.randn(2, 3, 6, r1, m, device=device)
|
|
y = torch.randn(2, 3, 6, r2, m, device=device)
|
|
if p == 2:
|
|
for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertEqual(expected, actual, rtol=0, atol=0.02)
|
|
else:
|
|
actual = torch.cdist(x, y, p=p)
|
|
expected = self._brute_cdist(x, y, p=p)
|
|
self.assertEqual(expected, actual)
|
|
|
|
def test_cdist_large(self, device):
|
|
for cm in ['use_mm_for_euclid_dist_if_necessary', 'use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
|
|
x = torch.randn(1000, 10, device=device)
|
|
y = torch.randn(1000, 10, device=device)
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertEqual(expected, actual)
|
|
|
|
@slowTest
|
|
def test_cdist_large_batch(self, device):
|
|
for cm in ['use_mm_for_euclid_dist_if_necessary', 'use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
|
|
x = torch.randn(4, 3, 1000, 10, device=device)
|
|
y = torch.randn(4, 3, 1000, 10, device=device)
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertEqual(expected, actual)
|
|
|
|
def test_cdist_non_contiguous(self, device):
|
|
for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
|
|
x = torch.randn(5, 7, device=device).transpose(-1, -2)
|
|
y = torch.randn(5, 3, device=device).transpose(-1, -2)
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertFalse(x.is_contiguous())
|
|
self.assertFalse(y.is_contiguous())
|
|
self.assertEqual(expected, actual)
|
|
|
|
x = torch.randn(7, 5, device=device)
|
|
y = torch.randn(5, 3, device=device).t()
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertTrue(x.is_contiguous())
|
|
self.assertFalse(y.is_contiguous())
|
|
self.assertEqual(expected, actual)
|
|
|
|
x = torch.randn(5, 7, device=device).t()
|
|
y = torch.randn(3, 5, device=device)
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertFalse(x.is_contiguous())
|
|
self.assertTrue(y.is_contiguous())
|
|
self.assertEqual(expected, actual)
|
|
|
|
def test_cdist_non_contiguous_batch(self, device):
|
|
for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
|
|
x = torch.randn(4, 3, 2, 5, 7, device=device).transpose(-1, -2)
|
|
y = torch.randn(4, 3, 2, 5, 3, device=device).transpose(-1, -2)
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertFalse(x.is_contiguous())
|
|
self.assertFalse(y.is_contiguous())
|
|
self.assertEqual(expected, actual)
|
|
|
|
x = torch.randn(7, 2, 7, 5, device=device)
|
|
y = torch.randn(7, 2, 5, 3, device=device).transpose(-1, -2)
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertTrue(x.is_contiguous())
|
|
self.assertFalse(y.is_contiguous())
|
|
self.assertEqual(expected, actual)
|
|
|
|
x = torch.randn(4, 5, 7, device=device).transpose(-1, -2)
|
|
y = torch.randn(4, 3, 5, device=device)
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertFalse(x.is_contiguous())
|
|
self.assertTrue(y.is_contiguous())
|
|
self.assertEqual(expected, actual)
|
|
|
|
def test_multinomial_constraints(self, device):
|
|
x = torch.empty(1, 2, 3, dtype=torch.double, device=device)
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "prob_dist must be 1 or 2 dim",
|
|
lambda: torch.multinomial(x, 2))
|
|
x = torch.empty(1, 2, dtype=torch.long, device=device)
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "multinomial only supports floating-point dtypes for input",
|
|
lambda: torch.multinomial(x, 2))
|
|
x = torch.empty(1, 2, dtype=torch.double, device=device)
|
|
y = torch.empty(1, 2, dtype=torch.double, device=device)
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "multinomial expects Long tensor out",
|
|
lambda: torch.multinomial(x, 2, out=y))
|
|
x = torch.empty(2, dtype=torch.double, device=device)
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "cannot sample n_sample <= 0 samples",
|
|
lambda: torch.multinomial(x, 0))
|
|
x = torch.empty(2, dtype=torch.double, device=device)
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "cannot sample n_sample <= 0 samples",
|
|
lambda: torch.multinomial(x, -1))
|
|
x = torch.empty(2, dtype=torch.double, device=device)
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "cannot sample n_sample > prob_dist",
|
|
lambda: torch.multinomial(x, 3, False))
|
|
x = torch.empty(16777217, dtype=torch.double, device=device)
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "number of categories cannot exceed",
|
|
lambda: torch.multinomial(x, 3))
|
|
|
|
def test_add(self, device):
|
|
dtypes = [torch.float, torch.double] + torch.testing.get_all_complex_dtypes()
|
|
for dtype in dtypes:
|
|
# [res] torch.add([res,] tensor1, tensor2)
|
|
m1 = torch.randn(100, 100, dtype=dtype, device=device)
|
|
v1 = torch.randn(100, dtype=dtype, device=device)
|
|
|
|
# contiguous
|
|
res1 = torch.add(m1[4], v1)
|
|
res2 = res1.clone().zero_()
|
|
for i in range(m1.size(1)):
|
|
res2[i] = m1[4, i] + v1[i]
|
|
self.assertEqual(res1, res2)
|
|
|
|
m1 = torch.randn(100, 100, device=device)
|
|
v1 = torch.randn(100, device=device)
|
|
|
|
# non-contiguous
|
|
res1 = torch.add(m1[:, 4], v1)
|
|
res2 = res1.clone().zero_()
|
|
for i in range(m1.size(0)):
|
|
res2[i] = m1[i, 4] + v1[i]
|
|
self.assertEqual(res1, res2)
|
|
|
|
# [res] torch.add([res,] tensor, value)
|
|
m1 = torch.randn(10, 10, device=device)
|
|
|
|
# contiguous
|
|
res1 = m1.clone()
|
|
res1[3].add_(2)
|
|
res2 = m1.clone()
|
|
for i in range(m1.size(1)):
|
|
res2[3, i] = res2[3, i] + 2
|
|
self.assertEqual(res1, res2)
|
|
|
|
# non-contiguous
|
|
m1 = torch.randn(10, 10, device=device)
|
|
res1 = m1.clone()
|
|
res1[:, 3].add_(2)
|
|
res2 = m1.clone()
|
|
for i in range(m1.size(0)):
|
|
res2[i, 3] = res2[i, 3] + 2
|
|
self.assertEqual(res1, res2)
|
|
|
|
# inter-type
|
|
m1 = torch.randn(10, 10, dtype=dtype, device=device)
|
|
self.assertEqual(m1 + 3, m1 + torch.tensor(3))
|
|
self.assertEqual(3 + m1, torch.tensor(3) + m1)
|
|
|
|
# contiguous + non-contiguous
|
|
m1 = torch.randn(10, 10, dtype=dtype, device=device)
|
|
m2 = torch.randn(10, 10, dtype=dtype, device=device).t()
|
|
res = m1 + m2
|
|
self.assertTrue(res.is_contiguous())
|
|
self.assertEqual(res, m1 + m2.contiguous())
|
|
|
|
# 1d + empty
|
|
m1 = torch.tensor([1.0], dtype=dtype, device=device)
|
|
m2 = torch.tensor([], dtype=dtype, device=device)
|
|
self.assertEqual(m1 + m2, [])
|
|
|
|
# inter-type unint8
|
|
one = torch.tensor(1, dtype=torch.uint8, device=device)
|
|
self.assertEqual(torch.add(one, 1), 2)
|
|
self.assertEqual(torch.add(one, 1).dtype, torch.uint8)
|
|
|
|
# bool
|
|
m1 = torch.tensor([True, False, False, True, False, False], dtype=torch.bool, device=device)
|
|
m2 = torch.tensor([True, True, False, False, False, True], dtype=torch.bool, device=device)
|
|
expected = torch.tensor([True, True, False, True, False, True], dtype=torch.bool, device=device)
|
|
self.assertEqual(m1 + m2, expected)
|
|
|
|
# fused multiply add
|
|
a = torch.zeros(2, 3, dtype=torch.bool, device=device)
|
|
res = torch.add(a, a, alpha=0)
|
|
expected = torch.zeros(2, 3, device=device).bool()
|
|
self.assertEqual(res, expected)
|
|
|
|
# bfloat16
|
|
m1 = torch.tensor([1., 2.], dtype=torch.bfloat16)
|
|
m2 = torch.tensor([3., 4.], dtype=torch.bfloat16)
|
|
self.assertEqual(m1 + m2, torch.tensor([4., 6.], dtype=torch.bfloat16))
|
|
|
|
# mismatched alpha
|
|
m1 = torch.tensor([1], dtype=torch.int8, device=device)
|
|
m2 = torch.tensor([2], dtype=torch.int8, device=device)
|
|
self.assertRaisesRegex(RuntimeError,
|
|
r"Boolean alpha only supported for Boolean results\.",
|
|
lambda: torch.add(m1, m2, alpha=True))
|
|
self.assertRaisesRegex(RuntimeError,
|
|
r"For integral input tensors, argument alpha must not be a floating point number\.",
|
|
lambda: torch.add(m1, m2, alpha=1.0))
|
|
|
|
# complex
|
|
m1 = torch.tensor((4.0000 + 4.0000j), dtype=torch.complex64)
|
|
m2 = torch.tensor(4., dtype=torch.float64)
|
|
self.assertRaisesRegex(RuntimeError, r"result type ComplexFloat can't be cast to the desired output type Double",
|
|
lambda: torch.add(m1, m1, out=m2))
|
|
|
|
|
|
def test_sub_typing(self, device):
|
|
m1 = torch.tensor([True, False, False, True, False, False], dtype=torch.bool, device=device)
|
|
m2 = torch.tensor([True, True, False, False, False, True], dtype=torch.bool, device=device)
|
|
self.assertRaisesRegex(RuntimeError,
|
|
r"Subtraction, the `\-` operator, with two bool tensors is not supported. "
|
|
r"Use the `\^` or `logical_xor\(\)` operator instead.",
|
|
lambda: m1 - m2)
|
|
self.assertRaisesRegex(RuntimeError,
|
|
r"Subtraction, the `\-` operator, with a bool tensor is not supported. "
|
|
r"If you are trying to invert a mask, use the `\~` or `logical_not\(\)` operator instead.",
|
|
lambda: 1 - m1)
|
|
self.assertRaisesRegex(RuntimeError,
|
|
r"Subtraction, the `\-` operator, with a bool tensor is not supported. "
|
|
r"If you are trying to invert a mask, use the `\~` or `logical_not\(\)` operator instead.",
|
|
lambda: m2 - 1)
|
|
|
|
# mismatched alpha
|
|
m1 = torch.tensor([1], dtype=torch.int8, device=device)
|
|
m2 = torch.tensor([2], dtype=torch.int8, device=device)
|
|
self.assertRaisesRegex(RuntimeError,
|
|
r"Boolean alpha only supported for Boolean results\.",
|
|
lambda: torch.sub(m1, m2, alpha=True))
|
|
self.assertRaisesRegex(RuntimeError,
|
|
r"For integral input tensors, argument alpha must not be a floating point number\.",
|
|
lambda: torch.sub(m1, m2, alpha=1.0))
|
|
|
|
def test_mul(self, device):
|
|
m1 = torch.randn(10, 10, device=device)
|
|
res1 = m1.clone()
|
|
res1[:, 3].mul_(2)
|
|
res2 = m1.clone()
|
|
for i in range(res1.size(0)):
|
|
res2[i, 3] = res2[i, 3] * 2
|
|
self.assertEqual(res1, res2)
|
|
|
|
a1 = torch.tensor([True, False, False, True], dtype=torch.bool, device=device)
|
|
a2 = torch.tensor([True, False, True, False], dtype=torch.bool, device=device)
|
|
self.assertEqual(a1 * a2, torch.tensor([True, False, False, False], dtype=torch.bool, device=device))
|
|
|
|
if device == 'cpu':
|
|
a1 = torch.tensor([0.1, 0.1], dtype=torch.bfloat16, device=device)
|
|
a2 = torch.tensor([1.1, 0.1], dtype=torch.bfloat16, device=device)
|
|
self.assertEqual(a1 * a2, torch.tensor([0.11, 0.01], dtype=torch.bfloat16, device=device), atol=0.01, rtol=0)
|
|
self.assertEqual(a1.mul(a2), a1 * a2)
|
|
|
|
def test_cumsum(self, device):
|
|
x = torch.rand(100, 100, device=device)
|
|
res1 = torch.cumsum(x, 1)
|
|
res2 = torch.Tensor().to(device)
|
|
torch.cumsum(x, 1, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
a = torch.tensor([[True, False, True],
|
|
[False, False, False],
|
|
[True, True, True]], device=device)
|
|
b = a.byte()
|
|
aRes = torch.cumsum(a, 0)
|
|
bRes = torch.cumsum(b, 0)
|
|
self.assertEqual(aRes, bRes)
|
|
self.assertEqual(aRes, torch.tensor([[1, 0, 1],
|
|
[1, 0, 1],
|
|
[2, 1, 2]]))
|
|
|
|
aRes = torch.cumsum(a, 1)
|
|
bRes = torch.cumsum(b, 1)
|
|
self.assertEqual(aRes, bRes)
|
|
self.assertEqual(aRes, torch.tensor([[1, 1, 2],
|
|
[0, 0, 0],
|
|
[1, 2, 3]]))
|
|
|
|
# Check that cummulative sum over a zero length dimension doesn't crash on backprop.
|
|
# Also check that cumsum over other dimensions in a tensor with a zero-length
|
|
# dimensiuon also works
|
|
# Also include a basic suite of similar tests for other bases cases.
|
|
shapes = [[2, 0], [2, 1, 4], [0, 2, 3], [1], [5]]
|
|
for shape in shapes:
|
|
for dim in range(len(shape)):
|
|
raw_tensor = torch.zeros(*shape, requires_grad=True)
|
|
integrated = raw_tensor.cumsum(dim=dim)
|
|
# Check that backward does not crash
|
|
integrated.sum().backward()
|
|
# Check that output maintained correct shape
|
|
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)
|
|
|
|
# Check a scalar example
|
|
raw_tensor = torch.tensor(3., requires_grad=True)
|
|
integrated = raw_tensor.cumsum(dim=-1)
|
|
self.assertEqual(raw_tensor, integrated)
|
|
# Check that backward does not crash
|
|
integrated.sum().backward()
|
|
# Check that output maintained correct shape
|
|
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)
|
|
|
|
def test_cumprod(self, device):
|
|
x = torch.rand(100, 100, device=device)
|
|
res1 = torch.cumprod(x, 1)
|
|
res2 = torch.Tensor().to(device)
|
|
torch.cumprod(x, 1, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
a = torch.tensor([[True, False, True],
|
|
[False, False, False],
|
|
[True, True, True]], dtype=torch.bool, device=device)
|
|
b = a.byte()
|
|
aRes = torch.cumprod(a, 0)
|
|
bRes = torch.cumprod(b, 0)
|
|
self.assertEqual(aRes, bRes)
|
|
self.assertEqual(aRes, torch.tensor([[1, 0, 1],
|
|
[0, 0, 0],
|
|
[0, 0, 0]]))
|
|
|
|
aRes = torch.cumprod(a, 1)
|
|
bRes = torch.cumprod(b, 1)
|
|
self.assertEqual(aRes, bRes)
|
|
self.assertEqual(aRes, torch.tensor([[1, 0, 0],
|
|
[0, 0, 0],
|
|
[1, 1, 1]]))
|
|
|
|
# Check that cummulative prod over a zero length dimension doesn't crash on backprop.
|
|
# Also check that cumprod over other dimensions in a tensor with a zero-length
|
|
# dimensiuon also works
|
|
# Also include a basic suite of similar tests for other bases cases.
|
|
shapes = [[2, 0], [2, 1, 4], [0, 2, 3], [1], [5]]
|
|
for shape in shapes:
|
|
for dim in range(len(shape)):
|
|
raw_tensor = torch.zeros(*shape, requires_grad=True)
|
|
integrated = raw_tensor.cumprod(dim=dim)
|
|
# Check that backward does not crash
|
|
integrated.sum().backward()
|
|
# Check that output maintained correct shape
|
|
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)
|
|
|
|
# Check a scalar example
|
|
raw_tensor = torch.tensor(3., requires_grad=True)
|
|
integrated = raw_tensor.cumprod(dim=-1)
|
|
self.assertEqual(raw_tensor, integrated)
|
|
# Check that backward does not crash
|
|
integrated.sum().backward()
|
|
# Check that output maintained correct shape
|
|
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)
|
|
|
|
def test_cummax_cummin(self, device):
|
|
def test_ops(op, string_of_function_name, expected_output1, expected_output2):
|
|
x = torch.rand(100, 100, device=device)
|
|
out1 = op(x, 1)
|
|
res2 = torch.empty(0, device=device)
|
|
indices2 = torch.empty(0, dtype=torch.int64, device=device)
|
|
op(x, 1, out=(res2, indices2))
|
|
self.assertEqual(out1[0], res2)
|
|
self.assertEqual(out1[1], indices2)
|
|
|
|
a = torch.tensor([[True, False, True],
|
|
[False, False, False],
|
|
[True, True, True]], dtype=torch.bool, device=device)
|
|
b = a.byte()
|
|
aRes = op(a, 0)
|
|
bRes = op(b, 0)
|
|
self.assertEqual(aRes[0], bRes[0].bool())
|
|
self.assertEqual(aRes[0], expected_output1.bool())
|
|
|
|
# test inf and nan input
|
|
x = torch.tensor([4, inf, 1.5, -inf, 0, nan, 1])
|
|
xRes = op(x, 0)[0]
|
|
self.assertEqual(xRes, expected_output2)
|
|
|
|
# op shouldn't support values, indices with a dtype, device type or layout
|
|
# different from that of input tensor
|
|
t = torch.randn(10)
|
|
values = torch.empty(0, dtype=torch.int16)
|
|
indices = torch.empty(0, dtype=torch.int64)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
'expected scalar_type Float but found Short'):
|
|
op(t, 0, out=(values, indices))
|
|
|
|
# Check that op over a zero length dimension doesn't crash on backprop.
|
|
# Also check that op over other dimensions in a tensor with a zero-length
|
|
# dimension also works
|
|
# Also include a basic suite of similar tests for other bases cases.
|
|
shapes = [[2, 0], [2, 1, 4], [0, 2, 3], [1], [5]]
|
|
for shape in shapes:
|
|
for dim in range(len(shape)):
|
|
raw_tensor = torch.zeros(*shape, requires_grad=True)
|
|
integrated = getattr(raw_tensor, string_of_function_name)(dim=dim)
|
|
# Check that backward does not crash
|
|
integrated[0].sum().backward()
|
|
# Check that output maintained correct shape
|
|
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)
|
|
|
|
# Check a scalar example
|
|
raw_tensor = torch.tensor(3., requires_grad=True)
|
|
integrated = getattr(raw_tensor, string_of_function_name)(dim=-1)
|
|
# Check that backward does not crash
|
|
integrated[0].sum().backward()
|
|
# Check that output maintained correct shape
|
|
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)
|
|
|
|
expected_out = torch.tensor([4, inf, inf, inf, inf, nan, nan])
|
|
test_ops(torch.cummax, "cummax", torch.tensor([[1, 0, 1],
|
|
[1, 0, 1],
|
|
[1, 1, 1]]), expected_out)
|
|
|
|
expected_out = torch.tensor([4, 4, 1.5, -inf, -inf, nan, nan])
|
|
test_ops(torch.cummin, "cummin", torch.tensor([[1, 0, 1],
|
|
[0, 0, 0],
|
|
[0, 0, 0]]), expected_out)
|
|
|
|
def test_logcumsumexp(self, device):
|
|
def logcumsumexp(a, axis):
|
|
return torch.cumsum(a.exp(), axis=axis).log_()
|
|
|
|
axis = 1
|
|
a = torch.randn(100, 100, device=device)
|
|
|
|
actual = a.logcumsumexp(1)
|
|
expected = logcumsumexp(a, axis)
|
|
self.assertEqual(a.dtype, actual.dtype)
|
|
self.assertEqual(expected.shape, actual.shape)
|
|
self.assertEqual(expected, actual)
|
|
|
|
# Check that out is actually inplace
|
|
b = torch.randn(5, 2, device=device)
|
|
inplace_out = torch.zeros(5, 2, device=device)
|
|
|
|
expected = logcumsumexp(b, axis)
|
|
torch.logcumsumexp(b, axis=axis, out=inplace_out)
|
|
|
|
self.assertEqual(inplace_out, expected)
|
|
|
|
# Check input and inplace_output type mismatch
|
|
b = torch.randn(5, 2, device=device, dtype=torch.float64)
|
|
inplace_out = torch.zeros(5, 2, device=device, dtype=torch.float32)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
'expected scalar_type Double but found Float'):
|
|
torch.logcumsumexp(b, axis, out=inplace_out)
|
|
|
|
def test_std_mean(self, device):
|
|
x = torch.rand(100, 50, 20, device=device)
|
|
for dim in range(x.dim()):
|
|
for unbiased in [False, True]:
|
|
for keepdim in [False, True]:
|
|
std1, mean1 = torch.std_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
|
|
std2 = x.std(dim=dim, unbiased=unbiased, keepdim=keepdim)
|
|
mean2 = x.mean(dim=dim, keepdim=keepdim)
|
|
self.assertEqual(std1, std2)
|
|
self.assertEqual(mean1, mean2)
|
|
|
|
def test_std_mean_all_dims(self, device):
|
|
x = torch.rand(100, 50, 20, device=device)
|
|
for unbiased in [False, True]:
|
|
std1, mean1 = torch.std_mean(x, unbiased=unbiased)
|
|
std2 = x.std(unbiased=unbiased)
|
|
mean2 = x.mean()
|
|
self.assertEqual(std1, std2)
|
|
self.assertEqual(mean1, mean2)
|
|
|
|
def test_var_mean(self, device):
|
|
x = torch.rand(100, 300, 50, device=device)
|
|
for dim in range(x.dim()):
|
|
for unbiased in [False, True]:
|
|
for keepdim in [False, True]:
|
|
var1, mean1 = torch.var_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
|
|
var2 = x.var(dim=dim, unbiased=unbiased, keepdim=keepdim)
|
|
mean2 = x.mean(dim=dim, keepdim=keepdim)
|
|
self.assertEqual(var1, var2)
|
|
self.assertEqual(mean1, mean2)
|
|
|
|
def test_var_mean_all_dims(self, device):
|
|
x = torch.rand(100, 50, 20, device=device)
|
|
for unbiased in [False, True]:
|
|
var1, mean1 = torch.var_mean(x, unbiased=unbiased)
|
|
var2 = x.var(unbiased=unbiased)
|
|
mean2 = x.mean()
|
|
self.assertEqual(var1, var2)
|
|
self.assertEqual(mean1, mean2)
|
|
|
|
def test_std_mean_some_dims(self, device):
|
|
sizes = (4, 6, 7, 5, 3)
|
|
dims = len(sizes)
|
|
x = torch.rand(sizes, device=device)
|
|
for num_of_dims in range(2, dims):
|
|
dim_list = list(combinations(list(range(dims)), r=num_of_dims))
|
|
for dim in dim_list:
|
|
for unbiased in [False, True]:
|
|
for keepdim in [False, True]:
|
|
std1, mean1 = torch.std_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
|
|
std2 = x.std(dim=dim, unbiased=unbiased, keepdim=keepdim)
|
|
mean2 = x.mean(dim=dim, keepdim=keepdim)
|
|
self.assertEqual(std1, std2)
|
|
self.assertEqual(mean1, mean2)
|
|
|
|
def test_zeros_like(self, device):
|
|
expected = torch.zeros((100, 100,), device=device)
|
|
|
|
res1 = torch.zeros_like(expected)
|
|
self.assertEqual(res1, expected)
|
|
|
|
def test_histc(self, device):
|
|
# negative nbins throws
|
|
with self.assertRaisesRegex(RuntimeError, 'bins must be > 0'):
|
|
torch.histc(torch.tensor([1], dtype=torch.float, device=device), bins=-1)
|
|
# empty tensor
|
|
actual = torch.histc(torch.tensor([], device=device), min=0, max=3)
|
|
expected = torch.zeros(100, dtype=torch.float, device=device)
|
|
self.assertEqual(expected, actual)
|
|
|
|
# without nbins
|
|
actual = torch.histc(
|
|
torch.tensor([2, 5], dtype=torch.float, device=device))
|
|
expected = torch.zeros(100, dtype=torch.float, device=device)
|
|
expected[0] = 1
|
|
expected[99] = 1
|
|
self.assertEqual(expected, actual)
|
|
# tensor with the same element
|
|
actual = torch.histc(torch.ones(5, dtype=torch.float, device=device), bins=5)
|
|
self.assertEqual(
|
|
torch.tensor([0, 0, 5, 0, 0], dtype=torch.float, device=device),
|
|
actual)
|
|
# no element falls between [min, max]
|
|
actual = torch.histc(
|
|
torch.ones(5, dtype=torch.float, device=device), bins=5, min=2, max=3)
|
|
self.assertEqual(
|
|
torch.tensor([0, 0, 0, 0, 0], dtype=torch.float, device=device),
|
|
actual)
|
|
# element falls below min + integral bin size and
|
|
actual = torch.histc(
|
|
torch.tensor([2, 4, 2, 2, 5, 4], dtype=torch.float, device=device),
|
|
bins=5, min=1, max=5)
|
|
self.assertEqual(
|
|
torch.tensor([0, 3, 0, 2, 1], dtype=torch.float, device=device),
|
|
actual)
|
|
# non-integral bin size
|
|
actual = torch.histc(
|
|
torch.tensor([1, 2, 1], dtype=torch.float, device=device),
|
|
bins=4, min=0, max=3)
|
|
self.assertEqual(
|
|
torch.tensor([0, 2, 1, 0], dtype=torch.float, device=device),
|
|
actual)
|
|
# double input
|
|
actual = torch.histc(
|
|
torch.tensor([1, 2, 1], dtype=torch.double, device=device), bins=4, min=0, max=3)
|
|
self.assertEqual(
|
|
torch.tensor([0, 2, 1, 0], dtype=torch.double, device=device),
|
|
actual)
|
|
self.assertEqual(actual.dtype, torch.double)
|
|
# mixed input
|
|
actual = torch.histc(
|
|
torch.tensor([1., 2, 1], dtype=torch.float, device=device),
|
|
bins=4, min=0, max=3)
|
|
self.assertEqual(
|
|
torch.tensor([0, 2, 1, 0], dtype=torch.float, device=device),
|
|
actual)
|
|
self.assertEqual(actual.dtype, torch.float)
|
|
# scalar input and 1 bin -- should return a 1-dimensional tensor, not a scalar.
|
|
actual = torch.histc(
|
|
torch.tensor(0, dtype=torch.float, device=device),
|
|
bins=1, min=0, max=3)
|
|
self.assertEqual(
|
|
torch.tensor([1], dtype=torch.float, device=device),
|
|
actual)
|
|
# tensors with inf; min, max not provided -- should throw a RuntimeError
|
|
with self.assertRaisesRegex(RuntimeError, r'range of \[inf, inf\] is not finite'):
|
|
torch.histc(torch.tensor([float("inf")], dtype=torch.float, device=device))
|
|
with self.assertRaisesRegex(RuntimeError, r'range of \[1, inf\] is not finite'):
|
|
torch.histc(torch.tensor([1., 2., float("inf")], dtype=torch.float, device=device))
|
|
# tensors with inf; min, max provided
|
|
self.assertEqual(
|
|
torch.histc(torch.tensor([float("inf")], dtype=torch.float, device=device),
|
|
bins=1, min=0, max=3),
|
|
torch.tensor([0], dtype=torch.float, device=device))
|
|
self.assertEqual(
|
|
torch.histc(torch.tensor([1., 2., float("inf")], dtype=torch.float, device=device),
|
|
bins=4, max=3),
|
|
torch.tensor([0, 1, 1, 0], dtype=torch.float, device=device))
|
|
# tensor with nan -- should throw a RuntimeError
|
|
with self.assertRaisesRegex(RuntimeError, r'range of \[nan, nan\] is not finite'):
|
|
torch.histc(torch.tensor([float("nan")], dtype=torch.float, device=device))
|
|
# tensors with min > max -- should throw a RuntimeError
|
|
with self.assertRaisesRegex(RuntimeError, "max must be larger than min"):
|
|
torch.histc(torch.tensor([1., 2., 3.], dtype=torch.float, device=device),
|
|
bins=4, min=5, max=1)
|
|
|
|
# test against numpy.histogram()
|
|
def test_against_np(tensor, bins=100, min=0, max=0):
|
|
if min == 0 and max == 0:
|
|
min = tensor.min().item()
|
|
max = tensor.max().item()
|
|
nparr = tensor.cpu().numpy()
|
|
actual = torch.histc(tensor, bins=bins, min=min, max=max)
|
|
expected = torch.from_numpy(np.histogram(nparr, bins=bins, range=(min, max))[0])
|
|
actual_cpu = actual.cpu()
|
|
# NB: Numpy returns a int64 tensor, like normal people...
|
|
self.assertEqual(actual, expected.to(actual_cpu))
|
|
|
|
if TEST_NUMPY:
|
|
test_against_np(torch.tensor([1., 2, 1], device=device))
|
|
test_against_np(torch.randn(5000, device=device))
|
|
|
|
# Test bins arg
|
|
test_against_np(torch.randn(301, device=device), bins=10)
|
|
|
|
# Test truncated range
|
|
test_against_np(torch.randn(201, device=device), min=0.1, max=1)
|
|
|
|
noncontig = torch.randn(100, 3, device=device)[:, 2]
|
|
test_against_np(noncontig)
|
|
|
|
multidim = torch.randn(3, 5, 7, 2, device=device)
|
|
test_against_np(multidim)
|
|
|
|
expanded = torch.randn(1, 5, 1, 2, device=device).expand(3, 5, 7, 2)
|
|
test_against_np(expanded)
|
|
|
|
def test_bool_tensor_comparison_ops(self, device):
|
|
a = torch.tensor([True, False, True, False, True, False], dtype=torch.bool, device=device)
|
|
b = torch.tensor([True, False, True, True, True, True], dtype=torch.bool, device=device)
|
|
self.assertEqual(a == b, torch.tensor([1, 1, 1, 0, 1, 0], dtype=torch.bool, device=device))
|
|
self.assertEqual(a != b, torch.tensor([0, 0, 0, 1, 0, 1], dtype=torch.bool, device=device))
|
|
self.assertEqual(a < b, torch.tensor([0, 0, 0, 1, 0, 1], dtype=torch.bool, device=device))
|
|
self.assertEqual(a > b, torch.tensor([0, 0, 0, 0, 0, 0], dtype=torch.bool, device=device))
|
|
self.assertEqual(a >= b, torch.tensor([1, 1, 1, 0, 1, 0], dtype=torch.bool, device=device))
|
|
self.assertEqual(a <= b, torch.tensor([1, 1, 1, 1, 1, 1], dtype=torch.bool, device=device))
|
|
self.assertEqual(a > False, torch.tensor([1, 0, 1, 0, 1, 0], dtype=torch.bool, device=device))
|
|
self.assertEqual(a == torch.tensor(True, dtype=torch.bool, device=device),
|
|
torch.tensor([1, 0, 1, 0, 1, 0], dtype=torch.bool, device=device))
|
|
self.assertEqual(a == torch.tensor(0, dtype=torch.bool, device=device),
|
|
torch.tensor([0, 1, 0, 1, 0, 1], dtype=torch.bool, device=device))
|
|
self.assertFalse(a.equal(b))
|
|
|
|
def test_bool_tensor_value_change(self, device):
|
|
x = torch.tensor([True, False], dtype=torch.bool, device=device)
|
|
x[0] = False
|
|
x[1] = True
|
|
self.assertEqual(x, torch.tensor([False, True], dtype=torch.bool, device=device))
|
|
|
|
def test_unfold_all_devices_and_dtypes(self, device):
|
|
for dt in torch.testing.get_all_dtypes():
|
|
|
|
if dt == torch.bfloat16 and device.startswith('cuda') and IS_WINDOWS:
|
|
# TODO: https://github.com/pytorch/pytorch/issues/33793
|
|
self.assertRaises(RuntimeError, lambda: torch.randint(5, (0, 1, 3, 0), dtype=dt, device=device))
|
|
elif dt == torch.bool:
|
|
x = torch.empty((0, 1, 3, 0), dtype=dt, device=device)
|
|
self.assertEqual((0, 1, 1, 0, 3), x.unfold(2, 3, 2).shape)
|
|
else:
|
|
x = torch.empty((0, 1, 3, 0), dtype=dt, device=device)
|
|
self.assertEqual((0, 1, 1, 0, 3), x.unfold(2, 3, 2).shape)
|
|
|
|
def test_unfold_scalars(self, device):
|
|
x = torch.tensor(0.5, device=device)
|
|
# unfold on a 0-dimensional tensor should always return a 1-d dimensional
|
|
# tensor of shape [size] (i.e., the second parameter to unfold)
|
|
|
|
self.assertEqual(torch.empty(0, device=device), x.unfold(0, 0, 1))
|
|
self.assertEqual(torch.empty(0, device=device), x.unfold(0, 0, 2))
|
|
self.assertEqual(torch.tensor([0.5], device=device), x.unfold(0, 1, 1))
|
|
|
|
def test_copy_all_dtypes_and_devices(self, device):
|
|
from copy import copy
|
|
for dt in torch.testing.get_all_dtypes():
|
|
x = torch.tensor([1, 2, 3, 4], dtype=dt, device=device)
|
|
x_clone = x.clone()
|
|
y = copy(x)
|
|
y.fill_(1)
|
|
# copy is a shallow copy, only copies the tensor view,
|
|
# not the data
|
|
self.assertEqual(x, y)
|
|
|
|
def test_resize_all_dtypes_and_devices(self, device):
|
|
shape = (2, 2)
|
|
for dt in torch.testing.get_all_dtypes():
|
|
x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device)
|
|
x.resize_(shape)
|
|
self.assertEqual(shape, x.shape)
|
|
|
|
def test_resize_as_all_dtypes_and_devices(self, device):
|
|
for dt in torch.testing.get_all_dtypes():
|
|
x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device)
|
|
y = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=dt, device=device)
|
|
x.resize_as_(y)
|
|
self.assertEqual(y.shape, x.shape)
|
|
|
|
def test_view_all_dtypes_and_devices(self, device):
|
|
for dt in torch.testing.get_all_dtypes():
|
|
x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device)
|
|
self.assertEqual(x.view(6).shape, [6])
|
|
|
|
def test_fill_all_dtypes_and_devices(self, device):
|
|
for dt in torch.testing.get_all_dtypes():
|
|
for x in [torch.tensor((10, 10), dtype=dt, device=device),
|
|
torch.empty(10000, dtype=dt, device=device)]: # large tensor
|
|
numel = x.numel()
|
|
bound = 100 if dt in (torch.uint8, torch.int8) else 2000
|
|
for n in range(-bound, bound, bound // 10):
|
|
x.fill_(n)
|
|
self.assertEqual(x, torch.tensor([n] * numel, dtype=dt, device=device))
|
|
self.assertEqual(dt, x.dtype)
|
|
|
|
def test_clone_all_dtypes_and_devices(self, device):
|
|
for dt in torch.testing.get_all_dtypes():
|
|
x = torch.tensor((1, 1), dtype=dt, device=device)
|
|
y = x.clone()
|
|
self.assertEqual(x, y)
|
|
|
|
def test_clone_zero_stride_dim(self, device):
|
|
# stride zero, size 1 axis, not contiguous
|
|
x = torch.randn(10)
|
|
y = x.as_strided([2, 1, 5], [1, 0, 2])
|
|
self.assertEqual(y, y.clone())
|
|
|
|
def test_cat_all_dtypes_and_devices(self, device):
|
|
for dt in torch.testing.get_all_dtypes():
|
|
x = torch.tensor([[1, 2], [3, 4]], dtype=dt, device=device)
|
|
|
|
expected1 = torch.tensor([[1, 2], [3, 4], [1, 2], [3, 4]], dtype=dt, device=device)
|
|
self.assertEqual(torch.cat((x, x), 0), expected1)
|
|
|
|
expected2 = torch.tensor([[1, 2, 1, 2], [3, 4, 3, 4]], dtype=dt, device=device)
|
|
self.assertEqual(torch.cat((x, x), 1), expected2)
|
|
|
|
def test_tensor_factories_empty(self, device):
|
|
# ensure we can create empty tensors from each factory function
|
|
shapes = [(5, 0, 1), (0,), (0, 0, 1, 0, 2, 0, 0)]
|
|
|
|
for shape in shapes:
|
|
for dt in torch.testing.get_all_dtypes():
|
|
|
|
self.assertEqual(shape, torch.zeros(shape, device=device, dtype=dt).shape)
|
|
self.assertEqual(shape, torch.zeros_like(torch.zeros(shape, device=device, dtype=dt)).shape)
|
|
self.assertEqual(shape, torch.full(shape, 3, device=device, dtype=dt).shape)
|
|
self.assertEqual(shape, torch.full_like(torch.zeros(shape, device=device, dtype=dt), 3).shape)
|
|
self.assertEqual(shape, torch.ones(shape, device=device, dtype=dt).shape)
|
|
self.assertEqual(shape, torch.ones_like(torch.zeros(shape, device=device, dtype=dt)).shape)
|
|
self.assertEqual(shape, torch.empty(shape, device=device, dtype=dt).shape)
|
|
self.assertEqual(shape, torch.empty_like(torch.zeros(shape, device=device, dtype=dt)).shape)
|
|
self.assertEqual(shape, torch.empty_strided(shape, (0,) * len(shape), device=device, dtype=dt).shape)
|
|
|
|
if dt == torch.bfloat16 and device.startswith('cuda') and IS_WINDOWS:
|
|
# TODO: https://github.com/pytorch/pytorch/issues/33793
|
|
self.assertRaises(RuntimeError, lambda: torch.randint(6, shape, device=device, dtype=dt).shape)
|
|
elif dt == torch.bool:
|
|
self.assertEqual(shape, torch.randint(2, shape, device=device, dtype=dt).shape)
|
|
self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 2).shape)
|
|
elif dt.is_complex:
|
|
self.assertRaises(RuntimeError, lambda: torch.randint(6, shape, device=device, dtype=dt).shape)
|
|
else:
|
|
self.assertEqual(shape, torch.randint(6, shape, device=device, dtype=dt).shape)
|
|
self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 6).shape)
|
|
|
|
if dt not in {torch.double, torch.float, torch.half, torch.bfloat16, torch.complex64, torch.complex128}:
|
|
self.assertRaises(RuntimeError, lambda: torch.rand(shape, device=device, dtype=dt).shape)
|
|
|
|
if dt == torch.double or dt == torch.float or dt.is_complex:
|
|
self.assertEqual(shape, torch.randn(shape, device=device, dtype=dt).shape)
|
|
self.assertEqual(shape, torch.randn_like(torch.zeros(shape, device=device, dtype=dt)).shape)
|
|
|
|
self.assertEqual((0,), torch.arange(0, device=device).shape)
|
|
self.assertEqual((0, 0), torch.eye(0, device=device).shape)
|
|
self.assertEqual((0, 0), torch.eye(0, 0, device=device).shape)
|
|
self.assertEqual((5, 0), torch.eye(5, 0, device=device).shape)
|
|
self.assertEqual((0, 5), torch.eye(0, 5, device=device).shape)
|
|
self.assertEqual((0,), torch.linspace(1, 1, 0, device=device).shape)
|
|
self.assertEqual((0,), torch.logspace(1, 1, 0, device=device).shape)
|
|
self.assertEqual((0,), torch.randperm(0, device=device).shape)
|
|
self.assertEqual((0,), torch.bartlett_window(0, device=device).shape)
|
|
self.assertEqual((0,), torch.bartlett_window(0, periodic=False, device=device).shape)
|
|
self.assertEqual((0,), torch.hamming_window(0, device=device).shape)
|
|
self.assertEqual((0,), torch.hann_window(0, device=device).shape)
|
|
self.assertEqual((1, 1, 0), torch.tensor([[[]]], device=device).shape)
|
|
self.assertEqual((1, 1, 0), torch.as_tensor([[[]]], device=device).shape)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
def test_vander(self, device):
|
|
x = torch.tensor([1, 2, 3, 5], device=device)
|
|
|
|
self.assertEqual((0, 0), torch.vander(torch.tensor([]), 0).shape)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "N must be non-negative."):
|
|
torch.vander(x, N=-1)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "x must be a one-dimensional tensor."):
|
|
torch.vander(torch.stack((x, x)))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'NumPy not found')
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(torch.bool, torch.uint8, torch.int8, torch.short, torch.int, torch.long,
|
|
torch.float, torch.double,
|
|
torch.cfloat, torch.cdouble)
|
|
def test_vander_types(self, device, dtype):
|
|
if dtype is torch.uint8:
|
|
# Note: no negative uint8 values
|
|
X = [[1, 2, 3, 5], [0, 1 / 3, 1, math.pi, 3 / 7]]
|
|
elif dtype is torch.bool:
|
|
# Note: see https://github.com/pytorch/pytorch/issues/37398
|
|
# for why this is necessary.
|
|
X = [[True, True, True, True], [False, True, True, True, True]]
|
|
elif dtype in [torch.cfloat, torch.cdouble]:
|
|
X = [[1 + 1j, 1 + 0j, 0 + 1j, 0 + 0j],
|
|
[2 + 2j, 3 + 2j, 4 + 3j, 5 + 4j]]
|
|
else:
|
|
X = [[1, 2, 3, 5], [-math.pi, 0, 1 / 3, 1, math.pi, 3 / 7]]
|
|
|
|
N = [None, 0, 1, 3]
|
|
increasing = [False, True]
|
|
|
|
for x, n, inc in product(X, N, increasing):
|
|
numpy_dtype = torch_to_numpy_dtype_dict[dtype]
|
|
pt_x = torch.tensor(x, device=device, dtype=dtype)
|
|
np_x = np.array(x, dtype=numpy_dtype)
|
|
|
|
pt_res = torch.vander(pt_x, increasing=inc) if n is None else torch.vander(pt_x, n, inc)
|
|
np_res = np.vander(np_x, n, inc)
|
|
|
|
self.assertEqual(
|
|
pt_res,
|
|
torch.from_numpy(np_res),
|
|
atol=1e-3,
|
|
rtol=0,
|
|
exact_dtype=False)
|
|
|
|
def test_eye(self, device):
|
|
for dtype in torch.testing.get_all_dtypes():
|
|
if dtype == torch.bfloat16:
|
|
continue
|
|
for n, m in product([3, 5, 7], repeat=2):
|
|
# Construct identity using diagonal and fill
|
|
res1 = torch.eye(n, m, device=device, dtype=dtype)
|
|
naive_eye = torch.zeros(n, m, dtype=dtype, device=device)
|
|
naive_eye.diagonal(dim1=-2, dim2=-1).fill_(1)
|
|
self.assertEqual(naive_eye, res1)
|
|
|
|
# Check eye_out outputs
|
|
res2 = torch.empty(0, device=device, dtype=dtype)
|
|
torch.eye(n, m, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_addcmul(self, device):
|
|
def rand_tensor(size, dtype, device):
|
|
if dtype.is_floating_point or dtype.is_complex:
|
|
return torch.rand(size=size, dtype=dtype, device=device)
|
|
if dtype == torch.uint8:
|
|
return torch.randint(1, 5, size=size, dtype=dtype, device=device)
|
|
else:
|
|
return torch.randint(-5, 5, size=size, dtype=dtype, device=device)
|
|
|
|
for dtype in torch.testing.get_all_math_dtypes(device):
|
|
a = rand_tensor((2, 2), dtype=dtype, device=device)
|
|
b = rand_tensor((2, 2), dtype=dtype, device=device)
|
|
c = rand_tensor((2, 2), dtype=dtype, device=device)
|
|
if dtype.is_floating_point:
|
|
alpha = 0.1
|
|
else:
|
|
alpha = 3
|
|
|
|
# addcmul is not supported for complex dtypes on cuda yet
|
|
if device.startswith('cuda') and dtype.is_complex:
|
|
continue
|
|
|
|
actual = torch.addcmul(a, b, c, value=alpha)
|
|
expected = a + alpha * b * c
|
|
|
|
self.assertEqual(expected, actual)
|
|
|
|
with self.maybeWarnsRegex(
|
|
UserWarning, "This overload of addcmul is deprecated"):
|
|
self.assertEqual(actual, torch.addcmul(a, alpha, b, c))
|
|
|
|
def test_empty_tensor_props(self, device):
|
|
sizes = [(0,), (0, 3), (5, 0), (5, 0, 3, 0, 2), (0, 3, 0, 2), (0, 5, 0, 2, 0)]
|
|
for size in sizes:
|
|
x = torch.empty(tuple(size), device=device)
|
|
self.assertEqual(size, x.shape)
|
|
self.assertTrue(x.is_contiguous())
|
|
size_ones_instead_of_zeros = (x if x != 0 else 1 for x in size)
|
|
y = torch.empty(tuple(size_ones_instead_of_zeros), device=device)
|
|
self.assertEqual(x.stride(), y.stride())
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
def test_tensordot(self, device):
|
|
a = torch.arange(60., device=device).reshape(3, 4, 5)
|
|
b = torch.arange(24., device=device).reshape(4, 3, 2)
|
|
c = torch.tensordot(a, b, dims=([1, 0], [0, 1])).cpu()
|
|
cn = torch.from_numpy(np.tensordot(a.cpu().numpy(), b.cpu().numpy(),
|
|
axes=([1, 0], [0, 1])))
|
|
self.assertEqual(c, cn)
|
|
a = torch.randn(2, 3, 4, 5, device=device)
|
|
b = torch.randn(4, 5, 6, 7, device=device)
|
|
c = torch.tensordot(a, b, dims=2).cpu()
|
|
cn = torch.from_numpy(np.tensordot(a.cpu().numpy(), b.cpu().numpy(),
|
|
axes=2))
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "expects dims >= 0"):
|
|
torch.tensordot(a, b, dims=-1)
|
|
|
|
self.assertEqual(c, cn)
|
|
c = torch.tensordot(a, b).cpu()
|
|
cn = torch.from_numpy(np.tensordot(a.cpu().numpy(), b.cpu().numpy()))
|
|
self.assertEqual(c, cn)
|
|
|
|
def test_narrow_empty(self, device):
|
|
x = torch.randn(2, 3, 4, device=device)
|
|
for d in range(x.dim()):
|
|
y = x.narrow(d, x.size(d), 0)
|
|
sz = list(x.size())
|
|
sz[d] = 0
|
|
self.assertEqual(sz, y.size())
|
|
|
|
@precisionOverride({torch.half: 1e-1, torch.float: 1e-5, torch.double: 1e-10})
|
|
@dtypes(torch.uint8, torch.int8, torch.short, torch.int, torch.long, torch.float, torch.double)
|
|
@dtypesIfCUDA(torch.uint8, torch.int8, torch.short, torch.int, torch.long, torch.half, torch.float, torch.double)
|
|
def test_logspace(self, device, dtype):
|
|
_from = random.random()
|
|
to = _from + random.random()
|
|
res1 = torch.logspace(_from, to, 137, device=device, dtype=dtype)
|
|
res2 = torch.tensor((), device=device, dtype=dtype)
|
|
torch.logspace(_from, to, 137, device=device, dtype=dtype, out=res2)
|
|
self.assertEqual(res1, res2, atol=0, rtol=0)
|
|
self.assertRaises(RuntimeError, lambda: torch.logspace(0, 1, -1, device=device, dtype=dtype))
|
|
self.assertEqual(torch.logspace(0, 1, 1, device=device, dtype=dtype),
|
|
torch.ones(1, device=device, dtype=dtype), atol=0, rtol=0)
|
|
|
|
# Check precision - start, stop and base are chosen to avoid overflow
|
|
# steps is chosen so that step size is not subject to rounding error
|
|
# a tolerance is needed for gpu tests due to differences in computation
|
|
atol = None
|
|
rtol = None
|
|
if self.device_type == 'cpu':
|
|
atol = 0
|
|
rtol = 0
|
|
self.assertEqual(torch.tensor([2. ** (i / 8.) for i in range(49)], device=device, dtype=dtype),
|
|
torch.logspace(0, 6, steps=49, base=2, device=device, dtype=dtype),
|
|
atol=atol, rtol=rtol)
|
|
|
|
# Check non-default base=2
|
|
self.assertEqual(torch.logspace(1, 1, 1, 2, device=device, dtype=dtype),
|
|
torch.ones(1, device=device, dtype=dtype) * 2)
|
|
self.assertEqual(torch.logspace(0, 2, 3, 2, device=device, dtype=dtype),
|
|
torch.tensor((1, 2, 4), device=device, dtype=dtype))
|
|
|
|
# Check logspace_ for generating with start > end.
|
|
self.assertEqual(torch.logspace(1, 0, 2, device=device, dtype=dtype),
|
|
torch.tensor((10, 1), device=device, dtype=dtype), atol=0, rtol=0)
|
|
|
|
# Check logspace_ for non-contiguous tensors.
|
|
x = torch.zeros(2, 3, device=device, dtype=dtype)
|
|
y = torch.logspace(0, 3, 4, base=2, device=device, dtype=dtype, out=x.narrow(1, 1, 2))
|
|
self.assertEqual(x, torch.tensor(((0, 1, 2), (0, 4, 8)), device=device, dtype=dtype), atol=0, rtol=0)
|
|
|
|
@dtypes(torch.int8, torch.short, torch.int, torch.long, torch.float, torch.double)
|
|
@dtypesIfCUDA(torch.int8, torch.short, torch.int, torch.long, torch.half, torch.float, torch.double)
|
|
def test_linspace(self, device, dtype):
|
|
_from = random.random()
|
|
to = _from + random.random()
|
|
res1 = torch.linspace(_from, to, 137, device=device, dtype=dtype)
|
|
res2 = torch.tensor((), device=device, dtype=dtype)
|
|
torch.linspace(_from, to, 137, dtype=dtype, out=res2)
|
|
self.assertEqual(res1, res2, atol=0, rtol=0)
|
|
|
|
# small tensor
|
|
self.assertEqual(torch.linspace(10, 20, 11, device=device, dtype=dtype),
|
|
torch.tensor(list(range(10, 21)), device=device, dtype=dtype))
|
|
# large tensor
|
|
if dtype not in (torch.int8, torch.uint8):
|
|
self.assertEqual(torch.linspace(10, 2000, 1991, device=device, dtype=dtype),
|
|
torch.tensor(list(range(10, 2001)), device=device, dtype=dtype))
|
|
|
|
self.assertRaises(RuntimeError, lambda: torch.linspace(0, 1, -1, device=device, dtype=dtype))
|
|
# steps = 1
|
|
self.assertEqual(torch.linspace(0, 1, 1, device=device, dtype=dtype),
|
|
torch.zeros(1, device=device, dtype=dtype), atol=0, rtol=0)
|
|
# steps = 0
|
|
self.assertEqual(torch.linspace(0, 1, 0, device=device, dtype=dtype).numel(), 0, atol=0, rtol=0)
|
|
|
|
# Check linspace for generating the correct output for each dtype.
|
|
expected_lin = torch.tensor([-100. + .5 * i for i in range(401)], device=device, dtype=torch.double)
|
|
actual_lin = torch.linspace(-100, 100, 401, device=device, dtype=dtype)
|
|
# If on GPU, allow for minor error depending on dtype.
|
|
tol = 0.
|
|
if device != 'cpu':
|
|
if dtype == torch.half:
|
|
tol = 1e-1
|
|
elif dtype == torch.float:
|
|
tol = 1e-5
|
|
elif dtype == torch.double:
|
|
tol = 1e-10
|
|
|
|
self.assertEqual(expected_lin.to(dtype), actual_lin, atol=tol, rtol=0)
|
|
|
|
# Check linspace for generating with start > end.
|
|
self.assertEqual(torch.linspace(2, 0, 3, device=device, dtype=dtype),
|
|
torch.tensor((2, 1, 0), device=device, dtype=dtype),
|
|
atol=0, rtol=0)
|
|
|
|
# Check for race condition (correctness when applied on a large tensor).
|
|
if dtype not in (torch.int8, torch.uint8, torch.int16, torch.half):
|
|
y = torch.linspace(0, 1000000 - 1, 1000000, device=device, dtype=dtype)
|
|
cond = y[:-1] < y[1:]
|
|
correct = all(cond)
|
|
self.assertTrue(correct)
|
|
|
|
# Check linspace for non-contiguous tensors.
|
|
x = torch.zeros(2, 3, device=device, dtype=dtype)
|
|
y = torch.linspace(0, 3, 4, out=x.narrow(1, 1, 2), dtype=dtype)
|
|
self.assertEqual(x, torch.tensor(((0, 0, 1), (0, 2, 3)), device=device, dtype=dtype), atol=0, rtol=0)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
|
|
@precisionOverride({torch.float: 1e-8, torch.double: 1e-10})
|
|
@dtypes(torch.float, torch.double)
|
|
def test_linspace_vs_numpy(self, device, dtype):
|
|
start = -0.0316082797944545745849609375
|
|
end = .0315315723419189453125
|
|
|
|
for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]:
|
|
t = torch.linspace(start, end, steps, device=device, dtype=dtype)
|
|
a = np.linspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype])
|
|
t = t.cpu()
|
|
self.assertEqual(t, torch.from_numpy(a))
|
|
self.assertTrue(t[0] == a[0])
|
|
self.assertTrue(t[steps - 1] == a[steps - 1])
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
|
|
@precisionOverride({torch.float: 1e-6, torch.double: 1e-10})
|
|
@dtypes(torch.float, torch.double)
|
|
def test_logspace_vs_numpy(self, device, dtype):
|
|
start = -0.0316082797944545745849609375
|
|
end = .0315315723419189453125
|
|
|
|
for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]:
|
|
t = torch.logspace(start, end, steps, device=device, dtype=dtype)
|
|
a = np.logspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype])
|
|
t = t.cpu()
|
|
self.assertEqual(t, torch.from_numpy(a))
|
|
self.assertEqual(t[0], a[0])
|
|
self.assertEqual(t[steps - 1], a[steps - 1])
|
|
|
|
@largeCUDATensorTest('16GB')
|
|
def test_range_factories_64bit_indexing(self, device):
|
|
bigint = 2 ** 31 + 1
|
|
t = torch.arange(bigint, dtype=torch.long, device=device)
|
|
self.assertEqual(t[-1].item(), bigint - 1)
|
|
del t
|
|
t = torch.linspace(0, 1, bigint, dtype=torch.float, device=device)
|
|
self.assertEqual(t[-1].item(), 1)
|
|
del t
|
|
t = torch.logspace(0, 1, bigint, 2, dtype=torch.float, device=device)
|
|
self.assertEqual(t[-1].item(), 2)
|
|
del t
|
|
|
|
def test_logical(self, device):
|
|
for dt in torch.testing.get_all_dtypes():
|
|
if dt.is_complex:
|
|
continue
|
|
x = torch.tensor([1, 2, 3, 4], device=device, dtype=dt)
|
|
b = torch.tensor([2], device=device, dtype=dt)
|
|
|
|
if dt == torch.half and device == 'cpu':
|
|
self.assertRaises(RuntimeError, lambda: x.lt(2))
|
|
continue
|
|
|
|
if dt == torch.bool:
|
|
# torch.bool is a special case and is being tested later
|
|
# in this test
|
|
continue
|
|
|
|
if self.device_type == 'cuda' and dt == torch.bfloat16 and not TEST_WITH_ROCM:
|
|
self.assertRaises(RuntimeError, lambda: x > b)
|
|
self.assertRaises(RuntimeError, lambda: x < b)
|
|
self.assertRaises(RuntimeError, lambda: x == b)
|
|
self.assertRaises(RuntimeError, lambda: x != b)
|
|
self.assertRaises(RuntimeError, lambda: x >= b)
|
|
self.assertRaises(RuntimeError, lambda: x <= b)
|
|
continue
|
|
|
|
self.assertEqual(x.lt(2), torch.tensor([True, False, False, False]))
|
|
self.assertEqual(x.le(2), torch.tensor([True, True, False, False]))
|
|
self.assertEqual(x.ge(2), torch.tensor([False, True, True, True]))
|
|
self.assertEqual(x.gt(2), torch.tensor([False, False, True, True]))
|
|
self.assertEqual(x.eq(2), torch.tensor([False, True, False, False]))
|
|
self.assertEqual(x.ne(2), torch.tensor([True, False, True, True]))
|
|
|
|
self.assertEqual(x.lt(b), torch.tensor([True, False, False, False]))
|
|
self.assertEqual(x.le(b), torch.tensor([True, True, False, False]))
|
|
self.assertEqual(x.ge(b), torch.tensor([False, True, True, True]))
|
|
self.assertEqual(x.gt(b), torch.tensor([False, False, True, True]))
|
|
self.assertEqual(x.eq(b), torch.tensor([False, True, False, False]))
|
|
self.assertEqual(x.ne(b), torch.tensor([True, False, True, True]))
|
|
|
|
# Bool Tensor
|
|
x = torch.tensor([True, False, True, False], device=device)
|
|
self.assertEqual(x.lt(True), torch.tensor([False, True, False, True]))
|
|
self.assertEqual(x.le(True), torch.tensor([True, True, True, True]))
|
|
self.assertEqual(x.ge(True), torch.tensor([True, False, True, False]))
|
|
self.assertEqual(x.gt(True), torch.tensor([False, False, False, False]))
|
|
self.assertEqual(x.eq(True), torch.tensor([True, False, True, False]))
|
|
self.assertEqual(x.ne(True), torch.tensor([False, True, False, True]))
|
|
|
|
def test_index_copy(self, device):
|
|
num_copy, num_dest = 3, 20
|
|
dest = torch.randn(num_dest, 4, 5, device=device)
|
|
src = torch.randn(num_copy, 4, 5, device=device)
|
|
idx = torch.randperm(num_dest, device=device).narrow(0, 0, num_copy)
|
|
dest2 = dest.clone()
|
|
dest.index_copy_(0, idx, src)
|
|
for i in range(idx.size(0)):
|
|
dest2[idx[i]] = src[i]
|
|
self.assertEqual(dest, dest2, atol=0, rtol=0)
|
|
|
|
dest = torch.randn(num_dest, device=device)
|
|
src = torch.randn(num_copy, device=device)
|
|
idx = torch.randperm(num_dest, device=device).narrow(0, 0, num_copy)
|
|
dest2 = dest.clone()
|
|
dest.index_copy_(0, idx, src)
|
|
for i in range(idx.size(0)):
|
|
dest2[idx[i]] = src[i]
|
|
self.assertEqual(dest, dest2, atol=0, rtol=0)
|
|
|
|
# Bool tensor
|
|
dest = torch.zeros(2, 2, dtype=torch.bool, device=device)
|
|
src = torch.tensor([[True, True], [True, True]], device=device)
|
|
index = torch.tensor([0, 1], device=device)
|
|
dest.index_copy_(0, index, src)
|
|
self.assertEqual(dest, torch.tensor([[True, True], [True, True]], device=device))
|
|
|
|
# Error cases
|
|
a = torch.randn(3, 5)
|
|
c = torch.zeros(3)
|
|
self.assertRaises(IndexError, lambda: a.index_copy_(dim=1, index=torch.tensor([3]), source=c))
|
|
|
|
def test_index_fill(self, device):
|
|
for dt in torch.testing.get_all_dtypes():
|
|
if dt == torch.half or dt == torch.bfloat16 or dt.is_complex:
|
|
continue
|
|
|
|
x = torch.tensor([[1, 2], [4, 5]], dtype=dt, device=device)
|
|
index = torch.tensor([0], device=device)
|
|
x.index_fill_(1, index, 0)
|
|
self.assertEqual(x, torch.tensor([[0, 2], [0, 5]], dtype=dt, device=device))
|
|
|
|
def test_index_select(self, device):
|
|
src = torch.randn(3, 4, 5, device=device)
|
|
# Index can be duplicated.
|
|
idx = torch.tensor([2, 1, 0, 1, 2], dtype=torch.long, device=device)
|
|
dest = torch.index_select(src, 0, idx)
|
|
self.assertEqual(dest.shape, (5, 4, 5))
|
|
for i in range(idx.size(0)):
|
|
self.assertEqual(dest[i], src[idx[i]])
|
|
|
|
# Check that 'out' is used correctly.
|
|
out = torch.randn(5 * 4 * 5, device=device)
|
|
dest = torch.index_select(src, 0, idx, out=out.view(5, 4, 5))
|
|
self.assertEqual(dest.shape, (5, 4, 5))
|
|
for i in range(idx.size(0)):
|
|
self.assertEqual(dest[i], src[idx[i]])
|
|
out.fill_(0.123)
|
|
self.assertEqual(out, dest.view(-1)) # Must point to the same storage.
|
|
|
|
# Bool tensor
|
|
src = torch.tensor([False, True, False, False], device=device, dtype=torch.bool)
|
|
idx = torch.tensor([1], dtype=torch.long, device=device)
|
|
dest = torch.index_select(src, 0, idx)
|
|
self.assertEqual(torch.tensor([True]), dest)
|
|
|
|
# Complex Tensor
|
|
src = torch.randn(3, 4, 5, dtype=torch.complex64, device=device)
|
|
idx = torch.tensor([2, 1, 0, 1, 2], dtype=torch.long, device=device)
|
|
|
|
# index_select not supported for complex on cuda
|
|
if device.startswith('cuda'):
|
|
with self.assertRaises(RuntimeError):
|
|
torch.index_select(src, 0, idx)
|
|
return
|
|
|
|
dest = torch.index_select(src, 0, idx)
|
|
self.assertEqual(dest.shape, (5, 4, 5))
|
|
for i in range(idx.size(0)):
|
|
self.assertEqual(dest[i], src[idx[i]])
|
|
|
|
def test_take_empty(self, device):
|
|
for input_shape in [(0,), (0, 1, 2, 0), (1, 2, 3)]:
|
|
for indices_shape in [(0,), (0, 1, 2, 0)]:
|
|
input = torch.empty(input_shape, device=device)
|
|
indices = torch.empty(indices_shape, dtype=torch.int64, device=device)
|
|
self.assertEqual(indices, torch.take(input, indices), exact_dtype=False)
|
|
|
|
def test_put_empty(self, device):
|
|
for dst_shape in [(0,), (0, 1, 2, 0), (1, 2, 3)]:
|
|
for indices_shape in [(0,), (0, 1, 2, 0)]:
|
|
for accumulate in [False, True]:
|
|
dst = torch.randn(dst_shape, device=device)
|
|
indices = torch.empty(indices_shape, dtype=torch.int64, device=device)
|
|
src = torch.randn(indices_shape, device=device)
|
|
self.assertEqual(dst, dst.put_(indices, src, accumulate=accumulate))
|
|
|
|
@onlyCPU
|
|
def test_scatter_reduce_operations_to_large_input(self, device):
|
|
index = torch.tensor([[1], [2]], device=device, dtype=torch.long)
|
|
test_data = [
|
|
(torch.zeros(4, 4, device=device, dtype=torch.float32),
|
|
torch.ones(2, 2, device=device, dtype=torch.float32),
|
|
torch.tensor([[0, 0, 0, 0],
|
|
[1, 0, 0, 0],
|
|
[1, 0, 0, 0],
|
|
[0, 0, 0, 0]],
|
|
device=device, dtype=torch.float32), "add"),
|
|
(torch.zeros(4, 4, device=device, dtype=torch.float32),
|
|
torch.ones(2, 2, device=device, dtype=torch.float32),
|
|
torch.tensor([[0, 0, 0, 0],
|
|
[-1, 0, 0, 0],
|
|
[-1, 0, 0, 0],
|
|
[0, 0, 0, 0]], device=device, dtype=torch.float32), "subtract"),
|
|
(torch.tensor([2], device=device, dtype=torch.float32).repeat(4, 4),
|
|
torch.tensor([2], device=device, dtype=torch.float32).repeat(2, 2),
|
|
torch.tensor([[2, 2, 2, 2],
|
|
[4, 2, 2, 2],
|
|
[4, 2, 2, 2],
|
|
[2, 2, 2, 2]], device=device, dtype=torch.float32), "multiply"),
|
|
(torch.tensor([2], device=device, dtype=torch.float32).repeat(4, 4),
|
|
torch.tensor([2], device=device, dtype=torch.float32).repeat(2, 2),
|
|
torch.tensor([[2, 2, 2, 2],
|
|
[1, 2, 2, 2],
|
|
[1, 2, 2, 2],
|
|
[2, 2, 2, 2]], device=device, dtype=torch.float32), "divide")
|
|
]
|
|
|
|
for input, src, result, operation in test_data:
|
|
input.scatter_(0, index, src, reduce=operation)
|
|
self.assertEqual(input, result)
|
|
|
|
@onlyCPU
|
|
def test_scatter_reduce_scalar(self, device):
|
|
index = torch.tensor([[1], [2]], device=device, dtype=torch.long)
|
|
test_data = [
|
|
(torch.zeros(4, 4, device=device, dtype=torch.float32), 1,
|
|
torch.tensor([[0, 0, 0, 0],
|
|
[1, 0, 0, 0],
|
|
[1, 0, 0, 0],
|
|
[0, 0, 0, 0]],
|
|
device=device, dtype=torch.float32), "add"),
|
|
(torch.zeros(4, 4, device=device, dtype=torch.float32), 1,
|
|
torch.tensor([[0, 0, 0, 0],
|
|
[-1, 0, 0, 0],
|
|
[-1, 0, 0, 0],
|
|
[0, 0, 0, 0]], device=device, dtype=torch.float32), "subtract"),
|
|
(torch.tensor([2], device=device, dtype=torch.float32).repeat(4, 4), 2,
|
|
torch.tensor([[2, 2, 2, 2],
|
|
[4, 2, 2, 2],
|
|
[4, 2, 2, 2],
|
|
[2, 2, 2, 2]], device=device, dtype=torch.float32), "multiply"),
|
|
(torch.tensor([2], device=device, dtype=torch.float32).repeat(4, 4), 2,
|
|
torch.tensor([[2, 2, 2, 2],
|
|
[1, 2, 2, 2],
|
|
[1, 2, 2, 2],
|
|
[2, 2, 2, 2]], device=device, dtype=torch.float32), "divide")
|
|
]
|
|
|
|
for input, src, result, operation in test_data:
|
|
input.scatter_(0, index, src, reduce=operation)
|
|
self.assertEqual(input, result)
|
|
|
|
# TODO: remove this after scatter_add_ is deprecated.
|
|
def test_scatter_add_non_unique_index(self, device):
|
|
height = 2
|
|
width = 65536
|
|
input = torch.ones(height, width, device=device)
|
|
index = torch.zeros(height, width, dtype=torch.long, device=device)
|
|
src = torch.ones(height, width, device=device)
|
|
input.scatter_add_(0, index, src)
|
|
|
|
self.assertEqual(input,
|
|
torch.tensor([[3], [1]], device=device,
|
|
dtype=torch.float32).repeat(1, width))
|
|
|
|
@onlyCPU
|
|
def test_scatter_reduce_non_unique_index(self, device):
|
|
height = 2
|
|
width = 2
|
|
index = torch.zeros(height, width, dtype=torch.long, device=device)
|
|
test_data = [
|
|
(torch.ones(height, width, device=device, dtype=torch.float32),
|
|
torch.ones(height, width, device=device, dtype=torch.float32),
|
|
torch.tensor([[3], [1]], device=device, dtype=torch.float32).repeat(1, width), "add"),
|
|
|
|
(torch.ones(height, width, device=device, dtype=torch.float32),
|
|
torch.ones(height, width, device=device, dtype=torch.float32),
|
|
torch.tensor([[-1], [1]], device=device,
|
|
dtype=torch.float32).repeat(1, width), "subtract"),
|
|
|
|
(torch.tensor([2], device=device, dtype=torch.float32).repeat(height, width),
|
|
torch.tensor([2], device=device, dtype=torch.float32).repeat(height, width),
|
|
torch.tensor([[8], [2]], device=device,
|
|
dtype=torch.float32).repeat(1, width), "multiply"),
|
|
|
|
(torch.tensor([2], device=device, dtype=torch.float32).repeat(height, width),
|
|
torch.tensor([2], device=device, dtype=torch.float32).repeat(height, width),
|
|
torch.tensor([[0.5], [2]], device=device,
|
|
dtype=torch.float32).repeat(1, width), "divide"),
|
|
]
|
|
|
|
for input, src, result, operation in test_data:
|
|
input.scatter_(0, index, src, reduce=operation)
|
|
self.assertEqual(input, result)
|
|
|
|
|
|
def test_scatter_to_large_input(self, device):
|
|
input = torch.zeros(4, 4, device=device)
|
|
src = torch.ones(2, 2, device=device)
|
|
index = torch.tensor([[1], [2]], device=device, dtype=torch.long)
|
|
input.scatter_(0, index, src)
|
|
self.assertEqual(input, torch.tensor([[0, 0, 0, 0],
|
|
[1, 0, 0, 0],
|
|
[1, 0, 0, 0],
|
|
[0, 0, 0, 0]], device=device, dtype=torch.float32))
|
|
|
|
def test_scatter_add_to_large_input(self, device):
|
|
input = torch.zeros(4, 4, device=device)
|
|
src = torch.ones(2, 2, device=device)
|
|
index = torch.tensor([[1], [2]], device=device, dtype=torch.long)
|
|
input.scatter_add_(0, index, src)
|
|
self.assertEqual(input, torch.tensor([[0, 0, 0, 0],
|
|
[1, 0, 0, 0],
|
|
[1, 0, 0, 0],
|
|
[0, 0, 0, 0]], device=device, dtype=torch.float32))
|
|
|
|
def test_scatter_bool(self, device):
|
|
x = torch.tensor([[True, True, True], [True, True, True]], device=device)
|
|
res = torch.zeros(3, 3, dtype=torch.bool, device=device)
|
|
res = res.scatter_(0, torch.tensor([[0, 1, 2], [0, 1, 2]], device=device), x)
|
|
self.assertEqual(res, torch.tensor([[True, False, False],
|
|
[False, True, False],
|
|
[False, False, True]], device=device))
|
|
|
|
def test_scatter_add_bool(self, device):
|
|
x = torch.tensor([[True, True, True, True, True], [True, True, True, True, True]], device=device)
|
|
res = torch.zeros(3, 5, dtype=torch.bool, device=device)
|
|
res = res.scatter_add_(0, torch.tensor([[0, 1, 2, 0, 0], [2, 0, 0, 1, 2]], device=device), x)
|
|
self.assertEqual(res, torch.tensor([[True, True, True, True, True],
|
|
[False, True, False, True, False],
|
|
[True, False, True, False, True]], device=device))
|
|
|
|
def test_masked_scatter_bool_tensor(self, device):
|
|
src = torch.tensor([True, True, True], device=device)
|
|
dst = torch.tensor([False, False, False], device=device)
|
|
mask = torch.tensor([False, True, False], device=device)
|
|
|
|
dst.masked_scatter_(mask, src)
|
|
self.assertEqual(dst, torch.tensor([False, True, False], device=device))
|
|
|
|
mask = torch.tensor([True, False, True], device=device)
|
|
dst = dst.masked_scatter(mask, src)
|
|
self.assertEqual(dst, torch.tensor([True, True, True], device=device))
|
|
|
|
@dtypes(*torch.testing.get_all_dtypes())
|
|
def test_masked_select(self, device, dtype):
|
|
if device == 'cpu':
|
|
warn = 'masked_select received a mask with dtype torch.uint8,'
|
|
else:
|
|
warn = 'indexing with dtype torch.uint8 is now deprecated, pl'
|
|
for maskType in [torch.uint8, torch.bool]:
|
|
num_src = 10
|
|
src = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=dtype, device=device)
|
|
mask = torch.rand(num_src, device=device).clamp(0, 1).mul(2).floor().to(maskType)
|
|
|
|
if dtype == torch.half and torch.device(device).type == 'cpu':
|
|
self.assertRaises(RuntimeError, lambda: src.masked_select(mask))
|
|
continue
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
dst = src.masked_select(mask)
|
|
if maskType is torch.uint8:
|
|
self.assertEqual(len(w), 1)
|
|
self.assertEqual(str(w[0].message)[0:53], str(warn))
|
|
dst2 = []
|
|
for i in range(num_src):
|
|
if mask[i]:
|
|
dst2 += [src[i]]
|
|
self.assertEqual(dst, torch.tensor(dst2), atol=0, rtol=0)
|
|
|
|
dst3 = torch.empty_like(src, device=device)
|
|
torch.masked_select(src, mask, out=dst3)
|
|
self.assertEqual(dst3, torch.tensor(dst2, dtype=dst3.dtype), atol=0, rtol=0)
|
|
|
|
# Since complex and half on CPU is not supported, need to skip the remaining test cases
|
|
if (dtype.is_complex or dtype == torch.half) and torch.device(device).type == 'cpu':
|
|
return
|
|
|
|
# Ensure that masks are expanded to match tensor properly
|
|
if IS_WINDOWS and dtype == torch.bfloat16 and torch.device(device).type == 'cuda':
|
|
# TODO .to() for bfloat16 does not work on windows
|
|
a = torch.ones(100, 100, device=device, dtype=dtype)
|
|
else:
|
|
a = torch.rand(100, 100, device=device).mul(100).to(dtype)
|
|
mask_first_el_each_row = torch.zeros(100, device=device).bool()
|
|
mask_first_el_each_row[0] = True
|
|
a_masked = a.masked_select(mask_first_el_each_row)
|
|
self.assertEqual(a_masked, a[:, 0])
|
|
|
|
mask_first_row = torch.zeros(100, 1, device=device, dtype=dtype).bool()
|
|
mask_first_row[0][0] = True
|
|
a_masked = a.masked_select(mask_first_row)
|
|
self.assertEqual(a_masked, a[0, :])
|
|
|
|
# Ensure that tensor is expanded to match mask properly
|
|
if IS_WINDOWS and dtype == torch.bfloat16 and torch.device(device).type == 'cuda':
|
|
a = torch.ones(100, device=device, dtype=dtype)
|
|
else:
|
|
a = torch.rand(100, device=device).mul(100).to(maskType)
|
|
mask_copy_3_times = torch.tensor([[True], [True], [False], [True]], device=device)
|
|
a_masked = a.masked_select(mask_copy_3_times)
|
|
self.assertEqual(a_masked, a.unsqueeze(0).expand(3, 100).flatten())
|
|
|
|
def test_masked_fill_bool_tensor(self, device):
|
|
dst = torch.tensor([True, False, True], device=device)
|
|
mask = torch.tensor([False, True, False], device=device)
|
|
|
|
dst.masked_fill_(mask, True)
|
|
self.assertEqual(dst, torch.tensor([True, True, True], device=device))
|
|
|
|
dst = dst.masked_fill(mask, False)
|
|
self.assertEqual(dst, torch.tensor([True, False, True], device=device))
|
|
|
|
def test_tensor_shape_empty(self, device):
|
|
x = torch.randn((0, 1, 3, 0), device=device)
|
|
# flatten
|
|
self.assertEqual((0,), torch.flatten(x, 0, 3).shape)
|
|
self.assertEqual((0, 0), torch.flatten(x, 0, 2).shape)
|
|
self.assertEqual((0, 3, 0), torch.flatten(x, 1, 2).shape)
|
|
|
|
# squeeze, unsqueeze
|
|
self.assertEqual((0, 1, 1, 3, 0), torch.unsqueeze(x, 1).shape)
|
|
self.assertEqual((0, 3, 0), torch.squeeze(x, 1).shape)
|
|
self.assertEqual((0, 3, 0), torch.squeeze(x).shape)
|
|
|
|
# transpose, t
|
|
self.assertEqual((0, 0, 3, 1), torch.transpose(x, 1, 3).shape)
|
|
y = torch.randn((5, 0), device=device)
|
|
self.assertEqual((0, 5), y.t().shape)
|
|
|
|
# select
|
|
self.assertEqual((0, 1, 0), torch.select(x, 2, 2).shape)
|
|
|
|
# repeat, permute
|
|
self.assertEqual((9, 0, 5, 6, 0), x.repeat(9, 7, 5, 2, 3).shape)
|
|
self.assertEqual((3, 0, 0, 1), x.permute(2, 3, 0, 1).shape)
|
|
|
|
# diagonal, diagflat
|
|
self.assertEqual((0,), torch.diagonal(torch.randn((5, 0), device=device)).shape)
|
|
self.assertEqual((0,), torch.diagonal(torch.randn((0, 5), device=device)).shape)
|
|
# off the end offsets are valid
|
|
self.assertEqual((0,), torch.diagonal(torch.randn((5, 0), device=device), offset=1).shape)
|
|
self.assertEqual((0,), torch.diagonal(torch.randn((0, 5), device=device), offset=1).shape)
|
|
# check non-zero sized offsets off the end
|
|
self.assertEqual((5, 6, 0), torch.diagonal(torch.randn((3, 4, 5, 6), device=device), offset=45252).shape)
|
|
self.assertEqual((5, 6, 0), torch.diagonal(torch.randn((3, 4, 5, 6), device=device), offset=-45252).shape)
|
|
|
|
self.assertEqual((0, 0), torch.diagflat(torch.tensor([], device=device)).shape)
|
|
self.assertEqual(torch.zeros(1, 1), torch.diagflat(torch.tensor([], device=device), offset=1))
|
|
self.assertEqual((0, 0), torch.diagflat(torch.tensor([[]], device=device)).shape)
|
|
self.assertEqual(torch.zeros(1, 1), torch.diagflat(torch.tensor([[]], device=device), offset=1))
|
|
|
|
# stack, split, chunk
|
|
self.assertEqual((4, 0, 1, 3, 0), torch.stack((x, x, x, x)).shape)
|
|
self.assertEqual([(0, 1, 3, 0)],
|
|
[z.shape for z in torch.chunk(x, 1, dim=0)])
|
|
|
|
self.assertEqual([(0, 1, 3, 0), ] * 3, [z.shape for z in torch.chunk(x, 3, dim=0)])
|
|
self.assertEqual([(0, 1, 1, 0), ] * 3, [z.shape for z in torch.chunk(x, 3, dim=2)])
|
|
|
|
# NOTE: split_with_sizes behaves differently than NumPy in that it
|
|
# takes sizes rather than offsets
|
|
self.assertEqual([(0, 1, 0, 0), (0, 1, 1, 0), (0, 1, 2, 0)],
|
|
[z.shape for z in torch.split(x, (0, 1, 2), dim=2)])
|
|
|
|
self.assertRaises(RuntimeError, lambda: torch.split(x, 0, dim=1))
|
|
# This is strange because the split size is larger than the dim size, but consistent with
|
|
# how split handles that case generally (when no 0s are involved).
|
|
self.assertEqual([(0, 1, 3, 0)], [z.shape for z in torch.split(x, 1, dim=0)])
|
|
self.assertEqual([(0, 1, 3, 0)], [z.shape for z in torch.split(x, 0, dim=0)])
|
|
|
|
# functions that operate over a dimension but don't reduce.
|
|
def test_dim_function_empty(self, device):
|
|
shape = (0, 1, 2, 0)
|
|
x = torch.randn(shape, device=device)
|
|
|
|
# size stride
|
|
self.assertEqual(0, x.size(3))
|
|
self.assertEqual(2, x.size(2))
|
|
self.assertEqual(2, x.stride(0))
|
|
self.assertEqual(1, x.stride(2))
|
|
|
|
self.assertEqual(x, torch.nn.functional.glu(x, 0))
|
|
self.assertEqual((0, 1, 1, 0), torch.nn.functional.glu(x, 2).shape)
|
|
|
|
# softmax, logsoftmax
|
|
self.assertEqual(x, torch.nn.functional.softmax(x, 0))
|
|
self.assertEqual(x, torch.nn.functional.softmax(x, 2))
|
|
self.assertEqual(x, torch.nn.functional.softmax(x, 3))
|
|
|
|
self.assertEqual(x, torch.nn.functional.log_softmax(x, 0))
|
|
self.assertEqual(x, torch.nn.functional.log_softmax(x, 2))
|
|
self.assertEqual(x, torch.nn.functional.log_softmax(x, 3))
|
|
|
|
# cumsum, cumprod, cummax, cummin
|
|
self.assertEqual(shape, torch.cumsum(x, 0).shape)
|
|
self.assertEqual(shape, torch.cumsum(x, 2).shape)
|
|
self.assertEqual(shape, torch.cumprod(x, 0).shape)
|
|
self.assertEqual(shape, torch.cumprod(x, 2).shape)
|
|
self.assertEqual(shape, torch.cummax(x, 0)[0].shape)
|
|
self.assertEqual(shape, torch.cummax(x, 2)[0].shape)
|
|
self.assertEqual(shape, torch.cummin(x, 0)[0].shape)
|
|
self.assertEqual(shape, torch.cummin(x, 2)[0].shape)
|
|
self.assertEqual(shape, torch.logcumsumexp(x, 0).shape)
|
|
self.assertEqual(shape, torch.logcumsumexp(x, 2).shape)
|
|
|
|
# flip
|
|
self.assertEqual(x, x.flip(0))
|
|
self.assertEqual(x, x.flip(2))
|
|
|
|
# roll
|
|
self.assertEqual(x, x.roll(0, 1).roll(0, -1))
|
|
self.assertEqual(x, x.roll(1, x.size(1)))
|
|
self.assertEqual(x, x.roll(1))
|
|
self.assertEqual(x, x.roll((1, 1), (3, 1)))
|
|
|
|
# unbind
|
|
self.assertEqual((), x.unbind(0))
|
|
self.assertEqual((torch.empty((0, 1, 0), device=device), torch.empty((0, 1, 0), device=device)),
|
|
x.unbind(2))
|
|
|
|
# cross
|
|
y = torch.randn((0, 1, 3, 0), device=device)
|
|
self.assertEqual(y.shape, torch.cross(y, y).shape)
|
|
|
|
# renorm
|
|
self.assertEqual(shape, torch.renorm(x, 1, 0, 5).shape)
|
|
self.assertEqual(shape, torch.renorm(x, 1, 2, 5).shape)
|
|
|
|
# sort
|
|
self.assertEqual([shape, shape], [z.shape for z in torch.sort(x, dim=0)])
|
|
self.assertEqual([shape, shape], [z.shape for z in torch.sort(x, dim=2)])
|
|
|
|
# topk
|
|
self.assertEqual([shape, shape], [z.shape for z in torch.topk(x, 0, dim=0)])
|
|
self.assertEqual([(0, 1, 1, 0), (0, 1, 1, 0)], [z.shape for z in torch.topk(x, 1, dim=2)])
|
|
|
|
y = torch.randn((2, 3, 4), device=device)
|
|
self.assertEqual([(2, 3, 0), (2, 3, 0)], [z.shape for z in torch.topk(y, 0)])
|
|
|
|
# gather
|
|
self.assertEqual(shape, torch.gather(x, 0, torch.empty(shape, dtype=torch.int64, device=device)).shape)
|
|
self.assertEqual(shape, torch.gather(x, 2, torch.empty(shape, dtype=torch.int64, device=device)).shape)
|
|
larger_shape = torch.empty((0, 1, 3, 0), dtype=torch.int64, device=device)
|
|
self.assertEqual(larger_shape.shape, torch.gather(x, 2, larger_shape).shape)
|
|
smaller_shape = torch.empty((0, 1, 0, 0), dtype=torch.int64, device=device)
|
|
self.assertEqual(smaller_shape.shape, torch.gather(x, 2, smaller_shape).shape)
|
|
y = torch.randn((2, 3, 4), device=device)
|
|
self.assertEqual((0, 3, 4),
|
|
torch.gather(y, 0, torch.empty((0, 3, 4), dtype=torch.int64, device=device)).shape)
|
|
|
|
# scatter, scatter_add
|
|
for dim in [0, 2]:
|
|
y = torch.randn(shape, device=device)
|
|
y_src = torch.randn(shape, device=device)
|
|
ind = torch.empty(shape, dtype=torch.int64, device=device)
|
|
self.assertEqual(shape, y.scatter_(dim, ind, y_src).shape)
|
|
self.assertEqual(shape, y.scatter_add_(dim, ind, y_src).shape)
|
|
|
|
z = torch.randn((2, 3, 4), device=device)
|
|
z_src = torch.randn((2, 3, 4), device=device)
|
|
self.assertEqual(z, z.scatter_(2, torch.empty((2, 3, 0), dtype=torch.int64, device=device), z_src))
|
|
self.assertEqual(z, z.scatter_add_(2, torch.empty((2, 3, 0), dtype=torch.int64, device=device), z_src))
|
|
|
|
# index_fill, index_copy, index_add
|
|
c = x.clone()
|
|
c_clone = c.clone()
|
|
ind_empty = torch.tensor([], dtype=torch.int64, device=device)
|
|
ind_01 = torch.tensor([0, 1], dtype=torch.int64, device=device)
|
|
self.assertEqual(c_clone, c.index_fill_(0, ind_empty, -1))
|
|
self.assertEqual(c_clone, c.index_fill_(2, ind_empty, -1))
|
|
self.assertEqual(c_clone, c.index_fill_(2, torch.tensor([0, 1], dtype=torch.int64, device=device), -1))
|
|
self.assertEqual(c_clone, c.index_copy_(0, ind_empty, torch.empty((0, 1, 2, 0), device=device)))
|
|
self.assertEqual(c_clone, c.index_copy_(2, ind_empty, torch.empty((0, 1, 0, 0), device=device)))
|
|
self.assertEqual(c_clone, c.index_copy_(2, ind_01, torch.empty((0, 1, 2, 0), device=device)))
|
|
self.assertEqual(c_clone, c.index_add_(0, ind_empty, torch.empty((0, 1, 2, 0), device=device)))
|
|
self.assertEqual(c_clone, c.index_add_(2, ind_empty, torch.empty((0, 1, 0, 0), device=device)))
|
|
self.assertEqual(c_clone, c.index_add_(2, ind_01, torch.empty((0, 1, 2, 0), device=device)))
|
|
|
|
c = torch.randn((0, 1, 2), device=device)
|
|
c_clone = c.clone()
|
|
self.assertEqual(c_clone, c.index_fill_(0, ind_empty, -1))
|
|
self.assertEqual(c_clone, c.index_copy_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
|
|
self.assertEqual(c_clone, c.index_add_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
|
|
self.assertEqual(c_clone, c.index_fill_(0, ind_empty, -1))
|
|
self.assertEqual(c_clone, c.index_copy_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
|
|
self.assertEqual(c_clone, c.index_add_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
|
|
|
|
# index fill/copy/add non-empty
|
|
z = torch.randn((2, 3, 4), device=device)
|
|
self.assertEqual(z, z.index_fill_(0, ind_empty, -1))
|
|
z = torch.randn((2, 3, 4), device=device)
|
|
self.assertEqual(z, z.index_copy_(0, ind_empty, torch.empty((0, 3, 4), device=device)))
|
|
z = torch.randn((2, 3, 4), device=device)
|
|
self.assertEqual(z, z.index_add_(0, ind_empty, torch.empty((0, 3, 4), device=device)))
|
|
|
|
# index_select
|
|
self.assertEqual(x, x.index_select(0, ind_empty))
|
|
self.assertEqual((0, 1, 0, 0), x.index_select(2, ind_empty).shape)
|
|
self.assertEqual(x, x.index_select(2, ind_01))
|
|
z = torch.randn((2, 3, 4), device=device) # non-empty
|
|
self.assertEqual((0, 3, 4), z.index_select(0, ind_empty).shape)
|
|
c = torch.randn((0, 1, 2), device=device)
|
|
self.assertEqual(c, c.index_select(0, ind_empty))
|
|
c = torch.randn((0, 1, 2), device=device)
|
|
self.assertEqual(c, c.index_select(0, ind_empty))
|
|
|
|
def test_nonzero(self, device):
|
|
num_srcs = [
|
|
12, 12, 12, 12, 12, 125,
|
|
]
|
|
|
|
dtypes = [
|
|
torch.uint8,
|
|
torch.int8,
|
|
torch.short,
|
|
torch.int,
|
|
torch.float,
|
|
torch.double,
|
|
torch.long,
|
|
]
|
|
|
|
shapes = [
|
|
torch.Size((12,)),
|
|
torch.Size((12, 1)),
|
|
torch.Size((1, 12)),
|
|
torch.Size((6, 2)),
|
|
torch.Size((3, 2, 2)),
|
|
torch.Size((5, 5, 5)),
|
|
]
|
|
|
|
def is_lexicographically_sorted(inds):
|
|
"""Check sorted ascending with
|
|
i -> j -> k changing slowest to fastest"""
|
|
assert inds.size(1) == 3
|
|
if inds.size(0) > 1:
|
|
i0, j0, k0 = inds[:-1].t()
|
|
i1, j1, k1 = inds[+1:].t()
|
|
i_ok = (i1 >= i0)
|
|
j_ok = (j1 >= j0) | (i1 > i0)
|
|
k_ok = (k1 >= k0) | (j1 > j0) | (i1 > i0)
|
|
lex = torch.stack((i_ok, j_ok, k_ok), dim=1)
|
|
return lex
|
|
return torch.full_like(inds, 1)
|
|
|
|
def gen_nontrivial_input(num_src, dtype, device):
|
|
while True:
|
|
tensor = torch.rand(num_src).mul(2).floor().to(device=device, dtype=dtype)
|
|
if tensor.sum() > 0:
|
|
return tensor
|
|
|
|
for dtype in dtypes:
|
|
for shape, num_src in zip(shapes, num_srcs):
|
|
tensor = gen_nontrivial_input(num_src, dtype, device)
|
|
tensor = tensor.clone().resize_(shape)
|
|
dst1 = torch.nonzero(tensor)
|
|
dst2 = tensor.nonzero()
|
|
dst3 = torch.LongTensor().to(device)
|
|
torch.nonzero(tensor, out=dst3)
|
|
|
|
self.assertRaisesRegex(
|
|
TypeError,
|
|
"received an invalid combination of arguments",
|
|
lambda: torch.nonzero(tensor, as_tuple=True, out=dst3))
|
|
if len(shape) == 1:
|
|
dst = []
|
|
for i in range(num_src):
|
|
if tensor[i] != 0:
|
|
dst += [i]
|
|
dst = torch.LongTensor(dst).to(device)
|
|
self.assertEqual(dst1.select(1, 0), dst, atol=0, rtol=0)
|
|
self.assertEqual(dst2.select(1, 0), dst, atol=0, rtol=0)
|
|
self.assertEqual(dst3.select(1, 0), dst, atol=0, rtol=0)
|
|
elif len(shape) == 2:
|
|
# This test will allow through some False positives. It only checks
|
|
# that the elements flagged positive are indeed non-zero.
|
|
for i in range(dst1.size(0)):
|
|
self.assertNotEqual(tensor[dst1[i, 0], dst1[i, 1]].item(), 0)
|
|
elif len(shape) == 3:
|
|
# This test will allow through some False positives. It only checks
|
|
# that the elements flagged positive are indeed non-zero.
|
|
for i in range(dst1.size(0)):
|
|
self.assertNotEqual(tensor[dst1[i, 0], dst1[i, 1], dst1[i, 2]].item(), 0)
|
|
lex = is_lexicographically_sorted(dst1)
|
|
self.assertEqual(torch.ones_like(lex), lex)
|
|
if TEST_NUMPY:
|
|
tup1 = torch.nonzero(tensor, as_tuple=True)
|
|
tup2 = tensor.nonzero(as_tuple=True)
|
|
tup3 = torch.where(tensor)
|
|
np1 = tensor.cpu().numpy().nonzero()
|
|
for t in (tup1, tup2, tup3):
|
|
self.assertEqual(len(t), len(np1))
|
|
for i in range(len(t)):
|
|
self.assertEqual(t[i].cpu().numpy(), np1[i])
|
|
|
|
def test_nonzero_non_diff(self, device):
|
|
x = torch.randn(10, requires_grad=True)
|
|
nz = x.nonzero()
|
|
self.assertFalse(nz.requires_grad)
|
|
|
|
def _brute_pdist(self, inp, p=2):
|
|
"""Computes the same as torch.pdist using primitives"""
|
|
n = inp.shape[-2]
|
|
k = n * (n - 1) // 2
|
|
if k == 0:
|
|
# torch complains about empty indices
|
|
return torch.empty(inp.shape[:-2] + (0,), dtype=inp.dtype, device=inp.device)
|
|
square = torch.norm(inp[..., None, :] - inp[..., None, :, :], p=p, dim=-1)
|
|
unroll = square.view(square.shape[:-2] + (n * n,))
|
|
inds = torch.ones(k, dtype=torch.int)
|
|
inds[torch.arange(n - 1, 1, -1, dtype=torch.int).cumsum(0)] += torch.arange(2, n, dtype=torch.int)
|
|
return unroll[..., inds.cumsum(0)]
|
|
|
|
def _pdist_single(self, shape, device, p, dtype, trans, grad_check=False):
|
|
x = torch.randn(shape, dtype=dtype, device=device)
|
|
if trans:
|
|
x.transpose_(-2, -1)
|
|
if grad_check:
|
|
x.requires_grad_()
|
|
y = x.detach().clone().requires_grad_()
|
|
else:
|
|
y = x
|
|
actual = torch.pdist(x, p=p)
|
|
expected = self._brute_pdist(y, p=p)
|
|
self.assertEqual(expected.shape, actual.shape)
|
|
self.assertEqual(expected, actual)
|
|
if grad_check and expected.size() != torch.Size([0]):
|
|
g0 = torch.rand_like(actual)
|
|
actual.backward(g0)
|
|
expected.backward(g0)
|
|
self.assertEqual(x.grad, y.grad)
|
|
|
|
@slowTest
|
|
def test_pdist_norm_forward(self, device):
|
|
for shape in [(4, 5), (3, 2), (2, 1), (1500, 1)]:
|
|
for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]:
|
|
for trans in [False, True]:
|
|
for dtype in [torch.float32, torch.float64]:
|
|
self._pdist_single(shape, device, p, dtype, trans, grad_check=False)
|
|
|
|
# do a simplified comparison with big inputs, see:
|
|
# https://github.com/pytorch/pytorch/issues/15511
|
|
for dtype in [torch.float32, torch.float64]:
|
|
self._pdist_single((1000, 2), device, 2, dtype, trans=False, grad_check=False)
|
|
|
|
@slowTest
|
|
def test_pdist_norm_backward(self, device):
|
|
for shape in [(4, 5), (3, 2), (2, 1), (1500, 1)]:
|
|
for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]:
|
|
for trans in [False, True]:
|
|
self._pdist_single(shape, device, p, torch.float64, trans, grad_check=True)
|
|
|
|
@skipIfRocm
|
|
def test_pdist_norm_large(self, device):
|
|
# use dim0>=46342 for forward, see:
|
|
# https://github.com/pytorch/pytorch/issues/30583
|
|
# Compare output using GPU with the CPU implementation, as brute_pdist uses too much memory
|
|
if 'cuda' in device:
|
|
x = torch.randn(50000, 1, dtype=torch.float32)
|
|
expected_cpu = torch.pdist(x, p=2)
|
|
actual_gpu = torch.pdist(x.to(device), p=2)
|
|
self.assertEqual(expected_cpu, actual_gpu.cpu())
|
|
|
|
def test_atan2(self, device):
|
|
def _test_atan2_with_size(size, device):
|
|
a = torch.rand(size=size, device=device, dtype=torch.double)
|
|
b = torch.rand(size=size, device=device, dtype=torch.double)
|
|
actual = a.atan2(b)
|
|
x = a.view(-1)
|
|
y = b.view(-1)
|
|
expected = torch.tensor([math.atan2(x[i].item(), y[i].item()) for i in range(x.numel())],
|
|
device=device, dtype=torch.double)
|
|
self.assertEqual(expected, actual.view(-1), rtol=0, atol=0.02)
|
|
|
|
_test_atan2_with_size((2, 2), device)
|
|
_test_atan2_with_size((3, 3), device)
|
|
_test_atan2_with_size((5, 5), device)
|
|
|
|
def test_atan2_edgecases(self, device):
|
|
def _test_atan2(x, y, expected, device, dtype):
|
|
expected_tensor = torch.tensor([expected], dtype=dtype, device=device)
|
|
x_tensor = torch.tensor([x], dtype=dtype, device=device)
|
|
y_tensor = torch.tensor([y], dtype=dtype, device=device)
|
|
actual = torch.atan2(y_tensor, x_tensor)
|
|
self.assertEqual(expected_tensor, actual, rtol=0, atol=0.02)
|
|
|
|
for dtype in [torch.float, torch.double]:
|
|
_test_atan2(0, 0, 0, device, dtype)
|
|
_test_atan2(0, 1, math.pi / 2, device, dtype)
|
|
_test_atan2(0, -1, math.pi / -2, device, dtype)
|
|
_test_atan2(-1, 0, math.pi, device, dtype)
|
|
_test_atan2(1, 0, 0, device, dtype)
|
|
_test_atan2(-1, -1, math.pi * -3 / 4 , device, dtype)
|
|
_test_atan2(1, 1, math.pi / 4 , device, dtype)
|
|
_test_atan2(1, -1, math.pi / -4 , device, dtype)
|
|
_test_atan2(-1, 1, math.pi * 3 / 4 , device, dtype)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_trapz(self, device):
|
|
def test_dx(sizes, dim, dx, device):
|
|
t = torch.randn(sizes, device=device)
|
|
actual = torch.trapz(t, dx=dx, dim=dim)
|
|
expected = np.trapz(t.cpu().numpy(), dx=dx, axis=dim)
|
|
self.assertEqual(expected.shape, actual.shape)
|
|
self.assertEqual(expected, actual)
|
|
|
|
def test_x(sizes, dim, x, device):
|
|
t = torch.randn(sizes, device=device)
|
|
actual = torch.trapz(t, x=torch.tensor(x, device=device), dim=dim)
|
|
expected = np.trapz(t.cpu().numpy(), x=x, axis=dim)
|
|
self.assertEqual(expected.shape, actual.shape)
|
|
self.assertEqual(expected, actual.cpu())
|
|
|
|
test_dx((2, 3, 4), 1, 1, device)
|
|
test_dx((10, 2), 0, 0.1, device)
|
|
test_dx((1, 10), 0, 2.3, device)
|
|
test_dx((0, 2), 0, 1.0, device)
|
|
test_dx((0, 2), 1, 1.0, device)
|
|
test_x((2, 3, 4), 1, [1.0, 2.0, 3.0], device)
|
|
test_x((10, 2), 0, [2.0, 3.0, 4.0, 7.0, 11.0, 14.0, 22.0, 26.0, 26.1, 30.3], device)
|
|
test_x((1, 10), 0, [1.0], device)
|
|
test_x((0, 2), 0, [], device)
|
|
test_x((0, 2), 1, [1.0, 2.0], device)
|
|
with self.assertRaisesRegex(
|
|
IndexError,
|
|
'Dimension out of range'):
|
|
test_x((2, 3), 2, [], device)
|
|
test_dx((2, 3), 2, 1.0, device)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
'There must be one `x` value for each sample point'):
|
|
test_x((2, 3), 1, [1.0, 2.0], device)
|
|
test_x((2, 3), 1, [1.0, 2.0, 3.0, 4.0], device)
|
|
|
|
def test_reduction_empty(self, device):
|
|
fns_to_test = [
|
|
# name, function, identity
|
|
('max', torch.max, None),
|
|
('kthvalue', lambda *args, **kwargs: torch.kthvalue(*args, k=1, **kwargs), None),
|
|
('argmax', torch.argmax, None),
|
|
('min', torch.min, None),
|
|
('argmin', torch.argmin, None),
|
|
('mode', torch.mode, None),
|
|
('median', torch.median, None),
|
|
|
|
('prod', torch.prod, 1.),
|
|
('sum', torch.sum, 0.),
|
|
('norm', torch.norm, 0.),
|
|
('mean', torch.mean, nan),
|
|
('var', torch.var, nan),
|
|
('std', torch.std, nan),
|
|
('logsumexp', torch.logsumexp, -inf),
|
|
]
|
|
|
|
shape = (2, 0, 4)
|
|
x = torch.randn(shape, device=device)
|
|
|
|
for fn in [torch.max, torch.min]:
|
|
ident_err = 'operation does not have an identity'
|
|
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x))
|
|
|
|
for item in fns_to_test:
|
|
name, fn, identity = item
|
|
if identity is None:
|
|
ident_err = 'does not have an identity'
|
|
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=2))
|
|
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=2, keepdim=True))
|
|
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=1))
|
|
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=1, keepdim=True))
|
|
else:
|
|
self.assertEqual(torch.empty((2, 0), device=device), fn(x, dim=2))
|
|
self.assertEqual(torch.empty((2, 0, 1), device=device), fn(x, dim=2, keepdim=True))
|
|
# assertEqual doesn't work with inf, -inf, nan and two tensors.
|
|
check = (torch.testing.assert_allclose if math.isnan(identity) or math.isinf(identity) else
|
|
self.assertEqual)
|
|
check(torch.full((2, 4), identity, device=device), fn(x, dim=1))
|
|
check(torch.full((2, 1, 4), identity, device=device), fn(x, dim=1, keepdim=True))
|
|
try:
|
|
check(torch.full((), identity, device=device), fn(x))
|
|
except TypeError as err:
|
|
# ignore if there is no allreduce.
|
|
self.assertTrue('dim' in str(err))
|
|
|
|
# any
|
|
xb = x.to(torch.uint8)
|
|
yb = x.to(torch.uint8)
|
|
self.assertEqual((2, 0), xb.any(2).shape)
|
|
self.assertEqual((2, 0, 1), xb.any(2, keepdim=True).shape)
|
|
self.assertEqual(torch.zeros((2, 4), device=device, dtype=torch.uint8), xb.any(1))
|
|
self.assertEqual(torch.zeros((2, 1, 4), device=device, dtype=torch.uint8), xb.any(1, keepdim=True))
|
|
self.assertEqual(torch.zeros((), device=device, dtype=torch.uint8), xb.any())
|
|
|
|
# all
|
|
self.assertEqual((2, 0), xb.all(2).shape)
|
|
self.assertEqual((2, 0, 1), xb.all(2, keepdim=True).shape)
|
|
self.assertEqual(torch.ones((2, 4), device=device, dtype=torch.uint8), xb.all(1))
|
|
self.assertEqual(torch.ones((2, 1, 4), device=device, dtype=torch.uint8), xb.all(1, keepdim=True))
|
|
self.assertEqual(torch.ones((), device=device, dtype=torch.uint8), xb.all())
|
|
|
|
@onlyOnCPUAndCUDA
|
|
def test_addcdiv(self, device):
|
|
def _test_addcdiv(a, alpha, b, c):
|
|
actual = torch.addcdiv(a, b, c, value=alpha)
|
|
# implementation of addcdiv downcasts alpha. arithmetic ops don't.
|
|
if not actual.dtype.is_floating_point:
|
|
alpha = int(alpha)
|
|
expected = a + (alpha * b) / c
|
|
self.assertEqual(expected, actual)
|
|
|
|
with self.maybeWarnsRegex(
|
|
UserWarning, "This overload of addcdiv is deprecated"):
|
|
self.assertEqual(actual, torch.addcdiv(a, alpha, b, c))
|
|
|
|
def non_zero_rand(size, dtype, device):
|
|
if dtype.is_floating_point or dtype.is_complex:
|
|
a = torch.rand(size=size, dtype=dtype, device=device)
|
|
elif dtype == torch.uint8:
|
|
a = torch.randint(1, 5, size=size, dtype=dtype, device=device)
|
|
else:
|
|
a = torch.randint(-5, 5, size=size, dtype=dtype, device=device)
|
|
return a + (a == 0).to(dtype)
|
|
|
|
def _helper():
|
|
_test_addcdiv(
|
|
non_zero_rand((2, 2), dtype=dtype, device=device),
|
|
0.5,
|
|
non_zero_rand((2, 2), dtype=dtype, device=device),
|
|
non_zero_rand((2, 2), dtype=dtype, device=device))
|
|
|
|
for dtype in torch.testing.get_all_math_dtypes(device):
|
|
if dtype.is_complex:
|
|
# CPU complex addcdiv is wildly inaccurate
|
|
if self.device_type == 'cpu':
|
|
with self.assertRaises(AssertionError):
|
|
_helper()
|
|
|
|
# CUDA complex addcdiv is not implemented
|
|
if self.device_type == 'cuda':
|
|
with self.assertRaises(RuntimeError):
|
|
_helper()
|
|
elif not dtype.is_floating_point:
|
|
# Integer division with addcdiv is prohibited
|
|
with self.assertRaises(RuntimeError):
|
|
_helper()
|
|
else:
|
|
_helper()
|
|
|
|
# This function tests that a nan value is returned for input values not in domain
|
|
@dtypes(torch.float32, torch.float64)
|
|
def test_acosh_domain_float(self, device, dtype):
|
|
# Domain of acosh is [1, inf), for values outside the domain - output is mapped
|
|
# to NaN, except for input value `inf` - output is mapped to `inf`
|
|
sample = torch.tensor([float('-inf'), 1.00, -1.23, -0.06, 0.98, float('inf')],
|
|
device=device, dtype=dtype)
|
|
nan_mask = torch.tensor([True, False, True, True, True, False], device=device)
|
|
inf_mask = torch.tensor([False, False, False, False, False, True], device=device)
|
|
self.assertEqual(torch.isnan(torch.acosh(sample)), nan_mask)
|
|
self.assertEqual(torch.isnan(sample.acosh()), nan_mask)
|
|
self.assertEqual(torch.isinf(torch.acosh(sample)), inf_mask)
|
|
self.assertEqual(torch.isinf(sample.acosh()), inf_mask)
|
|
|
|
# This function tests that a nan value is returned for input values not in domain
|
|
@dtypes(torch.float32, torch.float64)
|
|
def test_atanh_domain_float(self, device, dtype):
|
|
# Domain of atanh is (-1, 1), for edge values (-1 and 1) - output is mapped
|
|
# to inf and for other values outside this range - output is mapped to NaN
|
|
sample = torch.tensor([float('-inf'), -1.00, 1.00, -1.23, 1.06, float('inf')],
|
|
device=device, dtype=dtype)
|
|
nan_mask = torch.tensor([True, False, False, True, True, True], device=device)
|
|
inf_mask = torch.tensor([False, True, True, False, False, False], device=device)
|
|
# For values not in domain (except -1.0 and 1.0), atanh should return nan
|
|
self.assertEqual(torch.isnan(torch.atanh(sample)), nan_mask)
|
|
self.assertEqual(torch.isnan(sample.atanh()), nan_mask)
|
|
# For values -1.0 and 1.0, atanh should return -inf and inf respectively
|
|
self.assertEqual(torch.isinf(torch.atanh(sample)), inf_mask)
|
|
self.assertEqual(torch.isinf(sample.atanh()), inf_mask)
|
|
|
|
# TODO: run on non-native device types
|
|
@dtypes(torch.double)
|
|
def test_unary_out_op_mem_overlap(self, device, dtype):
|
|
sz = 3
|
|
doubles = torch.randn(2 * sz, dtype=dtype, device=device)
|
|
positives = torch.randint(1, 100, (2 * sz,), device=device).double()
|
|
ints = torch.randint(-100, 100, (2 * sz,), device=device)
|
|
unary_mem_overlap_cases = [
|
|
("abs", doubles, True, True, 'cpu'),
|
|
("abs", doubles, True, True, 'cuda'),
|
|
("acos", doubles, True, True, 'cpu'),
|
|
("acos", doubles, True, True, 'cuda'),
|
|
("asin", doubles, True, True, 'cpu'),
|
|
("asin", doubles, True, True, 'cuda'),
|
|
("atan", doubles, True, True, 'cpu'),
|
|
("atan", doubles, True, True, 'cuda'),
|
|
("acosh", doubles, True, True, 'cpu'),
|
|
("acosh", doubles, True, True, 'cuda'),
|
|
("asinh", doubles, True, True, 'cpu'),
|
|
("asinh", doubles, True, True, 'cuda'),
|
|
("atanh", doubles, True, True, 'cpu'),
|
|
("atanh", doubles, True, True, 'cuda'),
|
|
("bitwise_not", ints, True, True, 'cpu'),
|
|
("bitwise_not", ints, True, True, 'cuda'),
|
|
("ceil", doubles, True, True, 'cpu'),
|
|
("ceil", doubles, True, True, 'cuda'),
|
|
("cos", doubles, True, True, 'cpu'),
|
|
("cos", doubles, True, True, 'cuda'),
|
|
("cosh", doubles, True, True, 'cpu'),
|
|
("cosh", doubles, True, True, 'cuda'),
|
|
("digamma", doubles, True, True, 'cpu'),
|
|
("erf", doubles, True, True, 'cpu'),
|
|
("erf", doubles, True, True, 'cuda'),
|
|
("erfc", doubles, True, True, 'cpu'),
|
|
("erfc", doubles, True, True, 'cuda'),
|
|
("erfinv", doubles, True, True, 'cpu'),
|
|
("erfinv", doubles, True, True, 'cuda'),
|
|
("exp", doubles, True, True, 'cpu'),
|
|
("exp", doubles, True, True, 'cuda'),
|
|
("expm1", doubles, True, True, 'cpu'),
|
|
("expm1", doubles, True, True, 'cuda'),
|
|
("floor", doubles, True, True, 'cpu'),
|
|
("floor", doubles, True, True, 'cuda'),
|
|
("frac", doubles, True, True, 'cpu'),
|
|
("frac", doubles, True, True, 'cuda'),
|
|
("log", positives, True, True, 'cpu'),
|
|
("log", positives, True, True, 'cuda'),
|
|
("log10", positives, True, True, 'cpu'),
|
|
("log10", positives, True, True, 'cuda'),
|
|
("log1p", positives, True, True, 'cpu'),
|
|
("log1p", positives, True, True, 'cuda'),
|
|
("log2", positives, True, True, 'cpu'),
|
|
("log2", positives, True, True, 'cuda'),
|
|
("neg", doubles, True, True, 'cpu'),
|
|
("neg", doubles, True, True, 'cuda'),
|
|
("reciprocal", doubles, True, True, 'cpu'),
|
|
("reciprocal", doubles, True, True, 'cuda'),
|
|
("round", doubles, True, True, 'cpu'),
|
|
("round", doubles, True, True, 'cuda'),
|
|
("rsqrt", positives, True, True, 'cpu'),
|
|
("rsqrt", positives, True, True, 'cuda'),
|
|
("sin", doubles, True, True, 'cpu'),
|
|
("sin", doubles, True, True, 'cuda'),
|
|
("sinh", doubles, True, True, 'cpu'),
|
|
("sinh", doubles, False, True, 'cuda'),
|
|
("sigmoid", doubles, True, True, 'cpu'),
|
|
("sigmoid", doubles, True, True, 'cuda'),
|
|
("sqrt", doubles, True, True, 'cpu'),
|
|
("sqrt", doubles, False, True, 'cuda'),
|
|
("tan", doubles, True, True, 'cpu'),
|
|
("tan", doubles, True, True, 'cuda'),
|
|
("tanh", doubles, True, True, 'cpu'),
|
|
("tanh", doubles, True, True, 'cuda'),
|
|
("trunc", doubles, True, True, 'cpu'),
|
|
("trunc", doubles, True, True, 'cuda')
|
|
]
|
|
|
|
for (fn, inputs, has_input_output_mem_overlap_check,
|
|
has_internal_mem_overlap_check, dev) in unary_mem_overlap_cases:
|
|
if dev != device:
|
|
continue
|
|
out_fn = getattr(torch, fn)
|
|
in_fn = getattr(torch.Tensor, fn + '_')
|
|
|
|
self.unary_check_input_output_mem_overlap(inputs, sz, out_fn,
|
|
expected_failure=not has_input_output_mem_overlap_check)
|
|
|
|
self.check_internal_mem_overlap(in_fn, 1, dtype, dev,
|
|
expected_failure=not has_internal_mem_overlap_check)
|
|
|
|
@dtypes(torch.double)
|
|
def test_binary_op_mem_overlap(self, device, dtype):
|
|
ops = [
|
|
("add", True, True, 'cpu'),
|
|
("add", True, True, 'cuda'),
|
|
("mul", True, True, 'cpu'),
|
|
("mul", True, True, 'cuda'),
|
|
("sub", True, True, 'cpu'),
|
|
("sub", True, True, 'cuda'),
|
|
("div", True, True, 'cpu'),
|
|
("div", True, True, 'cuda'),
|
|
("pow", True, True, 'cpu'),
|
|
("pow", True, True, 'cuda')
|
|
]
|
|
|
|
for (fn, has_input_output_mem_overlap_check,
|
|
has_internal_mem_overlap_check, dev) in ops:
|
|
if dev != device:
|
|
continue
|
|
out_op = getattr(torch, fn)
|
|
inplace_op = getattr(torch.Tensor, fn + '_')
|
|
self.check_internal_mem_overlap(
|
|
inplace_op, 2, dtype, device,
|
|
expected_failure=not has_internal_mem_overlap_check)
|
|
|
|
self.binary_check_input_output_mem_overlap(out_op, device,
|
|
expected_failure=not has_input_output_mem_overlap_check)
|
|
|
|
@dtypes(torch.double)
|
|
def test_ternary_op_mem_overlap(self, device, dtype):
|
|
ops = [
|
|
("addcmul", True, True, 'cpu'),
|
|
("addcmul", True, True, 'cuda'),
|
|
("addcdiv", True, True, 'cpu'),
|
|
("addcdiv", True, True, 'cuda'),
|
|
("lerp", True, True, 'cpu'),
|
|
("lerp", False, False, 'cuda')
|
|
]
|
|
|
|
for (fn, has_input_output_mem_overlap_check,
|
|
has_internal_mem_overlap_check, dev) in ops:
|
|
if dev != device:
|
|
continue
|
|
out_op = getattr(torch, fn)
|
|
inplace_op = getattr(torch.Tensor, fn + '_')
|
|
self.check_internal_mem_overlap(
|
|
inplace_op, 3, dtype, device,
|
|
expected_failure=not has_internal_mem_overlap_check)
|
|
self.ternary_check_input_output_mem_overlap(out_op, dev,
|
|
expected_failure=not has_input_output_mem_overlap_check)
|
|
|
|
@dtypes(torch.double)
|
|
def test_copy_mem_overlap(self, device, dtype):
|
|
self.check_internal_mem_overlap(
|
|
torch.Tensor.copy_, num_inputs=2, dtype=dtype, device=device)
|
|
sz = 3
|
|
doubles = torch.randn(2 * sz, dtype=dtype, device=device)
|
|
self.unary_check_input_output_mem_overlap(
|
|
doubles, sz, lambda input, out: out.copy_(input))
|
|
|
|
@dtypes(torch.double)
|
|
def test_pow_scalar_overloads_mem_overlap(self, device, dtype):
|
|
sz = 3
|
|
doubles = torch.randn(2 * sz, dtype=dtype, device=device)
|
|
self.check_internal_mem_overlap(
|
|
lambda t: t.pow_(42), 1, dtype, device)
|
|
self.unary_check_input_output_mem_overlap(
|
|
doubles, sz, lambda input, out: torch.pow(input, 42, out=out))
|
|
self.unary_check_input_output_mem_overlap(
|
|
doubles, sz, lambda input, out: torch.pow(42, input, out=out))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
def test_int_pow(self, device):
|
|
|
|
def _test_integral_pow(dt, range, dev):
|
|
tensor = torch.tensor((3, 3), dtype=dt, device=dev).random_(*range)
|
|
exps = [0, 1, 2, 4,
|
|
torch.tensor((3, 3), dtype=dt, device=dev).random_(0, 5)]
|
|
for exp in exps:
|
|
self._test_pow(tensor, exp)
|
|
|
|
_test_integral_pow(torch.int8, (-3, 4), device)
|
|
_test_integral_pow(torch.uint8, (0, 4), device)
|
|
_test_integral_pow(torch.int16, (-5, 5), device)
|
|
_test_integral_pow(torch.int64, (-10, 10), device)
|
|
_test_integral_pow(torch.int32, (-10, 10), device)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
def test_int_tensor_pow_neg_ints(self, device):
|
|
ints = [torch.iinfo(torch.int32).min,
|
|
-3, -2, -1, 0, 1, 2, 3,
|
|
torch.iinfo(torch.int32).max]
|
|
neg_ints = [torch.iinfo(torch.int32).min, -3, -2, -1]
|
|
tensor = torch.tensor(ints, dtype=torch.int32, device=device)
|
|
for pow in neg_ints:
|
|
self._test_pow(tensor, pow)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
def test_long_tensor_pow_floats(self, device):
|
|
ints = [0, 1, 23, 4567]
|
|
floats = [0.0, 1 / 3, 1 / 2, 1.0, 3 / 2, 2.0]
|
|
tensor = torch.tensor(ints, dtype=torch.int64, device=device)
|
|
for pow in floats:
|
|
self._test_pow(tensor, pow)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
def test_float_scalar_pow_float_tensor(self, device):
|
|
floats = [2.0, -3 / 2, -1.0, -1 / 2, -1 / 3, 0.0,
|
|
1 / 3, 1 / 2, 1.0, 3 / 2, 2.0]
|
|
tensor = torch.tensor(floats, dtype=torch.float32, device=device)
|
|
for base in floats:
|
|
self._test_pow(base, tensor)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
def test_tensor_pow_tensor(self, dev):
|
|
def rotate(l, n):
|
|
return l[-n:] + l[:-n]
|
|
|
|
def test_tensor_pow_tensor(values, torch_type, numpy_type):
|
|
vals_tensor = torch.tensor(values, dtype=torch_type, device=dev)
|
|
for i in range(len(values)):
|
|
pows = rotate(values, i)
|
|
pows_tensor = torch.tensor(pows, dtype=torch_type, device=dev)
|
|
self._test_pow(vals_tensor, pows_tensor)
|
|
|
|
ints = [0, 1, 2, 3]
|
|
test_tensor_pow_tensor(ints, torch.int32, np.int32)
|
|
test_tensor_pow_tensor(ints, torch.int64, np.int64)
|
|
|
|
floats = [-3.0, -2.0, -1.0, -1 / 2, -1 / 3,
|
|
0.0,
|
|
1 / 3, 1 / 2, 1.0, 2.0, 3.0]
|
|
test_tensor_pow_tensor(floats, torch.float32, np.float32)
|
|
test_tensor_pow_tensor(floats, torch.float64, np.float64)
|
|
|
|
@dtypes(torch.float)
|
|
def test_add_with_tail(self, device, dtype):
|
|
# test tensor where there is a tail which is not a multiple
|
|
# of GPU warp size
|
|
for tail_size in [1, 63, 67, 130]:
|
|
size = 4096 + tail_size
|
|
a = torch.randn(size, device=device, dtype=dtype)
|
|
b = torch.randn(size, device=device, dtype=dtype)
|
|
c = a + b
|
|
for x, y, z in zip(a.tolist(), b.tolist(), c.tolist()):
|
|
self.assertEqual(x + y, z)
|
|
|
|
def test_logical_xor_with_nontrivial_alignment(self, device):
|
|
# test tensor that is not aligned to multiple of 16 bytes
|
|
size = 128
|
|
a = (torch.randn(size, device=device) > 0)
|
|
b = (torch.randn(size, device=device) > 0)
|
|
c = (torch.randn(size, device=device) > 0)
|
|
non_trivial_alignment = [1, 2, 4, 8, 15]
|
|
for i in non_trivial_alignment:
|
|
for j in non_trivial_alignment:
|
|
for k in non_trivial_alignment:
|
|
a_ = a[i: 100 + i]
|
|
b_ = b[j: 100 + j]
|
|
c_ = c[k: 100 + k]
|
|
torch.logical_xor(a_, b_, out=c_)
|
|
for x, y, z in zip(a_.tolist(), b_.tolist(), c_.tolist()):
|
|
self.assertEqual(x ^ y, z)
|
|
|
|
def test_var_mean_some_dims(self, device):
|
|
sizes = (4, 6, 7, 5, 3)
|
|
dims = len(sizes)
|
|
|
|
x = torch.rand(sizes, device=device)
|
|
for num_of_dims in range(2, dims):
|
|
dim_list = list(combinations(list(range(dims)), r=num_of_dims))
|
|
for dim in dim_list:
|
|
for unbiased in [False, True]:
|
|
for keepdim in [False, True]:
|
|
var1, mean1 = torch.var_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
|
|
var2 = x.var(dim=dim, unbiased=unbiased, keepdim=keepdim)
|
|
mean2 = x.mean(dim=dim, keepdim=keepdim)
|
|
self.assertEqual(var1, var2)
|
|
self.assertEqual(mean1, mean2)
|
|
|
|
# passes on ROCm w/ python 2.7, fails w/ python 3.6
|
|
@skipCUDAIfRocm
|
|
# stft -> rfft -> _fft -> _fft_with_size -> _fft_mkl
|
|
@skipCPUIfNoMkl
|
|
@dtypes(torch.double)
|
|
def test_stft(self, device, dtype):
|
|
if not TEST_LIBROSA:
|
|
raise unittest.SkipTest('librosa not found')
|
|
|
|
def librosa_stft(x, n_fft, hop_length, win_length, window, center):
|
|
if window is None:
|
|
window = np.ones(n_fft if win_length is None else win_length)
|
|
else:
|
|
window = window.cpu().numpy()
|
|
input_1d = x.dim() == 1
|
|
if input_1d:
|
|
x = x.view(1, -1)
|
|
result = []
|
|
for xi in x:
|
|
ri = librosa.stft(xi.cpu().numpy(), n_fft, hop_length, win_length, window, center=center)
|
|
result.append(torch.from_numpy(np.stack([ri.real, ri.imag], -1)))
|
|
result = torch.stack(result, 0)
|
|
if input_1d:
|
|
result = result[0]
|
|
return result
|
|
|
|
def _test(sizes, n_fft, hop_length=None, win_length=None, win_sizes=None,
|
|
center=True, expected_error=None):
|
|
x = torch.randn(*sizes, dtype=dtype, device=device)
|
|
if win_sizes is not None:
|
|
window = torch.randn(*win_sizes, dtype=dtype, device=device)
|
|
else:
|
|
window = None
|
|
if expected_error is None:
|
|
result = x.stft(n_fft, hop_length, win_length, window, center=center)
|
|
# NB: librosa defaults to np.complex64 output, no matter what
|
|
# the input dtype
|
|
ref_result = librosa_stft(x, n_fft, hop_length, win_length, window, center)
|
|
self.assertEqual(result, ref_result, atol=7e-6, rtol=0, msg='stft comparison against librosa', exact_dtype=False)
|
|
else:
|
|
self.assertRaises(expected_error,
|
|
lambda: x.stft(n_fft, hop_length, win_length, window, center=center))
|
|
|
|
for center in [True, False]:
|
|
_test((10,), 7, center=center)
|
|
_test((10, 4000), 1024, center=center)
|
|
|
|
_test((10,), 7, 2, center=center)
|
|
_test((10, 4000), 1024, 512, center=center)
|
|
|
|
_test((10,), 7, 2, win_sizes=(7,), center=center)
|
|
_test((10, 4000), 1024, 512, win_sizes=(1024,), center=center)
|
|
|
|
# spectral oversample
|
|
_test((10,), 7, 2, win_length=5, center=center)
|
|
_test((10, 4000), 1024, 512, win_length=100, center=center)
|
|
|
|
_test((10, 4, 2), 1, 1, expected_error=RuntimeError)
|
|
_test((10,), 11, 1, center=False, expected_error=RuntimeError)
|
|
_test((10,), -1, 1, expected_error=RuntimeError)
|
|
_test((10,), 3, win_length=5, expected_error=RuntimeError)
|
|
_test((10,), 5, 4, win_sizes=(11,), expected_error=RuntimeError)
|
|
_test((10,), 5, 4, win_sizes=(1, 1), expected_error=RuntimeError)
|
|
|
|
@skipIfRocm
|
|
@unittest.skipIf(not TEST_MKL, "PyTorch is built without MKL support")
|
|
def test_fft_input_modification(self, device):
|
|
# FFT functions should not modify their input (gh-34551)
|
|
|
|
signal = torch.ones((2, 2, 2), device=device)
|
|
signal_copy = signal.clone()
|
|
spectrum = torch.fft(signal, 2)
|
|
self.assertEqual(signal, signal_copy)
|
|
|
|
spectrum_copy = spectrum.clone()
|
|
_ = torch.ifft(spectrum, 2)
|
|
self.assertEqual(spectrum, spectrum_copy)
|
|
|
|
half_spectrum = torch.rfft(signal, 2)
|
|
self.assertEqual(signal, signal_copy)
|
|
|
|
half_spectrum_copy = half_spectrum.clone()
|
|
_ = torch.irfft(half_spectrum_copy, 2, signal_sizes=(2, 2))
|
|
self.assertEqual(half_spectrum, half_spectrum_copy)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@unittest.skipIf(not TEST_MKL, "PyTorch is built without MKL support")
|
|
@dtypes(torch.double)
|
|
def test_istft_round_trip_simple_cases(self, device, dtype):
|
|
"""stft -> istft should recover the original signale"""
|
|
def _test(input, n_fft, length):
|
|
stft = torch.stft(input, n_fft=n_fft)
|
|
inverse = torch.istft(stft, n_fft=n_fft, length=length)
|
|
self.assertEqual(input, inverse, exact_dtype=True)
|
|
|
|
_test(torch.ones(4, dtype=dtype, device=device), 4, 4)
|
|
_test(torch.zeros(4, dtype=dtype, device=device), 4, 4)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@unittest.skipIf(not TEST_MKL, "PyTorch is built without MKL support")
|
|
@dtypes(torch.double)
|
|
def test_istft_round_trip_various_params(self, device, dtype):
|
|
"""stft -> istft should recover the original signale"""
|
|
def _test_istft_is_inverse_of_stft(stft_kwargs):
|
|
# generates a random sound signal for each tril and then does the stft/istft
|
|
# operation to check whether we can reconstruct signal
|
|
data_sizes = [(2, 20), (3, 15), (4, 10)]
|
|
num_trials = 100
|
|
istft_kwargs = stft_kwargs.copy()
|
|
del istft_kwargs['pad_mode']
|
|
for sizes in data_sizes:
|
|
for i in range(num_trials):
|
|
original = torch.randn(*sizes, dtype=dtype, device=device)
|
|
stft = torch.stft(original, **stft_kwargs)
|
|
inversed = torch.istft(stft, length=original.size(1), **istft_kwargs)
|
|
|
|
# trim the original for case when constructed signal is shorter than original
|
|
original = original[..., :inversed.size(-1)]
|
|
self.assertEqual(
|
|
inversed, original, msg='istft comparison against original',
|
|
atol=7e-6, rtol=0, exact_dtype=True)
|
|
|
|
patterns = [
|
|
# hann_window, centered, normalized, onesided
|
|
{
|
|
'n_fft': 12,
|
|
'hop_length': 4,
|
|
'win_length': 12,
|
|
'window': torch.hann_window(12, dtype=dtype, device=device),
|
|
'center': True,
|
|
'pad_mode': 'reflect',
|
|
'normalized': True,
|
|
'onesided': True,
|
|
},
|
|
# hann_window, centered, not normalized, not onesided
|
|
{
|
|
'n_fft': 12,
|
|
'hop_length': 2,
|
|
'win_length': 8,
|
|
'window': torch.hann_window(8, dtype=dtype, device=device),
|
|
'center': True,
|
|
'pad_mode': 'reflect',
|
|
'normalized': False,
|
|
'onesided': False,
|
|
},
|
|
# hamming_window, centered, normalized, not onesided
|
|
{
|
|
'n_fft': 15,
|
|
'hop_length': 3,
|
|
'win_length': 11,
|
|
'window': torch.hamming_window(11, dtype=dtype, device=device),
|
|
'center': True,
|
|
'pad_mode': 'constant',
|
|
'normalized': True,
|
|
'onesided': False,
|
|
},
|
|
# hamming_window, not centered, not normalized, onesided
|
|
# window same size as n_fft
|
|
{
|
|
'n_fft': 5,
|
|
'hop_length': 2,
|
|
'win_length': 5,
|
|
'window': torch.hamming_window(5, dtype=dtype, device=device),
|
|
'center': False,
|
|
'pad_mode': 'constant',
|
|
'normalized': False,
|
|
'onesided': True,
|
|
},
|
|
# hamming_window, not centered, not normalized, not onesided
|
|
# window same size as n_fft
|
|
{
|
|
'n_fft': 3,
|
|
'hop_length': 2,
|
|
'win_length': 3,
|
|
'window': torch.hamming_window(3, dtype=dtype, device=device),
|
|
'center': False,
|
|
'pad_mode': 'reflect',
|
|
'normalized': False,
|
|
'onesided': False,
|
|
},
|
|
]
|
|
for i, pattern in enumerate(patterns):
|
|
_test_istft_is_inverse_of_stft(pattern)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
def test_istft_throws(self, device):
|
|
"""istft should throw exception for invalid parameters"""
|
|
stft = torch.zeros((3, 5, 2), device=device)
|
|
# the window is size 1 but it hops 20 so there is a gap which throw an error
|
|
self.assertRaises(
|
|
RuntimeError, torch.istft, stft, n_fft=4,
|
|
hop_length=20, win_length=1, window=torch.ones(1))
|
|
# A window of zeros does not meet NOLA
|
|
invalid_window = torch.zeros(4, device=device)
|
|
self.assertRaises(
|
|
RuntimeError, torch.istft, stft, n_fft=4, win_length=4, window=invalid_window)
|
|
# Input cannot be empty
|
|
self.assertRaises(RuntimeError, torch.istft, torch.zeros((3, 0, 2)), 2)
|
|
self.assertRaises(RuntimeError, torch.istft, torch.zeros((0, 3, 2)), 2)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@skipIfRocm
|
|
@skipCPUIfNoMkl
|
|
@dtypes(torch.double)
|
|
def test_istft_of_sine(self, device, dtype):
|
|
def _test(amplitude, L, n):
|
|
# stft of amplitude*sin(2*pi/L*n*x) with the hop length and window size equaling L
|
|
x = torch.arange(2 * L + 1, dtype=dtype)
|
|
original = amplitude * torch.sin(2 * math.pi / L * x * n)
|
|
# stft = torch.stft(original, L, hop_length=L, win_length=L,
|
|
# window=torch.ones(L), center=False, normalized=False)
|
|
stft = torch.zeros((L // 2 + 1, 2, 2), dtype=dtype)
|
|
stft_largest_val = (amplitude * L) / 2.0
|
|
if n < stft.size(0):
|
|
stft[n, :, 1] = -stft_largest_val
|
|
|
|
if 0 <= L - n < stft.size(0):
|
|
# symmetric about L // 2
|
|
stft[L - n, :, 1] = stft_largest_val
|
|
|
|
inverse = torch.istft(
|
|
stft, L, hop_length=L, win_length=L,
|
|
window=torch.ones(L, dtype=dtype), center=False, normalized=False)
|
|
# There is a larger error due to the scaling of amplitude
|
|
original = original[..., :inverse.size(-1)]
|
|
self.assertEqual(inverse, original, atol=1e-3, rtol=0)
|
|
|
|
_test(amplitude=123, L=5, n=1)
|
|
_test(amplitude=150, L=5, n=2)
|
|
_test(amplitude=111, L=5, n=3)
|
|
_test(amplitude=160, L=7, n=4)
|
|
_test(amplitude=145, L=8, n=5)
|
|
_test(amplitude=80, L=9, n=6)
|
|
_test(amplitude=99, L=10, n=7)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@skipIfRocm
|
|
@skipCPUIfNoMkl
|
|
@dtypes(torch.double)
|
|
def test_istft_linearity(self, device, dtype):
|
|
num_trials = 100
|
|
|
|
def _test(data_size, kwargs):
|
|
for i in range(num_trials):
|
|
tensor1 = torch.randn(data_size, device=device, dtype=dtype)
|
|
tensor2 = torch.randn(data_size, device=device, dtype=dtype)
|
|
a, b = torch.rand(2, dtype=dtype, device=device)
|
|
istft1 = torch.istft(tensor1, **kwargs)
|
|
istft2 = torch.istft(tensor2, **kwargs)
|
|
istft = a * istft1 + b * istft2
|
|
estimate = torch.istft(a * tensor1 + b * tensor2, **kwargs)
|
|
self.assertEqual(istft, estimate, atol=1e-5, rtol=0)
|
|
patterns = [
|
|
# hann_window, centered, normalized, onesided
|
|
(
|
|
(2, 7, 7, 2),
|
|
{
|
|
'n_fft': 12,
|
|
'window': torch.hann_window(12, device=device, dtype=dtype),
|
|
'center': True,
|
|
'normalized': True,
|
|
'onesided': True,
|
|
},
|
|
),
|
|
# hann_window, centered, not normalized, not onesided
|
|
(
|
|
(2, 12, 7, 2),
|
|
{
|
|
'n_fft': 12,
|
|
'window': torch.hann_window(12, device=device, dtype=dtype),
|
|
'center': True,
|
|
'normalized': False,
|
|
'onesided': False,
|
|
},
|
|
),
|
|
# hamming_window, centered, normalized, not onesided
|
|
(
|
|
(2, 12, 7, 2),
|
|
{
|
|
'n_fft': 12,
|
|
'window': torch.hamming_window(12, device=device, dtype=dtype),
|
|
'center': True,
|
|
'normalized': True,
|
|
'onesided': False,
|
|
},
|
|
),
|
|
# hamming_window, not centered, not normalized, onesided
|
|
(
|
|
(2, 7, 3, 2),
|
|
{
|
|
'n_fft': 12,
|
|
'window': torch.hamming_window(12, device=device, dtype=dtype),
|
|
'center': False,
|
|
'normalized': False,
|
|
'onesided': True,
|
|
},
|
|
)
|
|
]
|
|
for data_size, kwargs in patterns:
|
|
_test(data_size, kwargs)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@skipCPUIfNoMkl
|
|
@skipIfRocm
|
|
def test_batch_istft(self, device):
|
|
original = torch.tensor([
|
|
[[4., 0.], [4., 0.], [4., 0.], [4., 0.], [4., 0.]],
|
|
[[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]],
|
|
[[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]]
|
|
], device=device)
|
|
|
|
single = original.repeat(1, 1, 1, 1)
|
|
multi = original.repeat(4, 1, 1, 1)
|
|
|
|
i_original = torch.istft(original, n_fft=4, length=4)
|
|
i_single = torch.istft(single, n_fft=4, length=4)
|
|
i_multi = torch.istft(multi, n_fft=4, length=4)
|
|
|
|
self.assertEqual(i_original.repeat(1, 1), i_single, atol=1e-6, rtol=0, exact_dtype=True)
|
|
self.assertEqual(i_original.repeat(4, 1), i_multi, atol=1e-6, rtol=0, exact_dtype=True)
|
|
|
|
@skipCUDAIfRocm
|
|
def test_blas_empty(self, device):
|
|
|
|
def fn(torchfn, *args, **kwargs):
|
|
return torchfn(*tuple(torch.randn(shape, device=device) if isinstance(shape, tuple) else shape
|
|
for shape in args), **kwargs)
|
|
|
|
# mm, addmm
|
|
self.assertEqual((0, 0), fn(torch.mm, (0, 0), (0, 0)).shape)
|
|
self.assertEqual((0, 5), fn(torch.mm, (0, 0), (0, 5)).shape)
|
|
self.assertEqual((5, 0), fn(torch.mm, (5, 0), (0, 0)).shape)
|
|
self.assertEqual((3, 0), fn(torch.mm, (3, 2), (2, 0)).shape)
|
|
self.assertEqual(torch.zeros((5, 6), device=device), fn(torch.mm, (5, 0), (0, 6)))
|
|
|
|
self.assertEqual((0, 0), fn(torch.addmm, (0, 0), (0, 0), (0, 0)).shape)
|
|
self.assertEqual((5, 6), fn(torch.addmm, (5, 6), (5, 0), (0, 6)).shape)
|
|
self.assertEqual((0, 1), fn(torch.addmm, (1, ), (0, 17), (17, 1)).shape)
|
|
|
|
# mv, addmv
|
|
self.assertEqual((0,), fn(torch.mv, (0, 0), (0,)).shape)
|
|
self.assertEqual((0,), fn(torch.mv, (0, 2), (2,)).shape)
|
|
self.assertEqual(torch.zeros((3,), device=device), fn(torch.mv, (3, 0), (0,)))
|
|
|
|
self.assertEqual((0,), fn(torch.addmv, (0,), (0, 0), (0,)).shape)
|
|
self.assertEqual((3,), fn(torch.addmv, (3,), (3, 0), (0,)).shape)
|
|
|
|
# ger, addr
|
|
self.assertEqual((0, 0), fn(torch.ger, (0,), (0,)).shape)
|
|
self.assertEqual((5, 0), fn(torch.ger, (5,), (0,)).shape)
|
|
self.assertEqual((0, 4), fn(torch.ger, (0,), (4,)).shape)
|
|
|
|
self.assertEqual((0, 0), fn(torch.addr, (0, 0), (0,), (0,)).shape)
|
|
self.assertEqual((5, 0), fn(torch.addr, (5, 0), (5,), (0,)).shape)
|
|
self.assertEqual((0, 4), fn(torch.addr, (0, 4), (0,), (4,)).shape)
|
|
|
|
# bmm, baddbmm
|
|
self.assertEqual((0, 0, 0), fn(torch.bmm, (0, 0, 0), (0, 0, 0)).shape)
|
|
self.assertEqual((3, 0, 5), fn(torch.bmm, (3, 0, 0), (3, 0, 5)).shape)
|
|
self.assertEqual((0, 5, 6), fn(torch.bmm, (0, 5, 0), (0, 0, 6)).shape)
|
|
self.assertEqual(torch.zeros((3, 5, 6), device=device), fn(torch.bmm, (3, 5, 0), (3, 0, 6)))
|
|
|
|
self.assertEqual((0, 0, 0), fn(torch.baddbmm, (0, 0, 0), (0, 0, 0), (0, 0, 0)).shape)
|
|
self.assertEqual((3, 0, 5), fn(torch.baddbmm, (3, 0, 5), (3, 0, 0), (3, 0, 5)).shape)
|
|
self.assertEqual((0, 5, 6), fn(torch.baddbmm, (0, 5, 6), (0, 5, 0), (0, 0, 6)).shape)
|
|
self.assertEqual((3, 5, 6), fn(torch.baddbmm, (3, 5, 6), (3, 5, 0), (3, 0, 6)).shape)
|
|
c = torch.arange(30, dtype=torch.float32, device=device).reshape(3, 2, 5)
|
|
self.assertEqual(-2 * c, fn(torch.baddbmm, c, (3, 2, 0), (3, 0, 5), beta=-2)) # Issue #33467
|
|
|
|
# addbmm
|
|
self.assertEqual((0, 0), fn(torch.addbmm, (0, 0), (0, 0, 0), (0, 0, 0)).shape)
|
|
self.assertEqual((0, 5), fn(torch.addbmm, (0, 5), (3, 0, 0), (3, 0, 5)).shape)
|
|
self.assertEqual((5, 6), fn(torch.addbmm, (5, 6), (0, 5, 0), (0, 0, 6)).shape)
|
|
|
|
# matmul
|
|
self.assertEqual(torch.tensor(0., device=device), fn(torch.matmul, (0,), (0,)))
|
|
self.assertEqual((0, 0), fn(torch.matmul, (0, 0), (0, 0)).shape)
|
|
self.assertEqual((0, 0, 0), fn(torch.matmul, (0, 0, 0), (0, 0, 0)).shape)
|
|
self.assertEqual((5, 0, 0), fn(torch.matmul, (5, 0, 0), (5, 0, 0)).shape)
|
|
self.assertEqual(torch.zeros((5, 3, 4), device=device), fn(torch.matmul, (5, 3, 0), (5, 0, 4)))
|
|
|
|
# dot
|
|
self.assertEqual(torch.tensor(0., device=device), fn(torch.dot, (0,), (0,)))
|
|
|
|
if torch._C.has_lapack:
|
|
# lu
|
|
A_LU, pivots = fn(torch.lu, (0, 5, 5))
|
|
self.assertEqual([(0, 5, 5), (0, 5)], [A_LU.shape, pivots.shape])
|
|
A_LU, pivots = fn(torch.lu, (0, 0, 0))
|
|
self.assertEqual([(0, 0, 0), (0, 0)], [A_LU.shape, pivots.shape])
|
|
A_LU, pivots = fn(torch.lu, (2, 0, 0))
|
|
self.assertEqual([(2, 0, 0), (2, 0)], [A_LU.shape, pivots.shape])
|
|
|
|
@skipCUDAIfRocm
|
|
@dtypesIfCUDA(*(torch.float, torch.double, torch.cfloat, torch.cdouble) +
|
|
# This test is disabled on CUDA 9, due to:
|
|
# See: https://github.com/pytorch/pytorch/issues/31006
|
|
((torch.half,) if torch.version.cuda and not torch.version.cuda.startswith('9.') else ()))
|
|
@dtypes(*(set(torch.testing.get_all_dtypes()) - {torch.half, torch.bool}))
|
|
def test_blas_alpha_beta_empty(self, device, dtype):
|
|
if dtype is torch.bfloat16 and self.device_type == 'xla':
|
|
# TODO (@zasdfgbnm): this causes the following error on test
|
|
# TestTorchDeviceTypeXLA.test_blas_alpha_beta_empty_xla_bfloat16:
|
|
#
|
|
# RuntimeError: _th_equal not supported on CPUType for BFloat16
|
|
return
|
|
# ensure beta is respected
|
|
value = 11
|
|
input = torch.full((2,), value, dtype=dtype, device=device)
|
|
mat = torch.ones((2, 0), dtype=dtype, device=device)
|
|
vec = torch.ones((0,), dtype=dtype, device=device)
|
|
out = torch.empty((2,), dtype=dtype, device=device)
|
|
alpha = 6
|
|
beta = 3
|
|
self.assertEqual(torch.full((2,), beta * value, dtype=dtype, device=device),
|
|
torch.addmv(input=input, mat=mat, vec=vec, alpha=alpha, beta=beta))
|
|
self.assertEqual(torch.full((2,), beta * value, dtype=dtype, device=device),
|
|
torch.addmv(input=input, mat=mat, vec=vec, alpha=alpha, beta=beta, out=out))
|
|
|
|
# TODO: update this once torch.addmm is supported for complex
|
|
if dtype.is_complex and device != 'cpu':
|
|
return
|
|
|
|
# torch.addmm
|
|
input = torch.full((2, 3), value, dtype=dtype, device=device)
|
|
mat2 = torch.ones((0, 3), dtype=dtype, device=device)
|
|
out = torch.empty((2, 3), dtype=dtype, device=device)
|
|
self.assertEqual(torch.full((2, 3), beta * value, dtype=dtype, device=device),
|
|
torch.addmm(input=input, mat1=mat, mat2=mat2, alpha=alpha, beta=beta))
|
|
self.assertEqual(torch.full((2, 3), beta * value, dtype=dtype, device=device),
|
|
torch.addmm(input=input, mat1=mat, mat2=mat2, alpha=alpha, beta=beta, out=out))
|
|
|
|
def test_blas_nan_out(self, device):
|
|
# These functions should work correctly with NaN filled outputs,
|
|
# but need special handling, see [NOTE: cpu_zero]
|
|
b = 3
|
|
n = 5
|
|
m = 7
|
|
p = 11
|
|
|
|
# torch.mv
|
|
nm = torch.randn((m, n), device=device).t()
|
|
_m = torch.randn((), device=device).expand(m)
|
|
_m_out = torch.full((m,), float('nan'), device=device)
|
|
self.assertEqual(torch.mv(nm, _m), torch.mv(nm, _m, out=_m_out))
|
|
self.assertEqual(0, torch.isnan(torch.mv(nm, _m)).sum())
|
|
|
|
# torch.mm
|
|
mp = torch.randn((p, m), device=device).t()
|
|
np_out = torch.full((n, p), float('nan'), device=device)
|
|
self.assertEqual(torch.mm(nm, mp), torch.mm(nm, mp, out=np_out))
|
|
|
|
# torch.bmm
|
|
bnm = torch.randn((b, m, n), device=device).transpose(1, 2)
|
|
bmp = torch.randn((b, p, m), device=device).transpose(1, 2)
|
|
bnp_out = torch.full((b, n, p), float('nan'), device=device)
|
|
self.assertEqual(torch.bmm(bnm, bmp), torch.bmm(bnm, bmp, out=bnp_out))
|
|
|
|
@onlyCPU # not supported by CUBLAS
|
|
def test_blas_mv_large_input(self, device):
|
|
# This would previously fail if the allocated output had NaNs, see:
|
|
# https://github.com/pytorch/pytorch/issues/31663 and [NOTE: cpu_zero]
|
|
n = 3000
|
|
m = 200
|
|
|
|
nm = torch.randn((m, n), device=device).t()
|
|
_m = torch.randn((), device=device).expand(m)
|
|
_m_out = torch.full((m,), 0., device=device)
|
|
|
|
self.assertEqual(torch.mv(nm, _m), torch.mv(nm, _m, out=_m_out))
|
|
|
|
@skipCUDAIfRocm
|
|
def test_unique_dim(self, device):
|
|
self.assertFalse(hasattr(torch, 'unique_dim'))
|
|
|
|
def run_test(device, dtype):
|
|
x = torch.tensor([[[1., 1.],
|
|
[0., 1.],
|
|
[2., 1.],
|
|
[0., 1.]],
|
|
[[1., 1.],
|
|
[0., 1.],
|
|
[2., 1.],
|
|
[0., 1.]]],
|
|
dtype=dtype,
|
|
device=device)
|
|
x_empty = torch.empty(5, 0, dtype=dtype, device=device)
|
|
x_ill_formed_empty = torch.empty(5, 0, 0, dtype=dtype, device=device)
|
|
x_ill_formed_empty_another = torch.empty(5, 0, 5, dtype=dtype, device=device)
|
|
expected_unique_dim0 = torch.tensor([[[1., 1.],
|
|
[0., 1.],
|
|
[2., 1.],
|
|
[0., 1.]]],
|
|
dtype=dtype,
|
|
device=device)
|
|
expected_inverse_dim0 = torch.tensor([0, 0])
|
|
expected_counts_dim0 = torch.tensor([2])
|
|
expected_unique_dim1 = torch.tensor([[[0., 1.],
|
|
[1., 1.],
|
|
[2., 1.]],
|
|
[[0., 1.],
|
|
[1., 1.],
|
|
[2., 1.]]],
|
|
dtype=dtype,
|
|
device=device)
|
|
expected_unique_dim1_bool = torch.tensor([[[False, True], [True, True]],
|
|
[[False, True], [True, True]]],
|
|
dtype=torch.bool,
|
|
device=device)
|
|
expected_inverse_dim1 = torch.tensor([1, 0, 2, 0])
|
|
expected_inverse_dim1_bool = torch.tensor([1, 0, 1, 0])
|
|
expected_counts_dim1 = torch.tensor([2, 1, 1])
|
|
expected_counts_dim1_bool = torch.tensor([2, 2])
|
|
expected_unique_dim2 = torch.tensor([[[1., 1.],
|
|
[0., 1.],
|
|
[2., 1.],
|
|
[0., 1.]],
|
|
[[1., 1.],
|
|
[0., 1.],
|
|
[2., 1.],
|
|
[0., 1.]]],
|
|
dtype=dtype,
|
|
device=device)
|
|
expected_inverse_dim2 = torch.tensor([0, 1])
|
|
expected_counts_dim2 = torch.tensor([1, 1])
|
|
expected_unique_empty = torch.tensor([], dtype=dtype, device=device)
|
|
expected_inverse_empty = torch.tensor([], dtype=torch.long, device=device)
|
|
expected_counts_empty = torch.tensor([], dtype=torch.long, device=device)
|
|
# dim0
|
|
x_unique = torch.unique(x, dim=0)
|
|
self.assertEqual(expected_unique_dim0, x_unique)
|
|
|
|
x_unique, x_inverse = torch.unique(
|
|
x,
|
|
return_inverse=True,
|
|
dim=0)
|
|
self.assertEqual(expected_unique_dim0, x_unique)
|
|
self.assertEqual(expected_inverse_dim0, x_inverse)
|
|
|
|
x_unique, x_counts = torch.unique(
|
|
x,
|
|
return_inverse=False,
|
|
return_counts=True,
|
|
dim=0)
|
|
self.assertEqual(expected_unique_dim0, x_unique)
|
|
self.assertEqual(expected_counts_dim0, x_counts)
|
|
|
|
x_unique, x_inverse, x_counts = torch.unique(
|
|
x,
|
|
return_inverse=True,
|
|
return_counts=True,
|
|
dim=0)
|
|
self.assertEqual(expected_unique_dim0, x_unique)
|
|
self.assertEqual(expected_inverse_dim0, x_inverse)
|
|
self.assertEqual(expected_counts_dim0, x_counts)
|
|
|
|
# dim1
|
|
x_unique = torch.unique(x, dim=1)
|
|
if x.dtype == torch.bool:
|
|
self.assertEqual(expected_unique_dim1_bool, x_unique)
|
|
else:
|
|
self.assertEqual(expected_unique_dim1, x_unique)
|
|
|
|
x_unique, x_inverse = torch.unique(
|
|
x,
|
|
return_inverse=True,
|
|
dim=1)
|
|
if x.dtype == torch.bool:
|
|
self.assertEqual(expected_unique_dim1_bool, x_unique)
|
|
self.assertEqual(expected_inverse_dim1_bool, x_inverse)
|
|
else:
|
|
self.assertEqual(expected_unique_dim1, x_unique)
|
|
self.assertEqual(expected_inverse_dim1, x_inverse)
|
|
|
|
x_unique, x_counts = torch.unique(
|
|
x,
|
|
return_inverse=False,
|
|
return_counts=True,
|
|
dim=1)
|
|
if x.dtype == torch.bool:
|
|
self.assertEqual(expected_unique_dim1_bool, x_unique)
|
|
self.assertEqual(expected_counts_dim1_bool, x_counts)
|
|
else:
|
|
self.assertEqual(expected_unique_dim1, x_unique)
|
|
self.assertEqual(expected_counts_dim1, x_counts)
|
|
|
|
x_unique, x_inverse, x_counts = torch.unique(
|
|
x,
|
|
return_inverse=True,
|
|
return_counts=True,
|
|
dim=1)
|
|
if x.dtype == torch.bool:
|
|
self.assertEqual(expected_unique_dim1_bool, x_unique)
|
|
self.assertEqual(expected_inverse_dim1_bool, x_inverse)
|
|
self.assertEqual(expected_counts_dim1_bool, x_counts)
|
|
else:
|
|
self.assertEqual(expected_unique_dim1, x_unique)
|
|
self.assertEqual(expected_inverse_dim1, x_inverse)
|
|
self.assertEqual(expected_counts_dim1, x_counts)
|
|
|
|
# dim2
|
|
x_unique = torch.unique(x, dim=2)
|
|
self.assertEqual(expected_unique_dim2, x_unique)
|
|
|
|
x_unique, x_inverse = torch.unique(
|
|
x,
|
|
return_inverse=True,
|
|
dim=2)
|
|
self.assertEqual(expected_unique_dim2, x_unique)
|
|
self.assertEqual(expected_inverse_dim2, x_inverse)
|
|
|
|
x_unique, x_counts = torch.unique(
|
|
x,
|
|
return_inverse=False,
|
|
return_counts=True,
|
|
dim=2)
|
|
self.assertEqual(expected_unique_dim2, x_unique)
|
|
self.assertEqual(expected_counts_dim2, x_counts)
|
|
|
|
x_unique, x_inverse, x_counts = torch.unique(
|
|
x,
|
|
return_inverse=True,
|
|
return_counts=True,
|
|
dim=2)
|
|
self.assertEqual(expected_unique_dim2, x_unique)
|
|
self.assertEqual(expected_inverse_dim2, x_inverse)
|
|
self.assertEqual(expected_counts_dim2, x_counts)
|
|
|
|
# test empty tensor
|
|
x_unique, x_inverse, x_counts = torch.unique(
|
|
x_empty,
|
|
return_inverse=True,
|
|
return_counts=True,
|
|
dim=1)
|
|
self.assertEqual(expected_unique_empty, x_unique)
|
|
self.assertEqual(expected_inverse_empty, x_inverse)
|
|
self.assertEqual(expected_counts_empty, x_counts)
|
|
|
|
# test not a well formed tensor
|
|
# Checking for runtime error, as this is the expected behaviour
|
|
with self.assertRaises(RuntimeError):
|
|
torch.unique(
|
|
x_ill_formed_empty,
|
|
return_inverse=True,
|
|
return_counts=True,
|
|
dim=1)
|
|
|
|
# test along dim2
|
|
with self.assertRaises(RuntimeError):
|
|
torch.unique(
|
|
x_ill_formed_empty_another,
|
|
return_inverse=True,
|
|
return_counts=True,
|
|
dim=2)
|
|
|
|
# test consecutive version
|
|
y = torch.tensor(
|
|
[[0, 1],
|
|
[0, 1],
|
|
[0, 1],
|
|
[1, 2],
|
|
[1, 2],
|
|
[3, 4],
|
|
[0, 1],
|
|
[0, 1],
|
|
[3, 4],
|
|
[1, 2]],
|
|
dtype=dtype,
|
|
device=device
|
|
)
|
|
expected_y_unique = torch.tensor(
|
|
[[0, 1],
|
|
[1, 2],
|
|
[3, 4],
|
|
[0, 1],
|
|
[3, 4],
|
|
[1, 2]],
|
|
dtype=dtype,
|
|
device=device
|
|
)
|
|
expected_y_inverse = torch.tensor([0, 0, 0, 1, 1, 2, 3, 3, 4, 5], dtype=torch.int64, device=device)
|
|
expected_y_counts = torch.tensor([3, 2, 1, 2, 1, 1], dtype=torch.int64, device=device)
|
|
expected_y_inverse_bool = torch.tensor([0, 0, 0, 1, 1, 1, 2, 2, 3, 3], dtype=torch.int64, device=device)
|
|
expected_y_counts_bool = torch.tensor([3, 3, 2, 2], dtype=torch.int64, device=device)
|
|
y_unique, y_inverse, y_counts = torch.unique_consecutive(y, return_inverse=True, return_counts=True, dim=0)
|
|
if x.dtype == torch.bool:
|
|
self.assertEqual(expected_y_inverse_bool, y_inverse)
|
|
self.assertEqual(expected_y_counts_bool, y_counts)
|
|
else:
|
|
self.assertEqual(expected_y_inverse, y_inverse)
|
|
self.assertEqual(expected_y_counts, y_counts)
|
|
|
|
run_test(device, torch.float)
|
|
run_test(device, torch.double)
|
|
run_test(device, torch.long)
|
|
run_test(device, torch.uint8)
|
|
run_test(device, torch.bool)
|
|
|
|
# Tests that CUDA tensors on different devices cannot be used in the same
|
|
# binary operation, and that CUDA "scalars" cannot be used in the same
|
|
# binary operation as non-scalar CPU tensors.
|
|
@deviceCountAtLeast(2)
|
|
@onlyCUDA
|
|
def test_cross_device_binary_ops(self, devices):
|
|
vals = (1., (2.,))
|
|
cpu_tensor = torch.randn(2, 2)
|
|
for op in (operator.add, torch.add,
|
|
operator.sub, torch.sub,
|
|
operator.mul, torch.mul,
|
|
operator.truediv, torch.true_divide,
|
|
operator.floordiv, torch.floor_divide):
|
|
for a, b in product(vals, vals):
|
|
a = torch.tensor(a, device=devices[0])
|
|
b = torch.tensor(b, device=devices[1])
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "Expected all tensors.+"):
|
|
op(a, b)
|
|
with self.assertRaisesRegex(RuntimeError, "Expected all tensors.+"):
|
|
op(b, a)
|
|
with self.assertRaisesRegex(RuntimeError, "Expected all tensors.+"):
|
|
op(a, cpu_tensor)
|
|
with self.assertRaisesRegex(RuntimeError, "Expected all tensors.+"):
|
|
op(cpu_tensor, a)
|
|
|
|
# This test ensures that a scalar Tensor can be safely used
|
|
# in a binary operation in conjunction with a Tensor on all
|
|
# available CUDA devices
|
|
@deviceCountAtLeast(2)
|
|
@onlyCUDA
|
|
def test_binary_op_scalar_device_unspecified(self, devices):
|
|
scalar_val = torch.tensor(1.)
|
|
for default_device in devices:
|
|
with torch.cuda.device(default_device):
|
|
for device in devices:
|
|
device_obj = torch.device(device)
|
|
x = torch.rand(3, device=device)
|
|
y0 = x * scalar_val
|
|
self.assertEqual(y0.device, device_obj)
|
|
y1 = scalar_val * x
|
|
self.assertEqual(y1.device, device_obj)
|
|
self.assertEqual(y0, y1)
|
|
|
|
# Tests that CPU scalars (including zero dim tensors) can be used in
|
|
# binary operations with CUDA tensors.
|
|
@onlyCUDA
|
|
def test_cuda_cpu_scalar_binary_ops(self, device):
|
|
val_scalar = math.pi
|
|
val_tensor = torch.tensor(val_scalar)
|
|
for op in (operator.add, torch.add,
|
|
operator.sub, torch.sub,
|
|
operator.mul, torch.mul,
|
|
operator.truediv, torch.true_divide,
|
|
operator.floordiv, torch.floor_divide):
|
|
for tensor_val in (1, (1,)):
|
|
t_cuda = torch.tensor(tensor_val, device=device)
|
|
t_cpu = t_cuda.cpu()
|
|
for val in (val_scalar, val_tensor):
|
|
cpu_result = op(t_cpu, val)
|
|
cuda_result = op(t_cuda, val)
|
|
self.assertEqual(cpu_result, cuda_result)
|
|
|
|
reverse_cpu_result = op(val, t_cpu)
|
|
reverse_cuda_result = op(val, t_cuda)
|
|
self.assertEqual(reverse_cpu_result, reverse_cuda_result)
|
|
|
|
@onlyCUDA
|
|
def test_ceil_out_mismatch(self, device):
|
|
a = torch.randn(1)
|
|
b = torch.randn(1, device=device)
|
|
self.assertRaises(RuntimeError, lambda: torch.ceil(a, out=b))
|
|
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_has_storage_numpy(self, device):
|
|
for dtype in [np.float32, np.float64, np.int64,
|
|
np.int32, np.int16, np.uint8]:
|
|
arr = np.array([1], dtype=dtype)
|
|
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.float32).storage())
|
|
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.double).storage())
|
|
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.int).storage())
|
|
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.long).storage())
|
|
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.uint8).storage())
|
|
|
|
def test_all_any_empty(self, device):
|
|
x = torch.ByteTensor().to(device)
|
|
self.assertTrue(x.all())
|
|
self.assertFalse(x.any())
|
|
|
|
x = torch.BoolTensor().to(device)
|
|
self.assertTrue(x.all())
|
|
self.assertFalse(x.any())
|
|
|
|
@onlyCUDA
|
|
def test_multinomial_device_constrain(self, device):
|
|
x = torch.empty(0, device="cpu")
|
|
y = torch.empty(0, device=device)
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "multinomial arguments must have the same device",
|
|
lambda: torch.multinomial(x, 2, out=y))
|
|
|
|
@deviceCountAtLeast(2)
|
|
@onlyCUDA
|
|
def test_multinomial_gpu_device_constrain(self, devices):
|
|
x = torch.empty(0, device=devices[0])
|
|
y = torch.empty(0, device=devices[1])
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "multinomial arguments must have the same device",
|
|
lambda: torch.multinomial(x, 2, out=y))
|
|
|
|
@deviceCountAtLeast(2)
|
|
@onlyCUDA
|
|
def test_device_guard(self, devices):
|
|
# verify that all operators with `device_guard: False` behave properly with multiple devices.
|
|
# TODO: if we had operator introspection we could figure out this set of operators automatically...
|
|
x = torch.randn((1, 2, 3), device=devices[1])
|
|
y = torch.zeros((1, 3, 2), device=devices[1])
|
|
scalar = torch.tensor(5, device=devices[1])
|
|
|
|
# property ops
|
|
torch.cudnn_is_acceptable(x)
|
|
x.is_distributed()
|
|
x.is_floating_point()
|
|
x.is_complex()
|
|
x.is_same_size(y)
|
|
x.is_signed()
|
|
x.size(0)
|
|
x.stride(0)
|
|
x.numel()
|
|
x.is_set_to(y)
|
|
x.data_ptr()
|
|
scalar.is_nonzero()
|
|
|
|
# sparse property ops
|
|
y[0][1] = 5
|
|
y_sparse = y.to_sparse()
|
|
y_sparse.sparse_dim()
|
|
y_sparse._dimI()
|
|
y_sparse.dense_dim()
|
|
y_sparse._dimV()
|
|
y_sparse._nnz()
|
|
y_sparse.is_coalesced()
|
|
y_sparse._indices()
|
|
y_sparse._values()
|
|
y_sparse.indices()
|
|
y_sparse.values()
|
|
|
|
# in-place ops
|
|
def inplace():
|
|
return torch.randn((1, 2, 3), device=devices[1])
|
|
inplace().as_strided_(y.size(), y.stride())
|
|
inplace().resize_(y.size())
|
|
inplace().squeeze_()
|
|
inplace().squeeze_(0)
|
|
inplace().unsqueeze_(2)
|
|
inplace().transpose_(1, 2)
|
|
inplace().squeeze_().t_()
|
|
inplace().set_(x.storage())
|
|
inplace().set_(x.storage(), x.storage_offset(), x.size(), x.stride())
|
|
inplace().set_(x)
|
|
inplace().set_()
|
|
y_sparse._coalesced_(True)
|
|
|
|
# shape modification
|
|
x.as_strided(y.size(), y.stride())
|
|
x.expand((5, 2, 3))
|
|
x.expand_as(x)
|
|
x.sum_to_size((1,))
|
|
torch.broadcast_tensors(x , x)
|
|
x.reshape((1, 3, 2))
|
|
x.reshape_as(y)
|
|
x.squeeze()
|
|
x.squeeze(0)
|
|
x.squeeze().t()
|
|
x.transpose(1, 2)
|
|
x.unsqueeze(2)
|
|
x.view((1, 3, 2))
|
|
x.view_as(y)
|
|
|
|
# chunk, split, etc.
|
|
x.chunk(2, dim=1)
|
|
x.split(1, dim=2)
|
|
x.split_with_sizes([1, 2], dim=2)
|
|
x.unfold(dimension=2, size=1, step=1)
|
|
|
|
x.narrow(1, 1, 1)
|
|
x.select(1, 1)
|
|
torch.isnan(x)
|
|
|
|
torch.empty((1, 3, 2), out=y)
|
|
torch.empty_like(x)
|
|
torch.empty_like(x, dtype=torch.int64)
|
|
|
|
# to
|
|
x.to(x)
|
|
x.to(y)
|
|
x.to(x, copy=True)
|
|
|
|
@onlyCUDA
|
|
def test_tensor_factory_gpu_type_inference(self, device):
|
|
saved_type = torch.Tensor().type()
|
|
torch.set_default_tensor_type(torch.cuda.DoubleTensor)
|
|
torch.set_default_dtype(torch.float32)
|
|
self.assertIs(torch.float32, torch.tensor(0.).dtype)
|
|
self.assertEqual(torch.device(device), torch.tensor(0.).device)
|
|
torch.set_default_dtype(torch.float64)
|
|
self.assertIs(torch.float64, torch.tensor(0.).dtype)
|
|
self.assertEqual(torch.device(device), torch.tensor(0.).device)
|
|
torch.set_default_tensor_type(saved_type)
|
|
|
|
@onlyCUDA
|
|
def test_tensor_factory_gpu_type(self, device):
|
|
saved_type = torch.Tensor().type()
|
|
torch.set_default_tensor_type(torch.cuda.FloatTensor)
|
|
x = torch.zeros((5, 5))
|
|
self.assertIs(torch.float32, x.dtype)
|
|
self.assertTrue(x.is_cuda)
|
|
torch.set_default_tensor_type(torch.cuda.DoubleTensor)
|
|
x = torch.zeros((5, 5))
|
|
self.assertIs(torch.float64, x.dtype)
|
|
self.assertTrue(x.is_cuda)
|
|
torch.set_default_tensor_type(saved_type)
|
|
|
|
@onlyCPU
|
|
def test_renorm_ps(self, device):
|
|
# full reduction
|
|
x = torch.randn(5, 5)
|
|
xn = x.numpy()
|
|
for p in [1, 2, 3, 4, inf]:
|
|
res = x.renorm(p, 1, 1)
|
|
expected = x / x.norm(p, 0, keepdim=True).clamp(min=1)
|
|
self.assertEqual(res, expected, msg="renorm failed for {}-norm".format(p))
|
|
|
|
@onlyCUDA
|
|
def test_topk_noncontiguous_gpu(self, device):
|
|
t = torch.randn(20, device=device)[::2]
|
|
top1, idx1 = t.topk(5)
|
|
top2, idx2 = t.contiguous().topk(5)
|
|
self.assertEqual(top1, top2)
|
|
self.assertEqual(idx1, idx2)
|
|
|
|
@dtypes(torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64)
|
|
def test_topk_integral(self, device, dtype):
|
|
a = torch.randint(torch.iinfo(dtype).min, torch.iinfo(dtype).max, size=(10,),
|
|
dtype=dtype, device=device)
|
|
sort_topk = a.sort()[0][-5:].flip(0)
|
|
topk = a.topk(5)
|
|
self.assertEqual(sort_topk, topk[0]) # check values
|
|
self.assertEqual(sort_topk, a[topk[1]]) # check indices
|
|
|
|
@dtypesIfCUDA(*([torch.half, torch.float, torch.double]
|
|
+ ([torch.bfloat16] if TEST_WITH_ROCM else [])))
|
|
@dtypes(torch.float, torch.double)
|
|
def test_topk_nonfinite(self, device, dtype):
|
|
x = torch.tensor([float('nan'), float('inf'), 1e4, 0, -1e4, -float('inf')], device=device, dtype=dtype)
|
|
val, idx = x.topk(4)
|
|
expect = torch.tensor([float('nan'), float('inf'), 1e4, 0], device=device, dtype=dtype)
|
|
self.assertEqual(val, expect)
|
|
self.assertEqual(idx, [0, 1, 2, 3])
|
|
|
|
val, idx = x.topk(4, largest=False)
|
|
expect = torch.tensor([-float('inf'), -1e4, 0, 1e4], device=device, dtype=dtype)
|
|
self.assertEqual(val, expect)
|
|
self.assertEqual(idx, [5, 4, 3, 2])
|
|
|
|
def test_topk_4d(self, device):
|
|
x = torch.ones(2, 3072, 2, 2, device=device)
|
|
x[:, 1, :, :] *= 2.
|
|
x[:, 10, :, :] *= 1.5
|
|
val, ind = torch.topk(x, k=2, dim=1)
|
|
expected_ind = torch.ones(2, 2, 2, 2, dtype=torch.long, device=device)
|
|
expected_ind[:, 1, :, :] = 10
|
|
expected_val = torch.ones(2, 2, 2, 2, device=device)
|
|
expected_val[:, 0, :, :] *= 2.
|
|
expected_val[:, 1, :, :] *= 1.5
|
|
self.assertEqual(val, expected_val, atol=0, rtol=0)
|
|
self.assertEqual(ind, expected_ind, atol=0, rtol=0)
|
|
|
|
|
|
|
|
|
|
def test_is_signed(self, device):
|
|
self.assertEqual(torch.IntTensor(5).to(device).is_signed(), True)
|
|
self.assertEqual(torch.ByteTensor(5).to(device).is_signed(), False)
|
|
self.assertEqual(torch.CharTensor(5).to(device).is_signed(), True)
|
|
self.assertEqual(torch.FloatTensor(5).to(device).is_signed(), True)
|
|
self.assertEqual(torch.HalfTensor(10).to(device).is_signed(), True)
|
|
|
|
# Note - reports a leak of 512 bytes on CUDA device 1
|
|
@deviceCountAtLeast(2)
|
|
@skipCUDAMemoryLeakCheckIf(True)
|
|
@onlyCUDA
|
|
def test_tensor_set_errors_multigpu(self, devices):
|
|
f_cuda0 = torch.randn((2, 3), dtype=torch.float32, device=devices[0])
|
|
f_cuda1 = torch.randn((2, 3), dtype=torch.float32, device=devices[1])
|
|
|
|
self.assertRaises(RuntimeError, lambda: f_cuda0.set_(f_cuda1.storage()))
|
|
self.assertRaises(RuntimeError,
|
|
lambda: f_cuda0.set_(f_cuda1.storage(), 0, f_cuda1.size(), f_cuda1.stride()))
|
|
self.assertRaises(RuntimeError, lambda: f_cuda0.set_(f_cuda1))
|
|
|
|
@onlyCUDA
|
|
def test_half_tensor(self, device):
|
|
x = torch.randn(5, 5).half()
|
|
self.assertEqual(x.to(device), x)
|
|
|
|
xc = x.to(device)
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
torch.save(xc, f)
|
|
f.seek(0)
|
|
xc2 = torch.load(f)
|
|
self.assertIsInstance(xc2, type(xc))
|
|
self.assertEqual(xc.float(), xc2.float())
|
|
|
|
@onlyCUDA
|
|
@deviceCountAtLeast(1) # Note: Tests works with one but prefers more devices
|
|
def test_serialization(self, devices):
|
|
def _test_serialization(filecontext_lambda):
|
|
t0 = torch.cuda.FloatTensor(5).fill_(1)
|
|
with torch.cuda.device(devices[-1]):
|
|
tn = torch.cuda.FloatTensor(3).fill_(2)
|
|
torch.cuda.set_device(devices[0])
|
|
b = (t0, tn)
|
|
with filecontext_lambda() as f:
|
|
torch.save(b, f)
|
|
f.seek(0)
|
|
c = torch.load(f)
|
|
self.assertEqual(b, c, atol=0, rtol=0)
|
|
u0, un = c
|
|
self.assertEqual(str(u0.device), devices[0])
|
|
self.assertEqual(str(un.device), devices[-1])
|
|
|
|
_test_serialization(tempfile.NamedTemporaryFile)
|
|
_test_serialization(BytesIOContext)
|
|
|
|
def test_memory_format_preserved_after_permute(self, device):
|
|
x = torch.randn(4, 3, 8, 8, device=device)
|
|
nhwc = x.contiguous(memory_format=torch.channels_last)
|
|
y = nhwc.permute(0, 1, 3, 2).permute(0, 1, 3, 2)
|
|
self.assertTrue(y.is_contiguous(memory_format=torch.channels_last))
|
|
|
|
x = torch.randn(4, 3, 8, 8, 8, device=device)
|
|
ndhwc = x.contiguous(memory_format=torch.channels_last_3d)
|
|
y = ndhwc.permute(0, 1, 4, 3, 2).permute(0, 1, 4, 3, 2)
|
|
self.assertTrue(y.is_contiguous(memory_format=torch.channels_last_3d))
|
|
|
|
def test_resize_as_preserves_strides(self, device):
|
|
x = torch.empty(2, 3).t()
|
|
old_strides = x.stride()
|
|
x.resize_as_(x)
|
|
self.assertEqual(x.stride(), old_strides)
|
|
|
|
def test_memory_format_resize_as(self, device):
|
|
def test_helper(shape, memory_format, device):
|
|
xc = torch.randn(shape, device=device).contiguous(memory_format=memory_format)
|
|
flat = torch.randn(xc.numel(), device=device)
|
|
flat.resize_as_(xc, memory_format=torch.preserve_format)
|
|
self.assertTrue(flat.is_contiguous(memory_format=memory_format))
|
|
|
|
test_helper((10, 3, 32, 32), torch.channels_last, device)
|
|
test_helper((3, 10, 3, 32, 32), torch.channels_last_3d, device)
|
|
|
|
def test_memory_format_resize_(self, device):
|
|
def test_helper(shape, numel, memory_format, device):
|
|
flat = torch.randn(numel, device=device)
|
|
flat.resize_(shape, memory_format=memory_format)
|
|
self.assertTrue(flat.is_contiguous(memory_format=memory_format))
|
|
|
|
test_helper((10, 3, 32, 32), 10 * 3 * 32 * 32, torch.channels_last, device)
|
|
test_helper((3, 10, 3, 32, 32), 3 * 10 * 3 * 32 * 32, torch.channels_last_3d, device)
|
|
|
|
def test_memory_format_proparation_rules(self, device):
|
|
|
|
contiguous = torch.rand(10, 3, 5, 5, device=device)
|
|
cl = torch.rand(10, 3, 5, 5, device=device).contiguous(memory_format=torch.channels_last)
|
|
ambiguous = torch.rand(10, 3, 1, 1, device=device).contiguous(memory_format=torch.channels_last)
|
|
self.assertTrue(ambiguous.is_contiguous(memory_format=torch.channels_last))
|
|
self.assertTrue(ambiguous.is_contiguous(memory_format=torch.contiguous_format))
|
|
bias = torch.rand(1, 1, 1, 1, device=device).contiguous(memory_format=torch.channels_last)
|
|
|
|
def _test_propagation_rules(self, contiguous, cl, ambiguous, bias):
|
|
options = ((ambiguous, contiguous, torch.contiguous_format),
|
|
(ambiguous, cl, torch.channels_last),
|
|
(contiguous, ambiguous, torch.contiguous_format),
|
|
(contiguous, cl, torch.contiguous_format),
|
|
(cl, ambiguous, torch.channels_last),
|
|
(cl, contiguous, torch.channels_last),
|
|
(bias, cl, torch.channels_last),
|
|
(cl, bias, torch.channels_last),)
|
|
|
|
for a, b, mf in options:
|
|
result = a + b
|
|
self.assertTrue(result.is_contiguous(memory_format=mf))
|
|
|
|
_test_propagation_rules(self, contiguous, cl, ambiguous, bias)
|
|
|
|
cl = cl.to(memory_format=torch.channels_last)
|
|
ambiguous = ambiguous.to(memory_format=torch.channels_last)
|
|
bias = bias.to(memory_format=torch.channels_last)
|
|
|
|
_test_propagation_rules(self, contiguous, cl, ambiguous, bias)
|
|
|
|
# test cases when strides matter in ambiguous tensors
|
|
for mf in (torch.channels_last, torch.contiguous_format):
|
|
ambiguous = torch.rand(10, 3, 1, 1, device=device).to(memory_format=mf)
|
|
bias = torch.rand(3, 1, 1, device=device)
|
|
result = ambiguous + bias
|
|
self.assertEqual(ambiguous.stride(), result.stride())
|
|
result = bias + ambiguous
|
|
self.assertEqual(ambiguous.stride(), result.stride())
|
|
result = ambiguous * 5
|
|
self.assertEqual(ambiguous.stride(), result.stride())
|
|
|
|
def test_memory_format_empty_like(self, device):
|
|
def test_helper(x, memory_format):
|
|
xc = x.contiguous(memory_format=memory_format)
|
|
|
|
like = torch.empty_like(xc, memory_format=torch.preserve_format)
|
|
self.assertFalse(like.is_contiguous())
|
|
self.assertTrue(like.is_contiguous(memory_format=memory_format))
|
|
|
|
like_x = torch.empty_like(x, memory_format=torch.preserve_format)
|
|
self.assertTrue(like_x.is_contiguous())
|
|
self.assertFalse(like_x.is_contiguous(memory_format=memory_format))
|
|
|
|
like = torch.empty_like(x, memory_format=memory_format)
|
|
self.assertFalse(like.is_contiguous())
|
|
self.assertTrue(like.is_contiguous(memory_format=memory_format))
|
|
|
|
like = torch.empty_like(xc, memory_format=torch.contiguous_format)
|
|
self.assertTrue(like.is_contiguous())
|
|
self.assertFalse(like.is_contiguous(memory_format=memory_format))
|
|
|
|
like = torch.empty_like(xc)
|
|
self.assertFalse(like.is_contiguous())
|
|
self.assertTrue(like.is_contiguous(memory_format=memory_format))
|
|
|
|
sparse = x.to_sparse()
|
|
with self.assertRaises(RuntimeError):
|
|
z = torch.empty_like(sparse, memory_format=torch.preserve_format)
|
|
|
|
test_helper(torch.randn(4, 3, 8, 8, device=device), torch.channels_last)
|
|
test_helper(torch.randn(4, 3, 8, 8, 8, device=device), torch.channels_last_3d)
|
|
|
|
def test_memory_format_consistency(self, device):
|
|
x = torch.randn(10, 3, 1, 1, device=device)
|
|
x_rep = x.as_strided(x.size(), x.stride())
|
|
self.assertEqual(x.size(), x_rep.size())
|
|
self.assertEqual(x.stride(), x_rep.stride())
|
|
self.assertEqual(x.is_contiguous(), x_rep.is_contiguous())
|
|
self.assertEqual(x.is_contiguous(memory_format=torch.channels_last), x_rep.is_contiguous(memory_format=torch.channels_last))
|
|
self.assertEqual(
|
|
x.is_contiguous(memory_format=torch.channels_last_3d), x_rep.is_contiguous(memory_format=torch.channels_last_3d))
|
|
|
|
def test_memory_format_operators(self, device):
|
|
def _chunk_op(x, y):
|
|
x1, x2 = x.chunk(2, dim=1)
|
|
return x1 + x2
|
|
|
|
def _unsqueeze_op_add(x, y):
|
|
return x[0].unsqueeze(0) + 3
|
|
|
|
def _unsqueeze_op_clone(x, y):
|
|
return x[0].unsqueeze(0).clone()
|
|
|
|
def _test_helper(x, y, bias, memory_format):
|
|
return_contig_fns = [
|
|
lambda x, y: y + x,
|
|
lambda x, y: y * x,
|
|
lambda x, y: y.addcdiv(x, y, value=2),
|
|
lambda x, y: y.addcmul(x, y, value=2),
|
|
]
|
|
bias_fns = [
|
|
lambda x, b: x + b,
|
|
lambda x, b: b + x,
|
|
]
|
|
fns = [
|
|
lambda x, y: x.clone(),
|
|
lambda x, y: x + 3,
|
|
lambda x, y: 3 * x,
|
|
lambda x, y: x + y,
|
|
lambda x, y: x * y,
|
|
lambda x, y: abs(x),
|
|
lambda x, y: x.abs(),
|
|
lambda x, y: x.abs_(),
|
|
lambda x, y: x.acos(),
|
|
lambda x, y: x.acos_(),
|
|
lambda x, y: x.add(y, alpha=3),
|
|
lambda x, y: x.add_(y, alpha=3),
|
|
lambda x, y: x.addcdiv(y, y, value=2),
|
|
lambda x, y: x.addcdiv_(y, y, value=2),
|
|
lambda x, y: x.addcmul(y, y, value=2),
|
|
lambda x, y: x.addcmul_(y, y, value=2),
|
|
lambda x, y: x.acosh(),
|
|
lambda x, y: x.acosh_(),
|
|
lambda x, y: x.asinh(),
|
|
lambda x, y: x.asinh_(),
|
|
lambda x, y: x.atanh(),
|
|
lambda x, y: x.atanh_(),
|
|
lambda x, y: x.asin(),
|
|
lambda x, y: x.asin_(),
|
|
lambda x, y: x.atan(),
|
|
lambda x, y: x.atan2(y),
|
|
lambda x, y: x.atan2_(y),
|
|
lambda x, y: x.ceil(),
|
|
lambda x, y: x.ceil_(),
|
|
lambda x, y: x.clamp(-1, 1),
|
|
lambda x, y: x.cos(),
|
|
lambda x, y: x.cosh(),
|
|
lambda x, y: x.div(0.5),
|
|
lambda x, y: x.div_(0.5),
|
|
lambda x, y: x.div(y),
|
|
lambda x, y: x.div_(y),
|
|
lambda x, y: x.digamma(),
|
|
lambda x, y: x.digamma_(),
|
|
lambda x, y: x.erf(),
|
|
lambda x, y: x.erfc(),
|
|
lambda x, y: x.erfinv(),
|
|
lambda x, y: x.erfinv_(),
|
|
lambda x, y: x.exp(),
|
|
lambda x, y: x.expm1(),
|
|
lambda x, y: x.expm1_(),
|
|
lambda x, y: x.floor(),
|
|
lambda x, y: x.floor_(),
|
|
# lambda x, y: x.fmod(2), # https://github.com/pytorch/pytorch/issues/24565
|
|
lambda x, y: x.frac(),
|
|
# lambda x, y: x.lerp(y, 0.5), # Need to update Lerp.cu with TensorIterator
|
|
lambda x, y: x.log(),
|
|
lambda x, y: x.log_(),
|
|
lambda x, y: x.log10(),
|
|
lambda x, y: x.log10_(),
|
|
lambda x, y: x.log1p(),
|
|
lambda x, y: x.log1p_(),
|
|
lambda x, y: x.log2(),
|
|
lambda x, y: x.log2_(),
|
|
lambda x, y: x.mul(3),
|
|
lambda x, y: x.mul_(3),
|
|
lambda x, y: x.neg(),
|
|
lambda x, y: x.neg_(),
|
|
lambda x, y: x.pow(3),
|
|
lambda x, y: x.pow_(3),
|
|
lambda x, y: x.pow(0.0),
|
|
lambda x, y: x.pow(1.0),
|
|
lambda x, y: x.reciprocal(),
|
|
lambda x, y: x.remainder(2),
|
|
lambda x, y: x.round(),
|
|
lambda x, y: x.round_(),
|
|
lambda x, y: x.rsqrt(),
|
|
lambda x, y: x.rsqrt_(),
|
|
lambda x, y: x.sigmoid(),
|
|
lambda x, y: x.sigmoid_(),
|
|
lambda x, y: x.sign(),
|
|
lambda x, y: x.sign_(),
|
|
lambda x, y: x.sin(),
|
|
lambda x, y: x.sin_(),
|
|
lambda x, y: x.sinh(),
|
|
lambda x, y: x.sinh_(),
|
|
lambda x, y: x.sqrt(),
|
|
lambda x, y: x.sqrt_(),
|
|
lambda x, y: x.tan(),
|
|
lambda x, y: x.tanh(),
|
|
lambda x, y: x.trunc(),
|
|
lambda x, y: x.trunc_(),
|
|
_chunk_op,
|
|
_unsqueeze_op_add,
|
|
_unsqueeze_op_clone,
|
|
]
|
|
for fn in fns:
|
|
x_c = x.contiguous()
|
|
y_c = y.contiguous()
|
|
result_c = fn(x_c, y_c)
|
|
result = fn(x, y)
|
|
self.assertEqual(result, result_c)
|
|
self.assertTrue(
|
|
result.is_contiguous(memory_format=memory_format),
|
|
"result of the '{}' is not in '{}' format".format(inspect.getsource(fn).strip(), memory_format))
|
|
|
|
for fn in bias_fns:
|
|
x_c = x.contiguous()
|
|
b_c = bias.contiguous()
|
|
result_c = fn(x_c, b_c)
|
|
result = fn(x, bias)
|
|
self.assertEqual(result, result_c)
|
|
self.assertTrue(
|
|
result.is_contiguous(memory_format=memory_format),
|
|
"result of the '{}' is not in '{}' format".format(inspect.getsource(fn).strip(), memory_format))
|
|
|
|
for fn in return_contig_fns:
|
|
x_c = x.contiguous()
|
|
y_c = y.contiguous()
|
|
result_c = fn(x_c, y_c)
|
|
result = fn(x, y)
|
|
self.assertEqual(result, result_c)
|
|
self.assertTrue(
|
|
result.is_contiguous(memory_format=torch.contiguous_format),
|
|
"result of the '{}' is not in '{}' format".format(inspect.getsource(fn).strip(), torch.contiguous_format))
|
|
|
|
_test_helper(
|
|
torch.randn((4, 3, 8, 8), device=device).contiguous(memory_format=torch.channels_last),
|
|
abs(torch.randn((4, 3, 8, 8), device=device)) + 1,
|
|
torch.randn((1, 3, 1, 1), device=device).contiguous(memory_format=torch.channels_last),
|
|
torch.channels_last)
|
|
_test_helper(
|
|
torch.randn((4, 3, 8, 8, 8), device=device).contiguous(memory_format=torch.channels_last_3d),
|
|
abs(torch.randn((4, 3, 8, 8, 8), device=device)) + 1,
|
|
torch.randn((1, 3, 1, 1, 1), device=device).contiguous(memory_format=torch.channels_last_3d),
|
|
torch.channels_last_3d)
|
|
|
|
def _test_unique_scalar_empty(self, dtype, device, f):
|
|
# test scalar
|
|
x = torch.tensor(0, dtype=dtype, device=device)
|
|
unique, inverse, counts = f(x, return_inverse=True, return_counts=True)
|
|
expected_unique = torch.tensor([0], dtype=dtype, device=device)
|
|
expected_inverse = torch.tensor(0, device=device)
|
|
expected_counts = torch.tensor([1], device=device)
|
|
self.assertEqual(unique, expected_unique)
|
|
self.assertEqual(inverse, expected_inverse)
|
|
self.assertEqual(counts, expected_counts)
|
|
|
|
# test zero sized tensor
|
|
x = torch.zeros((0, 0, 3), dtype=dtype, device=device)
|
|
unique, inverse, counts = f(x, return_inverse=True, return_counts=True)
|
|
expected_unique = torch.tensor([], dtype=dtype, device=device)
|
|
expected_inverse = torch.empty((0, 0, 3), dtype=torch.long, device=device)
|
|
expected_counts = torch.tensor([], dtype=torch.long, device=device)
|
|
self.assertEqual(unique, expected_unique)
|
|
self.assertEqual(inverse, expected_inverse)
|
|
self.assertEqual(counts, expected_counts)
|
|
|
|
def _test_unique_with_expects(self, device, dtype, f, x, expected_unique, expected_inverse, expected_counts, additional_shape):
|
|
def ensure_tuple(x):
|
|
if isinstance(x, torch.Tensor):
|
|
return (x,)
|
|
return x
|
|
|
|
for return_inverse in [True, False]:
|
|
for return_counts in [True, False]:
|
|
# test with expected
|
|
ret = ensure_tuple(f(x, return_inverse=return_inverse, return_counts=return_counts))
|
|
self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts))
|
|
self.assertEqual(expected_unique, ret[0])
|
|
if return_inverse:
|
|
self.assertEqual(expected_inverse, ret[1])
|
|
if return_counts:
|
|
count_index = 1 + int(return_inverse)
|
|
self.assertEqual(expected_counts, ret[count_index])
|
|
|
|
# tests per-element unique on a higher rank tensor.
|
|
y = x.view(additional_shape)
|
|
y_unique, y_inverse, y_counts = f(y, return_inverse=True, return_counts=True)
|
|
self.assertEqual(expected_unique, y_unique)
|
|
self.assertEqual(expected_inverse.view(additional_shape), y_inverse)
|
|
self.assertEqual(expected_counts, y_counts)
|
|
|
|
@dtypes(*set(torch.testing.get_all_dtypes()) - {torch.bfloat16, torch.complex64, torch.complex128})
|
|
def test_unique(self, device, dtype):
|
|
if dtype is torch.half and self.device_type == 'cpu':
|
|
return # CPU does not have half support
|
|
|
|
def ensure_tuple(x):
|
|
if isinstance(x, torch.Tensor):
|
|
return (x,)
|
|
return x
|
|
|
|
if dtype is torch.bool:
|
|
x = torch.tensor([True, False, False, False, True, False, True, False], dtype=torch.bool, device=device)
|
|
expected_unique = torch.tensor([False, True], dtype=torch.bool, device=device)
|
|
expected_inverse = torch.tensor([1, 0, 0, 0, 1, 0, 1, 0], dtype=torch.long, device=device)
|
|
expected_counts = torch.tensor([5, 3], dtype=torch.long, device=device)
|
|
else:
|
|
x = torch.tensor([1, 2, 3, 2, 8, 5, 2, 3], dtype=dtype, device=device)
|
|
expected_unique = torch.tensor([1, 2, 3, 5, 8], dtype=dtype, device=device)
|
|
expected_inverse = torch.tensor([0, 1, 2, 1, 4, 3, 1, 2], device=device)
|
|
expected_counts = torch.tensor([1, 3, 2, 1, 1], device=device)
|
|
|
|
# test sorted unique
|
|
fs = [
|
|
lambda x, **kwargs: torch.unique(x, sorted=True, **kwargs),
|
|
lambda x, **kwargs: x.unique(sorted=True, **kwargs),
|
|
]
|
|
for f in fs:
|
|
self._test_unique_with_expects(device, dtype, f, x, expected_unique, expected_inverse, expected_counts, (2, 2, 2))
|
|
self._test_unique_scalar_empty(dtype, device, f)
|
|
|
|
# test unsorted unique
|
|
fs = [
|
|
lambda x, **kwargs: torch.unique(x, sorted=False, **kwargs),
|
|
lambda x, **kwargs: x.unique(sorted=False, **kwargs)
|
|
]
|
|
for f in fs:
|
|
self._test_unique_scalar_empty(dtype, device, f)
|
|
for return_inverse in [True, False]:
|
|
for return_counts in [True, False]:
|
|
ret = ensure_tuple(f(x, return_inverse=return_inverse, return_counts=return_counts))
|
|
self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts))
|
|
x_list = x.tolist()
|
|
x_unique_list = ret[0].tolist()
|
|
self.assertEqual(expected_unique.tolist(), sorted(x_unique_list))
|
|
if return_inverse:
|
|
x_inverse_list = ret[1].tolist()
|
|
for i, j in enumerate(x_inverse_list):
|
|
self.assertEqual(x_list[i], x_unique_list[j])
|
|
if return_counts:
|
|
count_index = 1 + int(return_inverse)
|
|
x_counts_list = ret[count_index].tolist()
|
|
for i, j in zip(x_unique_list, x_counts_list):
|
|
count = 0
|
|
for k in x_list:
|
|
if k == i:
|
|
count += 1
|
|
self.assertEqual(j, count)
|
|
|
|
@dtypes(*set(torch.testing.get_all_dtypes()) - {torch.bfloat16, torch.complex64, torch.complex128})
|
|
def test_unique_consecutive(self, device, dtype):
|
|
if dtype is torch.half and self.device_type == 'cpu':
|
|
return # CPU does not have half support
|
|
|
|
if dtype is torch.bool:
|
|
x = torch.tensor([True, False, False, False, True, True, False, False, False], dtype=torch.bool, device=device)
|
|
expected_unique = torch.tensor([True, False, True, False], dtype=torch.bool, device=device)
|
|
expected_inverse = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 3], dtype=torch.long, device=device)
|
|
expected_counts = torch.tensor([1, 3, 2, 3], dtype=torch.long, device=device)
|
|
else:
|
|
x = torch.tensor([1, 2, 2, 2, 5, 5, 2, 2, 3], dtype=dtype, device=device)
|
|
expected_unique = torch.tensor([1, 2, 5, 2, 3], dtype=dtype, device=device)
|
|
expected_inverse = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4], device=device)
|
|
expected_counts = torch.tensor([1, 3, 2, 2, 1], device=device)
|
|
|
|
for f in [torch.unique_consecutive, lambda x, **kwargs: x.unique_consecutive(**kwargs)]:
|
|
self._test_unique_with_expects(device, dtype, f, x, expected_unique, expected_inverse, expected_counts, (3, 3))
|
|
self._test_unique_scalar_empty(dtype, device, f)
|
|
|
|
@dtypesIfCUDA(torch.half, torch.float, torch.double)
|
|
@dtypes(torch.float, torch.double)
|
|
def test_erfinv(self, device, dtype):
|
|
# general testing. Narrow the range to avoid accuracy issues
|
|
input_values = torch.randn(4, 4, dtype=dtype, device=device).clamp(-0.3, 0.3)
|
|
self.assertEqual(input_values.erf().erfinv(), input_values)
|
|
# test inf
|
|
self.assertTrue(torch.equal(torch.tensor([-1, 1], dtype=dtype, device=device).erfinv(),
|
|
torch.tensor([-inf, inf], dtype=dtype, device=device)))
|
|
# test nan
|
|
self.assertEqual(torch.tensor([-2, 2], dtype=dtype, device=device).erfinv(),
|
|
torch.tensor([nan, nan], dtype=dtype, device=device))
|
|
|
|
if dtype == torch.double:
|
|
# double precision
|
|
a = torch.tensor([0.5, 0.8], dtype=torch.double, device=device).erfinv()
|
|
self.assertAlmostEqual(a[0].item(), 0.47693627620447, places=13)
|
|
self.assertAlmostEqual(a[1].item(), 0.90619380243682, places=13)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_ctor_with_numpy_array(self, device):
|
|
correct_dtypes = [
|
|
np.double,
|
|
np.float,
|
|
np.float16,
|
|
np.int64,
|
|
np.int32,
|
|
np.int16,
|
|
np.int8,
|
|
np.uint8,
|
|
np.bool,
|
|
]
|
|
|
|
incorrect_byteorder = '>' if sys.byteorder == 'little' else '<'
|
|
incorrect_dtypes = map(lambda t: incorrect_byteorder + t, ['d', 'f'])
|
|
|
|
for dtype in correct_dtypes:
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
|
|
# Upcast
|
|
tensor = torch.DoubleTensor(array).to(device)
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor[i], array[i])
|
|
|
|
# Downcast (sometimes)
|
|
tensor = torch.FloatTensor(array).to(device)
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor[i], array[i])
|
|
|
|
tensor = torch.HalfTensor(array).to(device)
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor[i], array[i])
|
|
|
|
def test_dlpack_conversion(self, device):
|
|
x = torch.randn(1, 2, 3, 4, device=device, dtype=torch.float)
|
|
z = from_dlpack(to_dlpack(x))
|
|
self.assertEqual(z, x)
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(PYTORCH_CUDA_MEMCHECK, "is_pinned uses failure to detect pointer property")
|
|
def test_pin_memory_from_constructor(self, device):
|
|
def _get_like(t, **kwargs):
|
|
return [
|
|
torch.rand_like(t, **kwargs),
|
|
torch.randn_like(t, **kwargs),
|
|
torch.empty_like(t, **kwargs),
|
|
torch.full_like(t, 4, **kwargs),
|
|
torch.zeros_like(t, **kwargs),
|
|
torch.ones_like(t, **kwargs),
|
|
]
|
|
|
|
def _get_tensors(**kwargs):
|
|
return [
|
|
torch.tensor([10, 11], **kwargs),
|
|
torch.randn(3, 5, **kwargs),
|
|
torch.rand(3, **kwargs),
|
|
# torch.randint(3, 5, **kwargs), // unsupported
|
|
torch.zeros(3, **kwargs),
|
|
torch.randperm(3, **kwargs),
|
|
torch.empty(6, **kwargs),
|
|
torch.ones(6, **kwargs),
|
|
torch.eye(6, **kwargs),
|
|
torch.arange(3, 5, **kwargs)]
|
|
|
|
pinned_tensors = _get_tensors(pin_memory=True) + _get_like(torch.empty(5, dtype=torch.float64), pin_memory=True)
|
|
for x in pinned_tensors:
|
|
self.assertTrue(x.is_pinned())
|
|
|
|
tensors = _get_tensors() + _get_like(torch.empty(5, dtype=torch.float64, pin_memory=True))
|
|
for x in tensors:
|
|
self.assertFalse(x.is_pinned())
|
|
|
|
def test_storage_device(self, device):
|
|
x = torch.tensor([], device=device)
|
|
self.assertEqual(x.dtype, x.storage().dtype)
|
|
|
|
@deviceCountAtLeast(2)
|
|
@onlyCUDA
|
|
def test_storage_multigpu(self, devices):
|
|
for device in devices:
|
|
x = torch.tensor([], device=device)
|
|
self.assertEqual(x.dtype, x.storage().dtype)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
def test_lu(self, device):
|
|
from torch.testing._internal.common_utils import random_matrix
|
|
|
|
def run_test(device, pivot):
|
|
def run_subtest(matrix_size, batches, device, pivot, singular=False, a=None):
|
|
if isinstance(matrix_size, int):
|
|
rows = columns = matrix_size
|
|
else:
|
|
rows, columns = matrix_size
|
|
if a is None:
|
|
a = random_matrix(rows, columns, *batches, **dict(singular=singular)).to(device)
|
|
a_LU_info, pivots_info, info_ = a.lu(pivot=pivot, get_infos=True)
|
|
self.assertEqual(a_LU_info.size(), torch.Size(batches + (rows, columns)))
|
|
self.assertEqual(pivots_info.size(), torch.Size(batches + (min(rows, columns),)))
|
|
self.assertEqual(info_.size(), torch.Size(batches))
|
|
# If a randomly generated input matrix is singular,
|
|
# then info_ contains indices i such that U[i, i] ==
|
|
# 0. This however conveys that the factorization was
|
|
# successful albeit with a singular input. Therefore,
|
|
# we require info.min() >= 0
|
|
self.assertGreaterEqual(info_.min(), 0)
|
|
a_LU, pivots = a.lu(pivot=pivot)
|
|
self.assertEqual(a_LU, a_LU_info)
|
|
self.assertEqual(pivots_info, pivots)
|
|
|
|
P, L, U = torch.lu_unpack(a_LU, pivots)
|
|
self.assertEqual(P.matmul(L.matmul(U)), a)
|
|
|
|
if self.device_type == 'cuda':
|
|
# lu without pivoting is implemented only for cuda device
|
|
a_LU_info_nopiv, nopiv, info_nopiv = a.lu(pivot=False, get_infos=True)
|
|
P_nopiv, L_nopiv, U_nopiv = torch.lu_unpack(a_LU_info_nopiv, nopiv)
|
|
self.assertEqual(P_nopiv.matmul(L_nopiv.matmul(U_nopiv)), a)
|
|
k = min(rows, columns)
|
|
self.assertEqual(nopiv, torch.arange(1, 1 + k, device=device, dtype=torch.int32).expand(a.shape[:-2] + (k, )))
|
|
if not singular:
|
|
# It is not guaranteed that LU factorization
|
|
# without pivoting is able to determine if a
|
|
# matrix is singular while LU factorization
|
|
# with pivoting is. Therefore, we require the
|
|
# equality of info-s only for non-singular
|
|
# matrices.
|
|
self.assertEqual(info_, info_nopiv)
|
|
|
|
for ms, batch in product([3, 5, 7, (4, 2), (3, 4)], [(), (2,), (3,), (3, 5)]):
|
|
run_subtest(ms, batch, device, pivot)
|
|
run_subtest(ms, batch, device, pivot, singular=True)
|
|
|
|
# Reproducer of a magma bug, see https://bitbucket.org/icl/magma/issues/13/getrf_batched-kernel-produces-nans-on
|
|
a = torch.ones(batch + (ms if isinstance(ms, tuple) else (ms, ms)), dtype=torch.double, device=device)
|
|
run_subtest(ms, batch, device, pivot, singular=True, a=a)
|
|
|
|
# Info should be positive for rank deficient matrices
|
|
a = torch.ones(5, 3, 3, device=device)
|
|
self.assertGreater(a.lu(pivot=pivot, get_infos=True)[2][0], 0)
|
|
|
|
run_test(device, True)
|
|
|
|
if self.device_type == 'cpu':
|
|
# Error checking, no pivoting variant on CPU
|
|
with self.assertRaisesRegex(RuntimeError, 'lu without pivoting is not implemented on the CPU'):
|
|
torch.lu(torch.empty(1, 2, 2), pivot=False)
|
|
else:
|
|
run_test(device, False)
|
|
|
|
@skipCPUIfNoLapack
|
|
@skipCUDAIfNoMagma
|
|
@dtypes(torch.double)
|
|
def test_lu_unpack(self, device, dtype):
|
|
def run_test(pivot):
|
|
for shape in ((3, 3), (5, 3, 3), (7, 3, 5, 5), (7, 5, 3, 3, 3)):
|
|
a = torch.randn(*shape, dtype=dtype, device=device)
|
|
a_lu, p = torch.lu(a, pivot=pivot)
|
|
p_ref, l_ref, u_ref = torch.lu_unpack(a_lu, p)
|
|
self.assertEqual(p_ref.matmul(l_ref.matmul(u_ref)), a)
|
|
|
|
run_test(True)
|
|
|
|
if self.device_type == 'cuda':
|
|
run_test(False)
|
|
|
|
@dtypesIfCUDA(torch.half, torch.float, torch.double)
|
|
@dtypes(torch.float, torch.double)
|
|
def test_max_with_inf(self, device, dtype):
|
|
a = torch.tensor([[-inf, -inf, inf, 3], [inf, inf, -inf, -1]], dtype=dtype, device=device)
|
|
self.assertTrue(torch.all(torch.max(a, dim=1)[0] == inf).item())
|
|
self.assertTrue(torch.max(a).item() == inf)
|
|
|
|
@dtypesIfCUDA(torch.half, torch.float, torch.double)
|
|
@dtypes(torch.float, torch.double)
|
|
def test_min_with_inf(self, device, dtype):
|
|
a = torch.tensor([[-inf, -inf, inf, 3], [inf, inf, -inf, -1]], dtype=dtype, device=device)
|
|
self.assertTrue(torch.all(torch.min(a, dim=1)[0] == (-inf)).item())
|
|
self.assertTrue(torch.min(a).item() == -inf)
|
|
|
|
def test_bincount(self, device):
|
|
# negative input throws
|
|
with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'):
|
|
torch.bincount(torch.tensor([1, -1], device=device))
|
|
# n-d input, with n > 1 throws
|
|
with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'):
|
|
torch.bincount(torch.tensor([[1, 2], [3, 4]], device=device))
|
|
# floating input type throws
|
|
with self.assertRaisesRegex(RuntimeError, 'not implemented'):
|
|
torch.bincount(torch.tensor([1., 0.3], device=device))
|
|
# minlength < 0 throws
|
|
with self.assertRaisesRegex(RuntimeError, 'minlength should be >= 0'):
|
|
torch.bincount(torch.tensor([1, 3], device=device),
|
|
torch.tensor([.2, .2], device=device),
|
|
minlength=-1)
|
|
# input and weights dim mismatch
|
|
with self.assertRaisesRegex(RuntimeError, 'same length'):
|
|
torch.bincount(torch.tensor([1, 0], device=device),
|
|
torch.tensor([1., 0.3, 0.5], device=device))
|
|
# 1-d input with no elements and default minlength
|
|
self.assertEqual(torch.bincount(torch.tensor([], device=device, dtype=torch.long)),
|
|
torch.zeros(0, dtype=torch.long, device=device))
|
|
# 1-d input with no elements and specified minlength
|
|
self.assertEqual(torch.bincount(torch.tensor([], device=device, dtype=torch.long), minlength=10),
|
|
torch.zeros(10, dtype=torch.long, device=device))
|
|
|
|
# test tensor method without weights
|
|
long_counts = torch.tensor(
|
|
[0, 3, 2, 1, 3], dtype=torch.uint8, device=device).bincount()
|
|
self.assertEqual(
|
|
torch.tensor([1, 1, 1, 2], dtype=torch.int64, device=device),
|
|
long_counts)
|
|
# test minlength functionality
|
|
int_counts = torch.bincount(
|
|
torch.tensor([1, 1, 1, 1], device=device), minlength=5)
|
|
self.assertEqual(
|
|
torch.tensor([0, 4, 0, 0, 0], dtype=torch.int64, device=device),
|
|
int_counts)
|
|
# test weights
|
|
byte_counts = torch.bincount(
|
|
torch.tensor([0, 1, 1, 1, 4], device=device),
|
|
torch.tensor([.1, .2, .3, .4, .5], device=device))
|
|
self.assertEqual(
|
|
torch.tensor([0.1, 0.9, 0, 0, 0.5], device=device), byte_counts)
|
|
byte_counts = torch.bincount(
|
|
torch.tensor([0, 1, 1, 1, 4], device=device),
|
|
torch.tensor([1, 2, 3, 4, 5], dtype=torch.int8, device=device))
|
|
self.assertEqual(
|
|
torch.tensor([1, 9, 0, 0, 5], device=device, dtype=torch.float64), byte_counts)
|
|
# test non-contiguous inputs and weights
|
|
inputs = torch.tensor([[0, 0], [3, 1], [2, 1], [1, 1], [3, 4]], device=device)
|
|
weights = torch.tensor([[.1, 1], [.2, 2], [.3, 3], [.4, 4], [.5, 5]], device=device)
|
|
for i in [0, 1]:
|
|
assert not inputs[:, i].is_contiguous(), "Inputs are supposed to be non-contiguous"
|
|
assert not weights[:, i].is_contiguous(), "Weights are supposed to be non-contiguous"
|
|
# inputs are non-contiguous but weights are contiguous
|
|
self.assertEqual(inputs[:, 0].bincount(), torch.tensor([1, 1, 1, 2]))
|
|
# inputs and weights are non-contiguous
|
|
self.assertEqual(
|
|
inputs[:, 1].bincount(weights[:, 1]),
|
|
torch.tensor([1, 9, 0, 0, 5], dtype=torch.float32))
|
|
# weights are non-contiguous but inputs are contiguous
|
|
self.assertEqual(inputs[:, 1].contiguous().bincount(weights[:, 1]),
|
|
torch.tensor([1, 9, 0, 0, 5], dtype=torch.float32))
|
|
|
|
# test bincount on non-contiguous slices
|
|
all0s = torch.zeros((32, 2), dtype=torch.int64, device=device)
|
|
self.assertEqual(all0s[:, 0].bincount(), torch.tensor([32]))
|
|
|
|
all1s = torch.ones((32, 2), dtype=torch.int64, device=device)
|
|
self.assertEqual(all1s[:, 0].bincount(), torch.tensor([0, 32]))
|
|
|
|
# test large number of bins - global memory use
|
|
big_exp = torch.zeros(10000000, device=device)
|
|
big_exp[-1] = 50.0
|
|
big_w = torch.tensor([.5] * 100, device=device)
|
|
big_out = torch.tensor([9999999] * 100, device=device).bincount(big_w)
|
|
self.assertEqual(big_exp, big_out)
|
|
# test large input size
|
|
big_exp = torch.zeros(2, device=device, dtype=torch.int64)
|
|
big_exp[1] = 1000000
|
|
big_out = torch.ones(1000000, dtype=torch.int8, device=device).bincount()
|
|
self.assertEqual(big_exp, big_out)
|
|
|
|
@dtypes(torch.float, torch.double, torch.half)
|
|
def test_multinomial(self, device, dtype):
|
|
def make_prob_dist(shape, is_contiguous):
|
|
if is_contiguous:
|
|
if dtype == torch.half:
|
|
return torch.zeros(shape, device=device).uniform_().to(dtype=torch.half)
|
|
return torch.zeros(shape, device=device, dtype=dtype).uniform_()
|
|
elif len(shape) == 1:
|
|
if dtype == torch.half:
|
|
return torch.zeros((shape + [5]), device=device).uniform_().to(dtype=torch.half)[:, 2]
|
|
return torch.zeros((shape + [5]), device=device, dtype=dtype).uniform_()[:, 2]
|
|
else:
|
|
# num dim = 2
|
|
new_shape = [2, shape[1], 7, 1, shape[0], 1, 10]
|
|
if dtype == torch.half:
|
|
prob_dist = torch.zeros(new_shape, device=device).uniform_().to(dtype=torch.half)
|
|
else:
|
|
prob_dist = torch.zeros(new_shape, device=device, dtype=dtype).uniform_()
|
|
prob_dist = prob_dist.transpose(1, 4)
|
|
prob_dist = prob_dist[1, :, 5, 0, :, 0, 4]
|
|
assert not prob_dist.is_contiguous() # sanity check
|
|
return prob_dist
|
|
|
|
for is_contiguous in (True, False):
|
|
# with replacement
|
|
n_row = 3
|
|
for n_col in range(4, 5 + 1):
|
|
prob_dist = make_prob_dist([n_row, n_col], is_contiguous)
|
|
# indices that shouldn't be sampled (<0 means none)
|
|
zero_prob_indices = torch.LongTensor(n_row).random_(-2, n_col).tolist()
|
|
for i, j in enumerate(zero_prob_indices):
|
|
if j >= 0:
|
|
prob_dist[i, j] = 0
|
|
n_sample = n_col * 3
|
|
sample_indices = torch.multinomial(prob_dist, n_sample, True)
|
|
self.assertEqual(prob_dist.dim(), 2)
|
|
self.assertEqual(sample_indices.size(1), n_sample)
|
|
for i in range(n_row):
|
|
zero_prob_idx = zero_prob_indices[i]
|
|
if zero_prob_idx < 0:
|
|
continue
|
|
for j in range(n_sample):
|
|
self.assertNotEqual(sample_indices[i, j], zero_prob_idx,
|
|
msg="sampled an index with zero probability")
|
|
|
|
# without replacement
|
|
n_row = 3
|
|
for n_col in range(2, 10 + 1, 2):
|
|
prob_dist = make_prob_dist([n_row, n_col], is_contiguous)
|
|
# indices that shouldn't be sampled (<0 means none)
|
|
zero_prob_indices = torch.LongTensor(n_row).random_(-1, n_col).tolist()
|
|
for i, j in enumerate(zero_prob_indices):
|
|
if j >= 0:
|
|
prob_dist[i, j] = 0
|
|
n_sample = max(1, n_col - 2)
|
|
sample_indices = torch.multinomial(prob_dist, n_sample, False)
|
|
self.assertEqual(prob_dist.dim(), 2)
|
|
self.assertEqual(sample_indices.size(1), n_sample)
|
|
for i in range(n_row):
|
|
row_samples = {}
|
|
zero_prob_idx = zero_prob_indices[i]
|
|
for j in range(n_sample):
|
|
sample_idx = sample_indices[i, j]
|
|
if zero_prob_idx >= 0:
|
|
self.assertNotEqual(sample_idx, zero_prob_idx,
|
|
msg="sampled an index with zero probability")
|
|
self.assertNotIn(sample_idx, row_samples, "sampled an index twice")
|
|
row_samples[sample_idx] = True
|
|
|
|
# vector
|
|
n_col = 4
|
|
prob_dist = make_prob_dist([n_col], is_contiguous).fill_(1)
|
|
zero_prob_idx = 1 # index that shouldn't be sampled
|
|
prob_dist[zero_prob_idx] = 0
|
|
n_sample = 20
|
|
sample_indices = torch.multinomial(prob_dist, n_sample, True)
|
|
for sample_index in sample_indices:
|
|
self.assertNotEqual(sample_index, zero_prob_idx, msg="sampled an index with zero probability")
|
|
s_dim = sample_indices.dim()
|
|
self.assertEqual(sample_indices.dim(), 1, msg="wrong number of dimensions")
|
|
self.assertEqual(prob_dist.dim(), 1, msg="wrong number of prob_dist dimensions")
|
|
self.assertEqual(sample_indices.size(0), n_sample, msg="wrong number of samples")
|
|
|
|
@slowTest
|
|
@dtypes(torch.float)
|
|
def test_multinomial_rng_state_advance(self, device, dtype):
|
|
corpus_size = 100000
|
|
freqs = torch.ones(corpus_size, dtype=torch.float, device=device)
|
|
n_sample = 100
|
|
samples1 = torch.multinomial(freqs, n_sample, replacement=True)
|
|
samples2 = torch.multinomial(freqs, n_sample, replacement=True)
|
|
samples = torch.cat([samples1, samples2])
|
|
# expect no more than 1 repeating elements generated in 2 attempts
|
|
# the probability of at least element being repeated is surprisingly large, 18%
|
|
self.assertLessEqual(2 * n_sample - samples.unique().size(0), 2)
|
|
samples1 = torch.multinomial(freqs, n_sample, replacement=False)
|
|
samples2 = torch.multinomial(freqs, n_sample, replacement=False)
|
|
samples = torch.cat([samples1, samples2])
|
|
# expect no more than 1 repeating elements generated in 2 attempts
|
|
self.assertLessEqual(2 * n_sample - samples.unique().size(0), 1)
|
|
|
|
def test_var_unbiased(self, device):
|
|
tensor = torch.randn(100, device=device)
|
|
self.assertEqual(tensor.var(0), tensor.var(0, unbiased=True))
|
|
self.assertEqual(tensor.var(), tensor.var(unbiased=True))
|
|
self.assertEqual(tensor.var(unbiased=False), tensor.var(0, unbiased=False))
|
|
|
|
tensor = torch.FloatTensor([1.0, 2.0]).to(device)
|
|
self.assertEqual(tensor.var(unbiased=True), 0.5)
|
|
self.assertEqual(tensor.var(unbiased=False), 0.25)
|
|
|
|
tensor = torch.randn(100, device=device)
|
|
self.assertEqual(tensor.std(0), tensor.std(0, unbiased=True))
|
|
self.assertEqual(tensor.std(), tensor.std(unbiased=True))
|
|
self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False))
|
|
|
|
def test_var_stability(self, device):
|
|
tensor = torch.FloatTensor([2281.5, 2281.25]).to(device)
|
|
|
|
# Stability for inner dim
|
|
self.assertEqual(tensor.var(0), 0.03125)
|
|
|
|
# General stability
|
|
self.assertEqual(tensor.var(), 0.03125)
|
|
|
|
# Stability for outer dimensions
|
|
tensor = tensor.unsqueeze(1)
|
|
self.assertEqual(tensor.var(0), 0.03125)
|
|
|
|
@dtypesIfCUDA(torch.half, torch.float, torch.double)
|
|
@dtypes(torch.float, torch.double)
|
|
def test_mul_intertype_scalar(self, device, dtype):
|
|
x = torch.tensor(1.5, dtype=dtype, device=device)
|
|
y = torch.tensor(3, dtype=torch.int32, device=device)
|
|
|
|
self.assertEqual(x * y, 4.5)
|
|
self.assertEqual(y * x, 4.5)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "can't be cast to the desired output type"):
|
|
y *= x
|
|
x *= y
|
|
self.assertEqual(x, 4.5)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float, torch.double)
|
|
def test_hardshrink(self, device, dtype):
|
|
data = torch.tensor([1, 0.5, 0.3, 0.6], dtype=dtype, device=device).view(2, 2)
|
|
self.assertEqual(torch.tensor([1, 0.5, 0, 0.6], dtype=dtype, device=device).view(2, 2),
|
|
data.hardshrink(0.3))
|
|
self.assertEqual(torch.tensor([1, 0, 0, 0.6], dtype=dtype, device=device).view(2, 2),
|
|
data.hardshrink(0.5))
|
|
|
|
# test default lambd=0.5
|
|
self.assertEqual(data.hardshrink(), data.hardshrink(0.5))
|
|
|
|
# test non-contiguous case
|
|
self.assertEqual(torch.tensor([1, 0, 0.5, 0.6], dtype=dtype, device=device).view(2, 2),
|
|
data.t().hardshrink(0.3))
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float, torch.double)
|
|
def test_hardshrink_edge_cases(self, device, dtype) -> None:
|
|
def h(values, l_expected):
|
|
for l, expected in l_expected.items():
|
|
values_tensor = torch.tensor([float(v) for v in values],
|
|
dtype=dtype, device=device)
|
|
expected_tensor = torch.tensor([float(v) for v in expected],
|
|
dtype=dtype, device=device)
|
|
self.assertEqual(expected_tensor == values_tensor.hardshrink(l),
|
|
torch.ones_like(values_tensor, dtype=torch.bool))
|
|
|
|
def test_helper(min, max):
|
|
h([0.0, min, -min, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
|
|
{0.0: [0.0, min, -min, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
|
|
min: [0.0, 0.0, 0.0, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
|
|
0.1: [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, max, -max, inf, -inf],
|
|
1.0: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, max, -max, inf, -inf],
|
|
max: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, inf, -inf],
|
|
inf: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]})
|
|
|
|
test_helper(torch.finfo(dtype).tiny, torch.finfo(dtype).max)
|
|
|
|
@onlyCPU
|
|
@slowTest
|
|
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
|
|
@dtypes(torch.double)
|
|
def test_einsum(self, device: torch.device, dtype: torch.dtype) -> None:
|
|
# test cases taken from https://gist.github.com/rockt/15ee013889d65342088e9260a377dc8f
|
|
x = torch.randn(5, dtype=dtype, device=device)
|
|
y = torch.randn(7, dtype=dtype, device=device)
|
|
A = torch.randn(3, 5, dtype=dtype, device=device)
|
|
B = torch.randn(2, 5, dtype=dtype, device=device)
|
|
C = torch.randn(2, 3, 5, dtype=dtype, device=device)
|
|
D = torch.randn(2, 5, 7, dtype=dtype, device=device)
|
|
E = torch.randn(7, 9, dtype=dtype, device=device)
|
|
F = torch.randn(2, 3, 5, 7, dtype=dtype, device=device)
|
|
G = torch.randn(7, 11, 13, dtype=dtype, device=device)
|
|
H = torch.randn(4, 4, dtype=dtype, device=device)
|
|
I = torch.randn(3, 4, 4, dtype=dtype, device=device)
|
|
l = torch.randn(5, 10, dtype=dtype, device=device)
|
|
r = torch.randn(5, 20, dtype=dtype, device=device)
|
|
w = torch.randn(30, 10, 20, dtype=dtype, device=device)
|
|
test_list: List[Union[Tuple[str, torch.Tensor],
|
|
Tuple[str, torch.Tensor, torch.Tensor],
|
|
Tuple[str, torch.Tensor, torch.Tensor, torch.Tensor]]] = [
|
|
# -- Vector
|
|
("i->", x), # sum
|
|
("i,i->", x, x), # dot
|
|
("i,i->i", x, x), # vector element-wise mul
|
|
("i,j->ij", x, y), # outer
|
|
# -- Matrix
|
|
("ij->ji", A), # transpose
|
|
("ij->j", A), # row sum
|
|
("ij->i", A), # col sum
|
|
("ij,ij->ij", A, A), # matrix element-wise mul
|
|
("ij,j->i", A, x), # matrix vector multiplication
|
|
("ij,kj->ik", A, B), # matmul
|
|
("ij,ab->ijab", A, E), # matrix outer product
|
|
# -- Tensor
|
|
("aij,ajk->aik", C, D), # batch matmul
|
|
("ijk,jk->i", C, A), # tensor matrix contraction
|
|
("aij,jk->aik", D, E), # tensor matrix contraction
|
|
("abcd,dfg->abcfg", F, G), # tensor tensor contraction
|
|
("ijk,jk->ik", C, A), # tensor matrix contraction with double indices
|
|
("ijk,jk->ij", C, A), # tensor matrix contraction with double indices
|
|
("ijk,ik->j", C, B), # non contiguous
|
|
("ijk,ik->jk", C, B), # non contiguous with double indices
|
|
# -- Diagonal
|
|
("ii", H), # trace
|
|
("ii->i", H), # diagonal
|
|
# -- Ellipsis
|
|
("i...->...", H),
|
|
("ki,...k->i...", A.t(), B),
|
|
("k...,jk", A.t(), B),
|
|
("...ii->...i", I), # batch diagonal
|
|
# -- Other
|
|
("bn,anm,bm->ba", l, w, r), # as torch.bilinear
|
|
("... ii->...i ", I), # batch diagonal with spaces
|
|
]
|
|
for test in test_list:
|
|
actual = torch.einsum(test[0], test[1:])
|
|
expected = np.einsum(test[0], *[t.numpy() for t in test[1:]])
|
|
self.assertEqual(expected.shape, actual.shape, msg=test[0])
|
|
self.assertEqual(expected, actual, msg=test[0])
|
|
# test vararg
|
|
actual2 = torch.einsum(test[0], *test[1:])
|
|
self.assertEqual(expected.shape, actual2.shape, msg=test[0])
|
|
self.assertEqual(expected, actual2, msg=test[0])
|
|
|
|
def do_einsum(*args):
|
|
return torch.einsum(test[0], args)
|
|
# FIXME: following test cases fail gradcheck
|
|
if test[0] not in {"i,i->", "i,i->i", "ij,ij->ij"}:
|
|
gradcheck_inps = tuple(t.detach().requires_grad_() for t in test[1:])
|
|
self.assertTrue(torch.autograd.gradcheck(do_einsum, gradcheck_inps))
|
|
self.assertTrue(A._version == 0) # check that we do not use inplace ops
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.bool, torch.double)
|
|
def test_sum_all(self, device, dtype) -> None:
|
|
def check_sum_all(tensor: torch.Tensor) -> None:
|
|
pylist = tensor.reshape(-1).tolist()
|
|
self.assertEqual(tensor.sum(), sum(pylist))
|
|
|
|
if dtype != torch.bool:
|
|
check_sum_all(torch.tensor([1, 2, 3, 4, 5], dtype=dtype, device=device))
|
|
check_sum_all(torch.randn(200000, dtype=dtype, device=device))
|
|
check_sum_all(torch.randn(2000, 2, dtype=dtype, device=device)[:, 0])
|
|
else:
|
|
check_sum_all(torch.tensor([True, False, True], dtype=torch.bool, device=device))
|
|
|
|
def _test_memory_format_transformations(self, device, input_generator_fn, transformation_fn,
|
|
memory_format, compare_data=True, default_is_preserve=False):
|
|
|
|
assert(memory_format == torch.channels_last or memory_format == torch.channels_last_3d)
|
|
|
|
# xc is a channels last tensor
|
|
xc = input_generator_fn(device)
|
|
# xc is not memory dense, but looks like channels last
|
|
if memory_format == torch.channels_last:
|
|
xc = xc[..., ::2, ::2]
|
|
else:
|
|
xc = xc[..., ::2, ::2, ::2]
|
|
|
|
clone = transformation_fn(xc, memory_format=torch.preserve_format)
|
|
self.assertFalse(clone.is_contiguous())
|
|
self.assertTrue(clone.is_contiguous(memory_format=memory_format))
|
|
self.assertFalse(xc.is_contiguous())
|
|
self.assertFalse(xc.is_contiguous(memory_format=memory_format))
|
|
if compare_data:
|
|
self.assertEqual(xc, clone.to(xc))
|
|
|
|
xc = input_generator_fn(device)
|
|
clone = transformation_fn(xc, memory_format=torch.contiguous_format)
|
|
self.assertTrue(clone.is_contiguous())
|
|
self.assertFalse(clone.is_contiguous(memory_format=memory_format))
|
|
if compare_data:
|
|
self.assertEqual(xc, clone.to(xc))
|
|
|
|
xc = input_generator_fn(device)
|
|
clone = transformation_fn(xc)
|
|
|
|
if default_is_preserve:
|
|
self.assertFalse(clone.is_contiguous())
|
|
self.assertTrue(clone.is_contiguous(memory_format=memory_format))
|
|
else:
|
|
self.assertTrue(clone.is_contiguous())
|
|
self.assertFalse(clone.is_contiguous(memory_format=memory_format))
|
|
if compare_data:
|
|
self.assertEqual(xc, clone.to(xc))
|
|
|
|
x = torch.randn((3, 4, 5, 6, 7, 8, 9), device=device)
|
|
for _ in range(10):
|
|
permutation = list(range(len(x.shape)))
|
|
random.shuffle(permutation)
|
|
x = x.permute(permutation)
|
|
self.assertEqual(x.stride(), transformation_fn(x, memory_format=torch.preserve_format).stride())
|
|
|
|
def test_memory_format_to(self, device):
|
|
def get_generator(memory_format, shape):
|
|
def input_generator_fn(device):
|
|
return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format)
|
|
return input_generator_fn
|
|
|
|
def transformation_fn(tensor, **kwargs):
|
|
return tensor.to(dtype=torch.float64, **kwargs)
|
|
|
|
formats_shapes = (
|
|
(torch.channels_last, (4, 3, 8, 8)),
|
|
(torch.channels_last_3d, (4, 3, 8, 8, 8)))
|
|
|
|
for mf, shape in formats_shapes:
|
|
self._test_memory_format_transformations(
|
|
device, get_generator(mf, shape), transformation_fn, mf, default_is_preserve=True)
|
|
|
|
def test_memory_format_type(self, device):
|
|
def get_generator(memory_format, shape):
|
|
def input_generator_fn(device):
|
|
return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format)
|
|
return input_generator_fn
|
|
|
|
def transformation_fn(tensor, **kwargs):
|
|
return tensor.to(torch.float64, **kwargs)
|
|
|
|
formats_shapes = (
|
|
(torch.channels_last, (4, 3, 8, 8)),
|
|
(torch.channels_last_3d, (4, 3, 8, 8, 8)))
|
|
|
|
for mf, shape in formats_shapes:
|
|
self._test_memory_format_transformations(
|
|
device, get_generator(mf, shape), transformation_fn, mf, default_is_preserve=True)
|
|
|
|
def test_memory_format_clone(self, device):
|
|
def get_generator(memory_format, shape):
|
|
def input_generator_fn(device):
|
|
return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format)
|
|
return input_generator_fn
|
|
|
|
def transformation_fn(tensor, **kwargs):
|
|
return tensor.clone(**kwargs)
|
|
|
|
formats_shapes = (
|
|
(torch.channels_last, (4, 3, 8, 8)),
|
|
(torch.channels_last_3d, (4, 3, 8, 8, 8)))
|
|
|
|
for mf, shape in formats_shapes:
|
|
self._test_memory_format_transformations(
|
|
device, get_generator(mf, shape), transformation_fn, mf, True, default_is_preserve=True)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.double)
|
|
def test_sum_out(self, device, dtype: torch.dtype) -> None:
|
|
x = torch.rand(100, 100, dtype=dtype, device=device)
|
|
res1 = torch.sum(x, 1)
|
|
res2 = torch.tensor((), dtype=dtype, device=device)
|
|
torch.sum(x, 1, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
x = torch.rand(100, 100, 100, dtype=dtype, device=device)
|
|
res1 = x.sum(2).sum(1)
|
|
res2 = torch.tensor((), dtype=dtype, device=device)
|
|
torch.sum(x, (2, 1), out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_memory_format_factory_like_functions_preserve(self, device):
|
|
def get_generator(memory_format, shape):
|
|
def input_generator_fn(device):
|
|
return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format)
|
|
return input_generator_fn
|
|
|
|
transformation_fns = [
|
|
lambda t, **kwargs: torch.zeros_like(t, **kwargs),
|
|
lambda t, **kwargs: torch.ones_like(t, **kwargs),
|
|
lambda t, **kwargs: torch.randint_like(t, 10, 100, **kwargs),
|
|
lambda t, **kwargs: torch.randint_like(t, 100, **kwargs),
|
|
lambda t, **kwargs: torch.randn_like(t, **kwargs),
|
|
lambda t, **kwargs: torch.rand_like(t, **kwargs),
|
|
lambda t, **kwargs: torch.full_like(t, 7, **kwargs),
|
|
lambda t, **kwargs: torch.empty_like(t, **kwargs)]
|
|
|
|
formats_shapes = (
|
|
(torch.channels_last, (4, 3, 8, 8)),
|
|
(torch.channels_last_3d, (4, 3, 8, 8, 8)))
|
|
|
|
for mf, shape, in formats_shapes:
|
|
for transformation_fn in transformation_fns:
|
|
self._test_memory_format_transformations(
|
|
device, get_generator(mf, shape), transformation_fn, mf, compare_data=False, default_is_preserve=True)
|
|
|
|
def test_memory_format_type_shortcuts(self, device):
|
|
def get_generator(memory_format, shape, dtype):
|
|
def input_generator_fn(device):
|
|
return torch.randn(shape, device=device, dtype=dtype).clamp(0, 1) \
|
|
.round().contiguous(memory_format=memory_format)
|
|
return input_generator_fn
|
|
|
|
|
|
def get_fn(fn_name):
|
|
def transformation_fn(tensor, **kwargs):
|
|
fn = getattr(tensor, fn_name)
|
|
return fn(**kwargs)
|
|
return transformation_fn
|
|
|
|
shortcuts = ['byte', 'char', 'double', 'bool', 'half', 'int', 'long', 'short']
|
|
if device == 'cpu':
|
|
shortcuts += ['bfloat16']
|
|
|
|
formats_shapes = (
|
|
(torch.channels_last, (4, 3, 8, 8)),
|
|
(torch.channels_last_3d, (4, 3, 8, 8, 8)))
|
|
|
|
for mf, shape in formats_shapes:
|
|
for fn_name in shortcuts:
|
|
self._test_memory_format_transformations(
|
|
device, get_generator(mf, shape, torch.float32), get_fn(fn_name), mf, default_is_preserve=True)
|
|
|
|
# Test 'float' separately to avoid float->float no-op.
|
|
for mf, shape in formats_shapes:
|
|
self._test_memory_format_transformations(
|
|
device, get_generator(mf, shape, torch.float64), get_fn('float'), mf, default_is_preserve=True)
|
|
|
|
@onlyCUDA
|
|
def test_memory_format_cpu_and_cuda_ops(self, device):
|
|
def get_generator(memory_format, shape):
|
|
def input_generator_fn(device):
|
|
return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format)
|
|
return input_generator_fn
|
|
|
|
def transformation_cpu_fn(tensor, **kwargs):
|
|
return tensor.cpu(**kwargs)
|
|
|
|
def transformation_cuda_fn(tensor, **kwargs):
|
|
return tensor.cuda(**kwargs)
|
|
|
|
formats_shapes = (
|
|
(torch.channels_last, (4, 3, 8, 8)),
|
|
(torch.channels_last_3d, (4, 3, 8, 8, 8)))
|
|
|
|
for mf, shape in formats_shapes:
|
|
self._test_memory_format_transformations(
|
|
'cuda', get_generator(mf, shape), transformation_cpu_fn, mf, default_is_preserve=True)
|
|
self._test_memory_format_transformations(
|
|
'cpu', get_generator(mf, shape), transformation_cuda_fn, mf, default_is_preserve=True)
|
|
|
|
@onlyCPU
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_eig(self, device, dtype):
|
|
a = torch.Tensor(((1.96, 0.00, 0.00, 0.00, 0.00),
|
|
(-6.49, 3.80, 0.00, 0.00, 0.00),
|
|
(-0.47, -6.39, 4.17, 0.00, 0.00),
|
|
(-7.20, 1.50, -1.51, 5.70, 0.00),
|
|
(-0.65, -6.34, 2.67, 1.80, -7.10))).t().contiguous().to(dtype=dtype, device=device)
|
|
e = torch.eig(a)[0]
|
|
ee, vv = torch.eig(a, True)
|
|
te = torch.tensor((), dtype=dtype, device=device)
|
|
tv = torch.tensor((), dtype=dtype, device=device)
|
|
eee, vvv = torch.eig(a, True, out=(te, tv))
|
|
self.assertEqual(e, ee, atol=1e-12, rtol=0)
|
|
self.assertEqual(ee, eee, atol=1e-12, rtol=0)
|
|
self.assertEqual(ee, te, atol=1e-12, rtol=0)
|
|
self.assertEqual(vv, vvv, atol=1e-12, rtol=0)
|
|
self.assertEqual(vv, tv, atol=1e-12, rtol=0)
|
|
|
|
# test reuse
|
|
X = torch.randn(4, 4, dtype=dtype, device=device)
|
|
X = torch.mm(X.t(), X)
|
|
e = torch.zeros(4, 2, dtype=dtype, device=device)
|
|
v = torch.zeros(4, 4, dtype=dtype, device=device)
|
|
torch.eig(X, True, out=(e, v))
|
|
Xhat = torch.mm(torch.mm(v, torch.diag(e.select(1, 0))), v.t())
|
|
self.assertEqual(X, Xhat, atol=1e-8, rtol=0, msg='VeV\' wrong')
|
|
self.assertFalse(v.is_contiguous(), 'V is contiguous')
|
|
|
|
torch.eig(X, True, out=(e, v))
|
|
Xhat = torch.mm(v, torch.mm(e.select(1, 0).diag(), v.t()))
|
|
self.assertEqual(X, Xhat, atol=1e-8, rtol=0, msg='VeV\' wrong')
|
|
self.assertFalse(v.is_contiguous(), 'V is contiguous')
|
|
|
|
# test non-contiguous
|
|
X = torch.randn(4, 4, dtype=dtype, device=device)
|
|
X = torch.mm(X.t(), X)
|
|
e = torch.zeros(4, 2, 2, dtype=dtype, device=device)[:, 1]
|
|
v = torch.zeros(4, 2, 4, dtype=dtype, device=device)[:, 1]
|
|
self.assertFalse(v.is_contiguous(), 'V is contiguous')
|
|
self.assertFalse(e.is_contiguous(), 'E is contiguous')
|
|
torch.eig(X, True, out=(e, v))
|
|
Xhat = torch.mm(torch.mm(v, torch.diag(e.select(1, 0))), v.t())
|
|
self.assertEqual(X, Xhat, atol=1e-8, rtol=0, msg='VeV\' wrong')
|
|
|
|
# test invalid input
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
'A should be 2 dimensional',
|
|
lambda: torch.eig(torch.ones((2))))
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
'A should be square',
|
|
lambda: torch.eig(torch.ones((2, 3))))
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
'A should not contain infs or NaNs',
|
|
lambda: torch.eig(np.inf * torch.ones((2, 2))))
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
'A should not contain infs or NaNs',
|
|
lambda: torch.eig(np.nan * torch.ones((2, 2))))
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_lobpcg_basic(self, device, dtype):
|
|
self._test_lobpcg_method(device, dtype, 'basic')
|
|
|
|
@skipCUDAIfNoMagma
|
|
@skipCPUIfNoLapack
|
|
@dtypes(torch.double)
|
|
def test_lobpcg_ortho(self, device, dtype):
|
|
self._test_lobpcg_method(device, dtype, 'ortho')
|
|
|
|
def _test_lobpcg_method(self, device, dtype, method):
|
|
from torch.testing._internal.common_utils import random_symmetric_pd_matrix, random_sparse_pd_matrix
|
|
from torch._linalg_utils import matmul, qform
|
|
from torch._lobpcg import lobpcg
|
|
|
|
def test_tracker(worker):
|
|
k = worker.iparams['k']
|
|
nc = worker.ivars['converged_count']
|
|
if k <= nc:
|
|
tol = worker.fparams['tol']
|
|
rerr = worker.tvars['rerr']
|
|
X = worker.X
|
|
E = worker.E
|
|
B = worker.B
|
|
A = worker.A
|
|
dtype = X.dtype
|
|
device = X.device
|
|
|
|
# Check convergence
|
|
self.assertLessEqual(rerr[:k].max(), tol)
|
|
|
|
# Check B-orthogonality
|
|
I = torch.eye(k, k, dtype=dtype, device=device)
|
|
self.assertEqual(qform(B, X[:, :k]), I)
|
|
|
|
# Check block equation
|
|
self.assertEqual(qform(A, X[:, :k]) / E[:k], I, atol=0.2, rtol=0)
|
|
|
|
orig_lobpcg = lobpcg
|
|
|
|
def lobpcg(*args, **kwargs):
|
|
kwargs['tracker'] = test_tracker
|
|
kwargs['niter'] = 1000
|
|
kwargs['method'] = method
|
|
kwargs['tol'] = 1e-8
|
|
return orig_lobpcg(*args, **kwargs)
|
|
prec = 5e-4
|
|
|
|
# check dense input
|
|
mm = torch.matmul
|
|
for batches in [(), (2,), (2, 3)]:
|
|
for m, n, k in [
|
|
(9, 3, 1),
|
|
(9, 3, 2),
|
|
(9, 2, 2),
|
|
(100, 15, 5),
|
|
]:
|
|
# skip tests that are known to fail with the basic
|
|
# LOBPCG method due to calling cholesky on singular
|
|
# input
|
|
if method == 'basic' and (m, n, k) in [(9, 2, 2), (100, 15, 5)]:
|
|
continue
|
|
A = random_symmetric_pd_matrix(m, *batches, device=device, dtype=dtype)
|
|
B = random_symmetric_pd_matrix(m, *batches, device=device, dtype=dtype)
|
|
|
|
# classical eigenvalue problem, smallest eigenvalues
|
|
E, V = lobpcg(A, k=k, n=n, largest=False)
|
|
self.assertEqual(E.shape, batches + (k,))
|
|
self.assertEqual(V.shape, batches + (m, k))
|
|
self.assertEqual(matmul(A, V), mm(V, E.diag_embed()), atol=prec, rtol=0)
|
|
e = torch.symeig(A)[0]
|
|
e_smallest = e[..., :k]
|
|
self.assertEqual(E, e_smallest)
|
|
|
|
# classical eigenvalue problem, largest eigenvalues
|
|
E, V = lobpcg(A, k=k, n=n, largest=True)
|
|
e_largest, _ = torch.sort(e[..., -k:], descending=True)
|
|
self.assertEqual(E, e_largest, atol=prec, rtol=0)
|
|
self.assertEqual(matmul(A, V), mm(V, E.diag_embed()), atol=prec, rtol=0)
|
|
|
|
# generalized eigenvalue problem, smallest eigenvalues
|
|
E, V = lobpcg(A, B=B, k=k, n=n, largest=False)
|
|
self.assertEqual(matmul(A, V), mm(matmul(B, V), E.diag_embed()), atol=prec, rtol=0)
|
|
|
|
# generalized eigenvalue problem, largest eigenvalues
|
|
E, V = lobpcg(A, B=B, k=k, n=n, largest=True)
|
|
self.assertEqual(matmul(A, V) / E.max(), mm(matmul(B, V), (E / E.max()).diag_embed()),
|
|
atol=prec, rtol=0)
|
|
|
|
# check sparse input
|
|
for m, n, k, density in [
|
|
(5, 1, 1, 0.8),
|
|
(9, 3, 2, 0.5),
|
|
(100, 1, 1, 0.1),
|
|
(1000, 7, 3, 0.01),
|
|
]:
|
|
# skip tests that are known to fail with the basic LOBCG
|
|
# method due to insufficient accuracy
|
|
if method == 'basic' and (m, n, k, density) in [(1000, 7, 3, 0.01)]:
|
|
continue
|
|
A = random_sparse_pd_matrix(m, density=density, device=device, dtype=dtype)
|
|
B = random_sparse_pd_matrix(m, density=density, device=device, dtype=dtype)
|
|
A_eigenvalues = torch.arange(1, m + 1, dtype=dtype) / m
|
|
e_smallest = A_eigenvalues[..., :k]
|
|
e_largest, _ = torch.sort(A_eigenvalues[..., -k:], descending=True)
|
|
|
|
# classical eigenvalue problem, smallest eigenvalues
|
|
E, V = lobpcg(A, k=k, n=n, largest=False)
|
|
self.assertEqual(E, e_smallest)
|
|
self.assertEqual(matmul(A, V), mm(V, E.diag_embed()), atol=prec, rtol=0)
|
|
|
|
# classical eigenvalue problem, largest eigenvalues
|
|
E, V = lobpcg(A, k=k, n=n, largest=True)
|
|
self.assertEqual(matmul(A, V), mm(V, E.diag_embed()), atol=prec, rtol=0)
|
|
self.assertEqual(E, e_largest)
|
|
|
|
# generalized eigenvalue problem, smallest eigenvalues
|
|
E, V = lobpcg(A, B=B, k=k, n=n, largest=False)
|
|
self.assertEqual(matmul(A, V), matmul(B, mm(V, E.diag_embed())), atol=prec, rtol=0)
|
|
|
|
# generalized eigenvalue problem, largest eigenvalues
|
|
E, V = lobpcg(A, B=B, k=k, n=n, largest=True)
|
|
self.assertEqual(matmul(A, V) / E.max(), mm(matmul(B, V), (E / E.max()).diag_embed()),
|
|
atol=prec, rtol=0)
|
|
|
|
@skipCPUIfNoLapack
|
|
@onlyCPU
|
|
@dtypes(torch.double)
|
|
def test_lobpcg_torchscript(self, device, dtype):
|
|
from torch.testing._internal.common_utils import random_sparse_pd_matrix
|
|
from torch._linalg_utils import matmul as mm
|
|
|
|
lobpcg = torch.jit.script(torch.lobpcg)
|
|
|
|
m = 500
|
|
k = 5
|
|
A1 = random_sparse_pd_matrix(m, density=2.0 / m, device=device, dtype=dtype)
|
|
X1 = torch.randn((m, k), dtype=dtype, device=device)
|
|
E1, V1 = lobpcg(A1, X=X1)
|
|
eq_err = torch.norm((mm(A1, V1) - V1 * E1), 2) / E1.max()
|
|
self.assertLess(eq_err, 1e-6)
|
|
|
|
@unittest.skipIf(not TEST_SCIPY or (TEST_SCIPY and scipy.__version__ < '1.4.1'), "Scipy not found or older than 1.4.1")
|
|
@skipCPUIfNoLapack
|
|
@onlyCPU
|
|
@dtypes(torch.double)
|
|
def test_lobpcg_scipy(self, device, dtype):
|
|
"""Compare torch and scipy.sparse.linalg implementations of lobpcg
|
|
"""
|
|
import time
|
|
import scipy
|
|
from torch.testing._internal.common_utils import random_sparse_pd_matrix
|
|
from torch._linalg_utils import matmul as mm
|
|
from scipy.sparse.linalg import lobpcg as scipy_lobpcg
|
|
import scipy.sparse
|
|
|
|
def toscipy(A):
|
|
if A.layout == torch.sparse_coo:
|
|
values = A.coalesce().values().cpu().numpy().copy()
|
|
indices = A.coalesce().indices().cpu().numpy().copy()
|
|
return scipy.sparse.coo_matrix((values, (indices[0], indices[1])), A.shape)
|
|
return A.cpu().numpy().copy()
|
|
|
|
niter = 1000
|
|
repeat = 10
|
|
m = 500 # size of the square matrix
|
|
k = 7 # the number of requested eigenpairs
|
|
A1 = random_sparse_pd_matrix(m, density=2.0 / m, device=device, dtype=dtype)
|
|
B1 = random_sparse_pd_matrix(m, density=2.0 / m, device=device, dtype=dtype)
|
|
X1 = torch.randn((m, k), dtype=dtype, device=device)
|
|
|
|
A2 = toscipy(A1)
|
|
B2 = toscipy(B1)
|
|
X2 = toscipy(X1)
|
|
|
|
lambdas1 = []
|
|
|
|
def tracker(worker):
|
|
lambdas1.append(worker.E[:])
|
|
|
|
tol = 1e-8
|
|
# tol for scipy lobpcg will be choosed so that the number of
|
|
# iterations will be equal or very close to pytorch lobpcg
|
|
# (that is around 170-180)
|
|
|
|
# Standard eigenvalue problem
|
|
E1, V1 = torch.lobpcg(A1, X=X1, niter=niter, largest=True, tracker=tracker, tol=tol)
|
|
E2, V2, lambdas2 = scipy_lobpcg(A2, X2, maxiter=niter, largest=True, retLambdaHistory=True, tol=1.1 * tol)
|
|
iters1 = len(lambdas1)
|
|
iters2 = len(lambdas2)
|
|
self.assertLess(abs(iters1 - iters2), 0.05 * max(iters1, iters2))
|
|
|
|
E2a, V2a = scipy_lobpcg(A2, X2, maxiter=niter, largest=False)
|
|
|
|
eq_err = torch.norm((mm(A1, V1) - V1 * E1), 2) / E1.max()
|
|
eq_err_scipy = (abs(A2.dot(V2) - V2 * E2)**2).sum() ** 0.5 / E2.max()
|
|
self.assertLess(eq_err, 1e-6) # std
|
|
self.assertLess(eq_err_scipy, 1e-6) # std
|
|
|
|
self.assertEqual(E1, torch.from_numpy(E2.copy()))
|
|
|
|
# Generalized eigenvalue problem
|
|
lambdas1 = []
|
|
|
|
def tracker(worker):
|
|
lambdas1.append(worker.E[:])
|
|
|
|
E1, V1 = torch.lobpcg(A1, B=B1, X=X1, niter=niter, largest=True, tracker=tracker, tol=tol)
|
|
E2, V2, lambdas2 = scipy_lobpcg(A2, X2, B=B2, maxiter=niter, largest=True, retLambdaHistory=True, tol=39 * tol)
|
|
E2a, V2a = scipy_lobpcg(A2, X2, B=B2, maxiter=niter, largest=False)
|
|
iters1 = len(lambdas1)
|
|
iters2 = len(lambdas2)
|
|
self.assertLess(abs(iters1 - iters2), 0.05 * max(iters1, iters2))
|
|
|
|
eq_err = torch.norm((mm(A1, V1) - mm(B1, V1) * E1), 2) / E1.max()
|
|
eq_err_scipy = (abs(A2.dot(V2) - B2.dot(V2) * E2)**2).sum() ** 0.5 / E2.max()
|
|
self.assertLess(eq_err, 1e-6) # general
|
|
self.assertLess(eq_err_scipy, 1e-6) # general
|
|
|
|
self.assertEqual(E1, torch.from_numpy(E2.copy()))
|
|
|
|
# Timings
|
|
elapsed_ortho = 0
|
|
elapsed_ortho_general = 0
|
|
elapsed_scipy = 0
|
|
elapsed_general_scipy = 0
|
|
for i in range(repeat):
|
|
start = time.time()
|
|
torch.lobpcg(A1, X=X1, niter=niter, method='ortho', tol=tol)
|
|
end = time.time()
|
|
elapsed_ortho += end - start
|
|
|
|
start = time.time()
|
|
torch.lobpcg(A1, X=X1, B=B1, niter=niter, method='ortho', tol=tol)
|
|
end = time.time()
|
|
elapsed_ortho_general += end - start
|
|
|
|
start = time.time()
|
|
scipy_lobpcg(A2, X2, maxiter=niter, tol=1.1 * tol)
|
|
end = time.time()
|
|
elapsed_scipy += end - start
|
|
|
|
start = time.time()
|
|
scipy_lobpcg(A2, X2, B=B2, maxiter=niter, tol=39 * tol)
|
|
end = time.time()
|
|
elapsed_general_scipy += end - start
|
|
|
|
elapsed_ortho_ms = 1000.0 * elapsed_ortho / repeat
|
|
elapsed_ortho_general_ms = 1000.0 * elapsed_ortho_general / repeat
|
|
elapsed_scipy_ms = 1000.0 * elapsed_scipy / repeat
|
|
elapsed_general_scipy_ms = 1000.0 * elapsed_general_scipy / repeat
|
|
|
|
print('''
|
|
CPU timings: torch.lobpcg vs scipy.sparse.linalg.lobpcg
|
|
-------------------------------------------------------
|
|
| standard | generalized | method
|
|
torch.lobpcg | {:10.2f} | {:10.2f} | ortho
|
|
scipy_lobpcg | {:10.2f} | {:10.2f} | N/A
|
|
-(input size: {:4}, eigenpairs:{:2}, units: ms per call)-
|
|
'''.format(elapsed_ortho_ms, elapsed_ortho_general_ms,
|
|
elapsed_scipy_ms, elapsed_general_scipy_ms,
|
|
m, k))
|
|
|
|
# Handling of very small tolerence
|
|
tol = 1e-100
|
|
|
|
lambdas1 = []
|
|
|
|
def tracker(worker):
|
|
lambdas1.append(worker.E[:])
|
|
|
|
E1, V1 = torch.lobpcg(A1, X=X1, niter=niter, largest=True, tracker=tracker, tol=tol)
|
|
iters1 = len(lambdas1)
|
|
eq_err = torch.norm((mm(A1, V1) - V1 * E1), 2) / E1.max()
|
|
|
|
try:
|
|
E2, V2, lambdas2 = scipy_lobpcg(A2, X2, maxiter=niter, largest=True, retLambdaHistory=True, tol=tol)
|
|
iters2 = len(lambdas2)
|
|
eq_err_scipy = (abs(A2.dot(V2) - V2 * E2)**2).sum() ** 0.5 / E2.max()
|
|
except Exception as msg:
|
|
print('Calling scipy_lobpcg failed [standard]:', msg)
|
|
iters2 = -1
|
|
eq_err_scipy = -1
|
|
|
|
lambdas1 = []
|
|
|
|
def tracker(worker):
|
|
lambdas1.append(worker.E[:])
|
|
|
|
E1, V1 = torch.lobpcg(A1, X=X1, B=B1, niter=niter, largest=True, tracker=tracker, tol=tol)
|
|
iters1_general = len(lambdas1)
|
|
eq_err_general = torch.norm((mm(A1, V1) - mm(B1, V1) * E1), 2) / E1.max()
|
|
|
|
try:
|
|
E2, V2, lambdas2 = scipy_lobpcg(A2, X2, B=B2, maxiter=niter, largest=True, retLambdaHistory=True, tol=tol)
|
|
iters2_general = len(lambdas2)
|
|
eq_err_general_scipy = (abs(A2.dot(V2) - B2.dot(V2) * E2)**2).sum() ** 0.5 / E2.max()
|
|
except Exception as msg:
|
|
print('Calling scipy_lobpcg failed [generalized]:', msg)
|
|
iters2_general = -1
|
|
eq_err_general_scipy = -1
|
|
|
|
print('''\
|
|
Handling of small tol={:6.0e}: torch.lobpcg vs scipy.sparse.linalg.lobpcg
|
|
----------------------------------------------------------------------------
|
|
| standard | generalized | niter | method
|
|
torch.lobpcg | {:10.2e} | {:10.2e} | {:6} | ortho
|
|
scipy_lobpcg | {:10.2e} | {:10.2e} | {:6} | N/A
|
|
---(input size: {:4}, eigenpairs:{:2}, units: relative error, maxiter={:4})---
|
|
'''.format(tol, eq_err, eq_err_general, iters1, eq_err_scipy, eq_err_general_scipy, iters2, m, k, niter))
|
|
|
|
@slowTest
|
|
@onlyCPU
|
|
@dtypes(torch.bfloat16, torch.float, torch.double)
|
|
def test_ger(self, device, dtype):
|
|
def run_test(v0, v1):
|
|
res0 = torch.ger(v0, v1)
|
|
res1 = torch.zeros(100, 100, dtype=dtype, device=device)
|
|
for i in range(100):
|
|
for j in range(100):
|
|
res1[i, j] = v0[i] * v1[j]
|
|
self.assertEqual(res0, res1)
|
|
|
|
v0 = torch.randn(100, dtype=torch.float, device=device).to(dtype=dtype)
|
|
v1 = torch.randn(100, dtype=torch.float, device=device).to(dtype=dtype)
|
|
run_test(v0, v1)
|
|
|
|
# Tests 0-strided
|
|
v0 = torch.randn(1, dtype=torch.float, device=device).expand(100).to(dtype=dtype)
|
|
v1 = torch.randn(100, dtype=torch.float, device=device).to(dtype=dtype)
|
|
run_test(v0, v1)
|
|
|
|
@slowTest
|
|
@onlyCPU
|
|
@dtypes(torch.bfloat16, torch.float, torch.double)
|
|
def test_addr(self, device, dtype):
|
|
def run_test(m, v1, v2, m_transform=lambda x: x):
|
|
m = m_transform(m.clone())
|
|
ref = m.clone()
|
|
torch.addr(m, v1, v2, out=m)
|
|
for i in range(m.size(0)):
|
|
for j in range(m.size(1)):
|
|
ref[i, j] += v1[i] * v2[j]
|
|
self.assertEqual(m, ref)
|
|
|
|
for h, w in [(100, 110), (1, 20), (200, 2)]:
|
|
m = torch.randn(h, w, dtype=torch.float, device=device).to(dtype=dtype)
|
|
v1 = torch.randn(h, dtype=torch.float, device=device).to(dtype=dtype)
|
|
v2 = torch.randn(w, dtype=torch.float, device=device).to(dtype=dtype)
|
|
run_test(m, v1, v2)
|
|
# test transpose
|
|
run_test(m, v2, v1, lambda x: x.transpose(0, 1))
|
|
# test 0 strided
|
|
v1 = torch.randn(1, dtype=torch.float, device=device).expand(h).to(dtype=dtype)
|
|
run_test(m, v1, v2)
|
|
run_test(m, v2, v1, lambda x: x.transpose(0, 1))
|
|
|
|
@onlyCPU
|
|
@precisionOverride({torch.bfloat16: 1e-0, torch.float: 1e-4, torch.double: 1e-8,
|
|
torch.cfloat: 1e-4, torch.cdouble: 1e-8})
|
|
@dtypes(torch.bfloat16, torch.float, torch.double, torch.cfloat, torch.cdouble)
|
|
def test_addmv(self, device, dtype):
|
|
t = torch.randn(10, device=device).to(dtype)
|
|
m = torch.randn(10, 100, device=device).to(dtype)
|
|
v = torch.randn(100, device=device).to(dtype)
|
|
res1 = torch.addmv(t, m, v)
|
|
res2 = torch.zeros(10, dtype=dtype, device=device)
|
|
res2 += t
|
|
for i in range(10):
|
|
for j in range(100):
|
|
res2[i] += m[i, j] * v[j]
|
|
|
|
self.assertEqual(res1, res2)
|
|
|
|
# Test 0-strided
|
|
t = torch.randn(1, device=device).to(dtype).expand(10)
|
|
m = torch.randn(10, 1, device=device).to(dtype).expand(10, 100)
|
|
v = torch.randn(100, device=device).to(dtype)
|
|
res1 = torch.addmv(t, m, v)
|
|
res2 = torch.zeros(10, dtype=dtype, device=device)
|
|
res2 += t
|
|
for i in range(10):
|
|
for j in range(100):
|
|
res2[i] += m[i, j] * v[j]
|
|
|
|
self.assertEqual(res1, res2)
|
|
|
|
@dtypesIfCUDA(*([torch.half, torch.float, torch.double]
|
|
+ ([torch.bfloat16] if TEST_WITH_ROCM else [])))
|
|
@dtypes(torch.float, torch.double)
|
|
def test_addmv_rowmajor_colmajor_incx_incy_lda(self, device, dtype):
|
|
# tests (o, s)*(s). o is output size, s is summed size.
|
|
o = 5
|
|
s = 3
|
|
a_data = torch.arange(1, o * s + 1, device=device, dtype=dtype).view(o, s)
|
|
x_data = torch.arange(1, s + 1, 1, device=device, dtype=dtype)
|
|
y_data = torch.ones(o, device=device, dtype=dtype)
|
|
control = torch.tensor([15., 33., 51., 69., 87.], device=device, dtype=dtype)
|
|
|
|
def _test(use_out, row_major, incx, incy, lda_tail):
|
|
if row_major:
|
|
a_storage = torch.full((o, s + lda_tail), float('nan'), device=device, dtype=dtype)
|
|
else:
|
|
a_storage = torch.full((s, o + lda_tail), float('nan'), device=device, dtype=dtype).permute(1, 0)
|
|
a = a_storage[:o, :s].copy_(a_data)
|
|
|
|
x_storage = torch.full((s, incx), float('nan'), device=device, dtype=dtype)
|
|
x = x_storage[:, 0].copy_(x_data)
|
|
|
|
y_storage = torch.full((o, incy), float('nan'), device=device, dtype=dtype)
|
|
y = y_storage[:, 0].copy_(y_data)
|
|
|
|
if use_out:
|
|
out = torch.addmv(y, a, x)
|
|
else:
|
|
out = torch.empty_like(y)
|
|
torch.addmv(y, a, x, out=out)
|
|
|
|
self.assertEqual(out, control, atol=1.e-4, rtol=0)
|
|
|
|
for use_out, row_major, incx, incy, lda_tail in product((False, True), (False, True), (1, 2), (1, 2), (0, 1)):
|
|
_test(use_out, row_major, incx, incy, lda_tail)
|
|
|
|
@slowTest
|
|
@onlyCPU
|
|
def test_addmm(self, device):
|
|
dtypes = {
|
|
torch.double: 1e-8,
|
|
torch.float: 1e-4,
|
|
torch.bfloat16: 1e-1,
|
|
torch.half: 1e-1,
|
|
torch.cfloat: 1e-4,
|
|
torch.cdouble: 1e-8
|
|
}
|
|
for dtype, prec in dtypes.items():
|
|
M = torch.randn(10, 25).to(device=device, dtype=dtype)
|
|
m1 = torch.randn(10, 50).to(device=device, dtype=dtype)
|
|
m2 = torch.randn(50, 25).to(device=device, dtype=dtype)
|
|
res1 = torch.addmm(M, m1, m2)
|
|
res2 = torch.zeros(10, 25, device=device, dtype=dtype)
|
|
res2 += M
|
|
for i in range(10):
|
|
for j in range(25):
|
|
for k in range(50):
|
|
res2[i, j] += m1[i, k] * m2[k, j]
|
|
self.assertEqual(res1, res2, atol=prec, rtol=0)
|
|
|
|
# Test 0-strided
|
|
for dtype, prec in dtypes.items():
|
|
M = torch.randn(10, 1).to(device=device, dtype=dtype).expand(10, 25)
|
|
m1 = torch.randn(10, 1).to(device=device, dtype=dtype).expand(10, 50)
|
|
m2 = torch.randn(50, 25).to(device=device, dtype=dtype)
|
|
res1 = torch.addmm(M, m1, m2)
|
|
res2 = torch.zeros(10, 25, device=device, dtype=dtype)
|
|
res2 += M
|
|
for i in range(10):
|
|
for j in range(25):
|
|
for k in range(50):
|
|
res2[i, j] += m1[i, k] * m2[k, j]
|
|
self.assertEqual(res1, res2, atol=prec, rtol=0)
|
|
|
|
@dtypes(torch.float, torch.double)
|
|
@dtypesIfCUDA(*([torch.float, torch.double] +
|
|
([] if TEST_WITH_ROCM else torch.testing.get_all_complex_dtypes())))
|
|
def test_addmm_sizes(self, device, dtype):
|
|
for m in [0, 1, 25]:
|
|
for n in [0, 1, 10]:
|
|
for k in [0, 1, 8]:
|
|
M = torch.randn(n, m, device=device, dtype=dtype)
|
|
m1 = torch.randn(n, k, device=device, dtype=dtype)
|
|
m2 = torch.randn(k, m, device=device, dtype=dtype)
|
|
res1 = torch.addmm(M, m1, m2)
|
|
res2 = torch.zeros(n, m, device=device, dtype=dtype)
|
|
res2 += M
|
|
for i in range(n):
|
|
for j in range(m):
|
|
for l in range(k):
|
|
res2[i, j] += m1[i, l] * m2[l, j]
|
|
self.assertEqual(res1, res2)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float, torch.double)
|
|
def test_dot(self, device, dtype):
|
|
v1 = torch.randn(100, dtype=dtype, device=device)
|
|
v2 = torch.randn(100, dtype=dtype, device=device)
|
|
res1 = torch.dot(v1, v2)
|
|
res2 = 0
|
|
for i, j in zip(v1, v2):
|
|
res2 += i * j
|
|
self.assertEqual(res1, res2)
|
|
out = torch.randn((), dtype=dtype, device=device)
|
|
torch.dot(v1, v2, out=out)
|
|
self.assertEqual(res1, out)
|
|
|
|
# Test 0-strided
|
|
v1 = torch.randn(1, dtype=dtype, device=device).expand(100)
|
|
v2 = torch.randn(100, dtype=dtype, device=device)
|
|
res1 = torch.dot(v1, v2)
|
|
res2 = 0
|
|
for i, j in zip(v1, v2):
|
|
res2 += i * j
|
|
self.assertEqual(res1, res2)
|
|
out = torch.randn((), dtype=dtype, device=device)
|
|
torch.dot(v1, v2, out=out)
|
|
self.assertEqual(res1, out)
|
|
|
|
@onlyCPU
|
|
@slowTest
|
|
@dtypes(torch.float)
|
|
def test_exp_slow(self, device, dtype):
|
|
# Test for https://github.com/pytorch/pytorch/issues/17271
|
|
# This is pretty slow on my Macbook but it only takes a few
|
|
# seconds on a beefy Xeon server
|
|
a = torch.exp(torch.ones(2 ** 31, dtype=dtype, device=device))
|
|
b = torch.exp(torch.ones(1, dtype=dtype, device=device))
|
|
self.assertEqual(a, b.expand(2 ** 31))
|
|
|
|
@dtypes(torch.float, torch.double)
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_hardswish(self, device, dtype):
|
|
inputValues = [-1000, -4, -3, -2, 0, 2, 3, 4, 1000]
|
|
expectedOutput = np.multiply(
|
|
inputValues,
|
|
np.minimum(np.maximum((np.add(inputValues, 3)), 0), 6) / 6.0)
|
|
precision_4dps = 0.0002
|
|
|
|
inputTensor = torch.tensor(inputValues, dtype=dtype, device=device)
|
|
expectedOutputTensor = \
|
|
torch.tensor(expectedOutput, dtype=dtype, device=device)
|
|
|
|
# normal
|
|
self.assertEqual(torch.nn.functional.hardswish(inputTensor),
|
|
expectedOutputTensor,
|
|
atol=precision_4dps, rtol=0)
|
|
|
|
# inplace
|
|
inputTensorCpy = inputTensor.clone().detach()
|
|
torch.nn.functional.hardswish(inputTensorCpy, inplace=True)
|
|
self.assertEqual(inputTensorCpy, expectedOutputTensor,
|
|
atol=precision_4dps, rtol=0)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float, torch.double)
|
|
def test_sigmoid(self, device, dtype):
|
|
# TODO: why not simulate math.sigmoid like with rsqrt?
|
|
inputValues = [-1000, -1, 0, 0.5, 1, 2, 1000]
|
|
expectedOutput = [0.0000, 0.2689, 0.5, 0.6225, 0.7311, 0.8808, 1.000]
|
|
precision_4dps = 0.0002
|
|
|
|
self.assertEqual(torch.tensor(inputValues, dtype=dtype, device=device).sigmoid(),
|
|
torch.tensor(expectedOutput, dtype=dtype, device=device),
|
|
atol=precision_4dps, rtol=0)
|
|
|
|
@dtypes(torch.float, torch.double)
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_hardsigmoid(self, device, dtype):
|
|
inputValues = [-1000, -4, -3, -2, 0, 2, 3, 4, 1000]
|
|
expectedOutput = np.minimum(np.maximum((np.add(inputValues, 3)), 0), 6) / 6.0
|
|
|
|
inputTensor = torch.tensor(inputValues, dtype=dtype, device=device)
|
|
precision_4dps = 0.0002
|
|
|
|
# normal
|
|
self.assertEqual(torch.nn.functional.hardsigmoid(inputTensor),
|
|
torch.tensor(expectedOutput, dtype=dtype, device=device),
|
|
atol=precision_4dps, rtol=0)
|
|
|
|
# inplace
|
|
inputTensorCpy = inputTensor.clone().detach()
|
|
self.assertEqual(torch.nn.functional.hardsigmoid(inputTensorCpy, inplace=True),
|
|
torch.tensor(expectedOutput, dtype=dtype, device=device),
|
|
atol=precision_4dps, rtol=0)
|
|
|
|
@dtypes(torch.float, torch.double)
|
|
def test_silu(self, device, dtype):
|
|
inputValues = [-1000, -1, 0, 0.5, 1, 2, 1000]
|
|
expectedOutput = [0.0000, -0.2689, 0, 0.3112, 0.7312, 1.7616, 1000]
|
|
precision_4dps = 0.0002
|
|
|
|
input_tensor = torch.tensor(inputValues, dtype=dtype, device=device)
|
|
expected_output_tensor = torch.tensor(expectedOutput, dtype=dtype, device=device)
|
|
|
|
self.assertEqual(torch.nn.functional.silu(input_tensor),
|
|
expected_output_tensor,
|
|
atol=precision_4dps, rtol=0)
|
|
|
|
self.assertEqual(torch.nn.functional.silu(input_tensor, inplace=True),
|
|
expected_output_tensor,
|
|
atol=precision_4dps, rtol=0)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float)
|
|
def test_diag_embed(self, device, dtype):
|
|
x = torch.arange(3 * 4, dtype=dtype, device=device).view(3, 4)
|
|
result = torch.diag_embed(x)
|
|
expected = torch.stack([torch.diag(r) for r in x], 0)
|
|
self.assertEqual(result, expected)
|
|
|
|
result = torch.diag_embed(x, offset=1, dim1=0, dim2=2)
|
|
expected = torch.stack([torch.diag(r, 1) for r in x], 1)
|
|
self.assertEqual(result, expected)
|
|
|
|
@onlyCPU
|
|
@dtypes(*torch.testing.get_all_dtypes())
|
|
def test_sub(self, device, dtype):
|
|
m1 = torch.tensor([2.34, 4.44], dtype=dtype, device=device)
|
|
m2 = torch.tensor([1.23, 2.33], dtype=dtype, device=device)
|
|
|
|
if dtype == torch.bool:
|
|
self.assertRaises(RuntimeError, lambda: m1 - m2)
|
|
elif (dtype == torch.bfloat16 or dtype == torch.half):
|
|
# bfloat16 has a lower precision so we have to have a separate check for it
|
|
self.assertEqual(m1 - m2, torch.tensor([1.11, 2.11], dtype=dtype), atol=0.01, rtol=0)
|
|
else:
|
|
self.assertEqual(m1 - m2, torch.tensor([1.11, 2.11], dtype=dtype))
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float)
|
|
def test_csub(self, device, dtype):
|
|
# with a tensor
|
|
a = torch.randn(100, 90, dtype=dtype, device=device)
|
|
b = a.clone().normal_()
|
|
|
|
res_add = torch.add(a, b, alpha=-1)
|
|
res_csub = a.clone()
|
|
res_csub.sub_(b)
|
|
self.assertEqual(res_add, res_csub)
|
|
|
|
# with a scalar
|
|
a = torch.randn(100, 100, dtype=dtype, device=device)
|
|
|
|
scalar = 123.5
|
|
res_add = torch.add(a, -scalar)
|
|
res_csub = a.clone()
|
|
res_csub.sub_(scalar)
|
|
self.assertEqual(res_add, res_csub)
|
|
|
|
@dtypesIfCUDA(torch.half, torch.float, torch.double)
|
|
@dtypes(torch.float, torch.double)
|
|
def test_min_max_binary_op_nan(self, device, dtype):
|
|
a = torch.rand(1000, dtype=dtype, device=device)
|
|
b = torch.rand(1000, dtype=dtype, device=device)
|
|
|
|
# 0:250: a -- nan, b -- not nan
|
|
a[:250] = float('nan')
|
|
# 250:500: a -- not nan, b -- nan
|
|
b[250:500] = float('nan')
|
|
# 500:750: a and b both nan
|
|
a[500:750] = float('nan')
|
|
b[500:750] = float('nan')
|
|
# 750:1000: neither nan
|
|
|
|
ma = torch.max(a, b)
|
|
mi = torch.min(a, b)
|
|
|
|
for i in range(750):
|
|
self.assertTrue(torch.isnan(ma[i]), "max(a, b): {}, a: {}, b: {}".format(ma[i], a[i], b[i]))
|
|
self.assertTrue(torch.isnan(mi[i]), "min(a, b): {}, a: {}, b: {}".format(mi[i], a[i], b[i]))
|
|
|
|
for i in range(750, 1000):
|
|
self.assertFalse(torch.isnan(ma[i]), "max(a, b): {}, a: {}, b: {}".format(ma[i], a[i], b[i]))
|
|
self.assertFalse(torch.isnan(mi[i]), "min(a, b): {}, a: {}, b: {}".format(mi[i], a[i], b[i]))
|
|
|
|
@onlyCPU
|
|
@dtypes(*torch.testing.get_all_math_dtypes('cpu'))
|
|
def test_threshold(self, device, dtype):
|
|
if dtype != torch.uint8 and dtype != torch.float16 and not dtype.is_complex:
|
|
# 100 is wide enough to use AVX2 instructions for all types
|
|
x = torch.randn(100, dtype=torch.float, device=device).sign().to(dtype=dtype)
|
|
y = torch.threshold(x, 0, 0)
|
|
self.assertTrue(y.le(0).any())
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float, torch.double)
|
|
def test_reciprocal(self, device, dtype):
|
|
a = torch.randn(100, 89, device=device, dtype=dtype)
|
|
res_div = 1 / a
|
|
res_reciprocal = a.clone()
|
|
res_reciprocal.reciprocal_()
|
|
self.assertEqual(res_reciprocal, res_div)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
|
|
@dtypes(torch.float, torch.double, torch.complex64, torch.complex128)
|
|
def test_reciprocal_complex(self, device, dtype):
|
|
t = torch.randn(10, 10, dtype=dtype, device=device)
|
|
expected = torch.from_numpy(np.reciprocal(t.cpu().numpy()))
|
|
actual = torch.reciprocal(t).cpu()
|
|
self.assertEqual(expected, actual)
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
|
|
@dtypes(torch.complex64, torch.complex128)
|
|
def test_reciprocal_complex_extremal(self, device, dtype):
|
|
vals = (
|
|
# Inf and Zeros
|
|
complex(float('inf'), float('inf')),
|
|
complex(float('inf'), 0.),
|
|
complex(0., float('inf')),
|
|
complex(0., 0.),
|
|
|
|
# Nans and Zeros
|
|
complex(float('nan'), 0.),
|
|
complex(0., float('nan')),
|
|
complex(float('nan'), float('nan')),
|
|
|
|
# Inf and Nans
|
|
complex(float('nan'), float('inf')),
|
|
complex(float('inf'), float('nan')),
|
|
|
|
# Extremal and Normal Number
|
|
complex(float('nan'), 2.0),
|
|
complex(float('inf'), 2.0),
|
|
complex(2.0, float('nan')),
|
|
complex(2.0, float('inf')),
|
|
complex(2.0, 0.0),
|
|
complex(0.0, 2.0))
|
|
|
|
self.compare_with_numpy(torch.reciprocal, np.reciprocal, vals, device, dtype)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.bfloat16, torch.float)
|
|
def test_div(self, device, dtype):
|
|
m1 = torch.randn(10, 10, dtype=torch.float, device=device).to(dtype=dtype)
|
|
res1 = m1.clone()
|
|
res1[:, 3].div_(2)
|
|
res2 = m1.clone()
|
|
for i in range(m1.size(0)):
|
|
res2[i, 3] = res2[i, 3] / 2
|
|
self.assertEqual(res1, res2)
|
|
|
|
if dtype == torch.bfloat16:
|
|
a1 = torch.tensor([4.2, 6.2], dtype=dtype, device=device)
|
|
a2 = torch.tensor([2., 2.], dtype=dtype, device=device)
|
|
self.assertEqual(a1 / a2,
|
|
torch.tensor([2.1, 3.1], dtype=dtype, device=device),
|
|
atol=0.01, rtol=0)
|
|
self.assertEqual(a1.div(a2), a1 / a2)
|
|
|
|
@dtypesIfCUDA(*set(torch.testing.get_all_math_dtypes('cuda')) - {torch.complex64, torch.complex128})
|
|
@dtypes(*set(torch.testing.get_all_math_dtypes('cpu')) - {torch.complex64, torch.complex128})
|
|
def test_floor_divide_tensor(self, device, dtype):
|
|
x = torch.randn(10, device=device).mul(30).to(dtype)
|
|
y = torch.arange(1, 11, dtype=dtype, device=device)
|
|
|
|
z = x // y
|
|
z_alt = torch.trunc(x.double() / y.double()).to(dtype)
|
|
|
|
self.assertEqual(z.dtype, x.dtype)
|
|
self.assertEqual(z, z_alt)
|
|
|
|
@dtypesIfCUDA(*set(torch.testing.get_all_math_dtypes('cuda')) - {torch.complex64, torch.complex128})
|
|
@dtypes(*set(torch.testing.get_all_math_dtypes('cpu')) - {torch.complex64, torch.complex128})
|
|
def test_floor_divide_scalar(self, device, dtype):
|
|
x = torch.randn(100, device=device).mul(10).to(dtype)
|
|
|
|
z = x // 3
|
|
z_alt = torch.tensor([math.trunc(v.item() / 3.) for v in x], dtype=x.dtype, device=device)
|
|
|
|
self.assertEqual(z.dtype, x.dtype)
|
|
self.assertEqual(z, z_alt)
|
|
|
|
# Note: this tests fails on XLA
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(torch.float, torch.long)
|
|
def test_floor_divide_out(self, device, dtype):
|
|
x = torch.randn(10, device=device).mul(10).to(dtype)
|
|
y = torch.arange(1, 11, dtype=dtype, device=device)
|
|
o = torch.empty(10, dtype=dtype, device=device)
|
|
|
|
torch.floor_divide(x, y, out=o)
|
|
self.assertEqual(o, x // y)
|
|
|
|
# Tests scalar with out
|
|
torch.floor_divide(x, 2, out=o)
|
|
self.assertEqual(o, x // 2)
|
|
|
|
if dtype == torch.int:
|
|
o = torch.empty(10, dtype=torch.float, device=device)
|
|
torch.floor_divide(x, y, out=o)
|
|
self.assertEqual(o, torch.floor_divide(x.float(), y.float()))
|
|
|
|
@onlyCPU
|
|
@dtypes(*torch.testing.get_all_math_dtypes('cpu'))
|
|
def test_rdiv(self, device, dtype):
|
|
if dtype is torch.float16:
|
|
return
|
|
elif dtype.is_complex:
|
|
x = torch.rand(100, dtype=dtype, device=device).add(1).mul(4)
|
|
else:
|
|
x = torch.rand(100, device=device).add(1).mul(4).to(dtype)
|
|
y = 30 / x
|
|
if dtype.is_floating_point or dtype.is_complex:
|
|
z = torch.tensor([30 / v.item() for v in x], dtype=dtype, device=device)
|
|
else:
|
|
z = torch.tensor([math.trunc(30. / v.item()) for v in x], dtype=dtype, device=device)
|
|
self.assertEqual(y, z)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float)
|
|
def test_fmod(self, device, dtype):
|
|
m1 = torch.Tensor(10, 10).uniform_(-10., 10.).to(dtype=dtype, device=device)
|
|
res1 = m1.clone()
|
|
q = 2.1
|
|
res1[:, 3].fmod_(q)
|
|
res2 = m1.clone()
|
|
for i in range(m1.size(1)):
|
|
res2[i, 3] = math.fmod(res2[i, 3], q)
|
|
self.assertEqual(res1, res2)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float, torch.long)
|
|
def test_remainder(self, device, dtype):
|
|
for use_item in [True, False]:
|
|
if dtype == torch.float:
|
|
m1 = torch.Tensor(10, 10).uniform_(-10., 10.).to(dtype=dtype, device=device)
|
|
res1 = m1.clone()
|
|
res2 = m1.clone()
|
|
qs = torch.arange(-5.1, 4.1, dtype=dtype, device=device)
|
|
# Check the case where the divisor is a simple float
|
|
for col_idx, q in enumerate(qs):
|
|
# Reference
|
|
for i in range(m1.size(0)):
|
|
res2[i, col_idx] = res2[i, col_idx] % q
|
|
# To test
|
|
res1[:, col_idx].remainder_(q if not use_item else q.item())
|
|
self.assertEqual(res1, res2)
|
|
# Check the case where the divisor is a tensor
|
|
res1 = m1.clone()
|
|
res1.remainder_(qs.unsqueeze(0).expand_as(res1))
|
|
self.assertEqual(res1, res2)
|
|
elif dtype == torch.long:
|
|
long_m1 = torch.LongTensor(10, 10).random_(-10, 10)
|
|
long_res1 = long_m1.clone()
|
|
long_res2 = long_m1.clone()
|
|
long_qs = torch.arange(-5, 5, dtype=dtype, device=device)
|
|
long_qs[5] = 5 # Can't handle the divisor=0 case
|
|
for col_idx, long_q in enumerate(long_qs):
|
|
# Reference
|
|
for i in range(long_m1.size(0)):
|
|
long_res2[i, col_idx] = long_res2[i, col_idx] % long_q
|
|
# To test
|
|
long_res1[:, col_idx].remainder_(long_q if not use_item else long_q.item())
|
|
self.assertEqual(long_res1, long_res2)
|
|
# Divisor is a tensor case
|
|
long_res1 = long_m1.clone()
|
|
long_res1.remainder_(long_qs.unsqueeze(0).expand_as(long_res1))
|
|
|
|
@dtypes(torch.float, torch.double)
|
|
def test_remainder_fmod_large_dividend(self, device, dtype):
|
|
alarge = 1e9
|
|
pi = 3.14159265358979
|
|
for avalue in [alarge, -alarge]:
|
|
for bvalue in [pi, -pi]:
|
|
a = torch.tensor([avalue], dtype=dtype, device=device)
|
|
b = torch.tensor([bvalue], dtype=dtype, device=device)
|
|
c = torch.remainder(a, b)
|
|
d = torch.fmod(a, b)
|
|
self.assertTrue((b[0] > 0) == (c[0] > 0)) # remainder has same sign as divisor
|
|
self.assertTrue((a[0] > 0) == (d[0] > 0)) # fmod has same sign as dividend
|
|
self.assertTrue(abs(c[0]) < abs(b[0])) # remainder is within range of divisor
|
|
self.assertTrue(abs(d[0]) < abs(b[0])) # fmod is within range of divisor
|
|
if ((a[0] > 0) == (b[0] > 0)):
|
|
self.assertTrue(c[0] == d[0]) # remainder is same as fmod
|
|
else:
|
|
self.assertTrue(abs(c[0] - d[0]) == abs(b[0])) # differ by one divisor
|
|
|
|
@dtypes(torch.int64, torch.float64)
|
|
def test_remainder_edge_cases(self, device, dtype):
|
|
# Test variations of negative values used as input
|
|
a = torch.tensor([6, -6, -6, 6, 27, -27, -27, 27], dtype=dtype, device=device)
|
|
b = torch.tensor([-3, 3, -3, 3, -5, 5, -5, 5], dtype=dtype, device=device)
|
|
r = a.remainder(b)
|
|
r_expected = torch.tensor([0, 0, 0, 0, -3, 3, -2, 2], dtype=dtype, device=device)
|
|
self.assertEqual(r, r_expected)
|
|
|
|
if dtype == torch.float64:
|
|
# Test cases where result should be nan
|
|
a = torch.tensor([-34, 0, 34], dtype=dtype, device=device)
|
|
b = torch.zeros(3, dtype=dtype, device=device)
|
|
self.assertTrue(torch.isnan(a.remainder(b)).all())
|
|
|
|
# Need to test a fairly large tensor with float cpu to run
|
|
# the Vec256 implementation
|
|
if device == 'cpu':
|
|
a = torch.tensor([6, -6, -6, 6, 27, -27, -27, 27] * 10000, dtype=dtype, device=device)
|
|
b = torch.tensor([-3, 3, -3, 3, -5, 5, -5, 5] * 10000, dtype=dtype, device=device)
|
|
r = a.remainder(b)
|
|
r_expected = torch.tensor([0, 0, 0, 0, -3, 3, -2, 2] * 10000, dtype=dtype, device=device)
|
|
self.assertEqual(r, r_expected)
|
|
|
|
# Test nan cases
|
|
a = torch.tensor([-34, 0, 34] * 20000, dtype=dtype, device=device)
|
|
b = torch.zeros(3 * 20000, dtype=dtype, device=device)
|
|
self.assertTrue(torch.isnan(a.remainder(b)).all())
|
|
|
|
elif dtype == torch.int64:
|
|
if device == 'cpu':
|
|
# Test int divide by zero causes an exception
|
|
a = torch.ones(1000, dtype=dtype, device=device)
|
|
b = torch.ones(1000, dtype=dtype, device=device)
|
|
b[500] = 0
|
|
self.assertRaises(RuntimeError, lambda: a.remainder(b))
|
|
|
|
# Check scalar type is promoted to match tensor
|
|
a = torch.ones(1, dtype=dtype, device=device)
|
|
b = 1.0 if dtype == torch.int64 else 1
|
|
r = a.remainder(b)
|
|
self.assertEqual(r.dtype, a.dtype)
|
|
|
|
@slowTest
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(torch.float32, torch.float64, torch.bfloat16, torch.int32, torch.int64, torch.cfloat, torch.cdouble)
|
|
@dtypesIfCUDA(torch.float32, torch.float64)
|
|
def test_mm(self, device, dtype):
|
|
def _test_mm(n, m, p, dtype, genf):
|
|
# helper function
|
|
def matrixmultiply(mat1, mat2):
|
|
n = mat1.size(0)
|
|
m = mat1.size(1)
|
|
p = mat2.size(1)
|
|
res = torch.zeros(n, p, dtype=dtype, device=device)
|
|
for i, j in iter_indices(res):
|
|
res[i, j] = sum(mat1[i, k] * mat2[k, j] for k in range(m))
|
|
return res
|
|
|
|
# contiguous case
|
|
mat1 = genf(n, m)
|
|
mat2 = genf(m, p)
|
|
res = torch.mm(mat1, mat2)
|
|
|
|
res2 = matrixmultiply(mat1, mat2)
|
|
self.assertEqual(res, res2)
|
|
|
|
# non contiguous case 1
|
|
mat1 = genf(n, m)
|
|
mat2 = genf(p, m).t()
|
|
res = torch.mm(mat1, mat2)
|
|
|
|
res2 = matrixmultiply(mat1, mat2)
|
|
self.assertEqual(res, res2)
|
|
|
|
# non contiguous case 2
|
|
mat1 = genf(m, n).t()
|
|
mat2 = genf(m, p)
|
|
res = torch.mm(mat1, mat2)
|
|
|
|
res2 = matrixmultiply(mat1, mat2)
|
|
self.assertEqual(res, res2)
|
|
|
|
# non contiguous case 3
|
|
mat1 = genf(m, n).t()
|
|
mat2 = genf(p, m).t()
|
|
res = torch.mm(mat1, mat2)
|
|
|
|
res2 = matrixmultiply(mat1, mat2)
|
|
self.assertEqual(res, res2)
|
|
|
|
# test with zero stride
|
|
mat1 = genf(n, m)
|
|
mat2 = genf(m, 1).expand(m, p)
|
|
res = torch.mm(mat1, mat2)
|
|
|
|
res2 = matrixmultiply(mat1, mat2)
|
|
self.assertEqual(res, res2)
|
|
|
|
# explicitly exercise the _out variant in torch.mm().
|
|
# contiguous case
|
|
mat1 = genf(n, m)
|
|
mat2 = genf(m, p)
|
|
res = genf(n, p)
|
|
torch.mm(mat1, mat2, out=res)
|
|
|
|
res2 = matrixmultiply(mat1, mat2)
|
|
self.assertEqual(res, res2)
|
|
|
|
# explicitly exercise the _out variant in torch.mm().
|
|
# non contiguous case 3
|
|
mat1 = genf(m, n).t()
|
|
mat2 = genf(p, m).t()
|
|
res = genf(n, p)
|
|
torch.mm(mat1, mat2, out=res)
|
|
|
|
res2 = matrixmultiply(mat1, mat2)
|
|
self.assertEqual(res, res2)
|
|
|
|
def genf_int(x, y):
|
|
return torch.randint(0, 100, (x, y), dtype=dtype, device=device)
|
|
|
|
def genf_bfloat(x, y):
|
|
return torch.randn(x, y, dtype=torch.float32, device=device).to(dtype)
|
|
|
|
def genf_float(x, y):
|
|
return torch.randn(x, y, dtype=dtype, device=device)
|
|
|
|
for (n, m, p) in [(20, 10, 5), (15, 5, 10), (5, 18, 10)]:
|
|
if (dtype == torch.int32) or (dtype == torch.int64):
|
|
genf = genf_int
|
|
elif (dtype == torch.bfloat16):
|
|
genf = genf_bfloat
|
|
else:
|
|
genf = genf_float
|
|
|
|
_test_mm(n, m, p, dtype, genf)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float)
|
|
def test_bmm(self, device, dtype):
|
|
num_batches = 10
|
|
M, N, O = 23, 8, 12
|
|
b1 = torch.randn(num_batches, M, N, dtype=dtype, device=device)
|
|
b2 = torch.randn(num_batches, N, O, dtype=dtype, device=device)
|
|
res = torch.bmm(b1, b2)
|
|
for i in range(num_batches):
|
|
r = torch.mm(b1[i], b2[i])
|
|
self.assertEqual(r, res[i])
|
|
if torch.cuda.is_available():
|
|
# check that mixed arguments are rejected
|
|
self.assertRaises(RuntimeError, lambda: torch.bmm(b1, b2.cuda()))
|
|
self.assertRaises(RuntimeError, lambda: torch.bmm(b1.cuda(), b2))
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float)
|
|
def test_addbmm(self, device, dtype):
|
|
# num_batches = 10
|
|
# M, N, O = 12, 8, 5
|
|
num_batches = 2
|
|
M, N, O = 2, 3, 4
|
|
b1 = torch.randn(num_batches, M, N, dtype=dtype, device=device)
|
|
b2 = torch.randn(num_batches, N, O, dtype=dtype, device=device)
|
|
res = torch.bmm(b1, b2)
|
|
res2 = torch.tensor((), dtype=dtype, device=device).resize_as_(res[0]).zero_()
|
|
res3 = torch.tensor((), dtype=dtype, device=device).resize_as_(res[0]).zero_()
|
|
|
|
res2.addbmm_(b1, b2)
|
|
self.assertEqual(res2, res.sum(0, False))
|
|
res3.copy_(res2)
|
|
|
|
with self.maybeWarnsRegex(
|
|
UserWarning, "This overload of addbmm_ is deprecated"):
|
|
res2.addbmm_(1, b1, b2)
|
|
self.assertEqual(res2, res.sum(0, False) * 2),
|
|
res3.addbmm_(b1, b2, beta=1)
|
|
self.assertEqual(res2, res3)
|
|
|
|
with self.maybeWarnsRegex(
|
|
UserWarning, "This overload of addbmm_ is deprecated"):
|
|
res2.addbmm_(1., .5, b1, b2)
|
|
self.assertEqual(res2, res.sum(0, False) * 2.5)
|
|
res3.addbmm_(b1, b2, beta=1., alpha=.5)
|
|
self.assertEqual(res2, res3)
|
|
|
|
with self.maybeWarnsRegex(
|
|
UserWarning, "This overload of addbmm is deprecated"):
|
|
self.assertEqual(res2, torch.addbmm(1, res2, 0, b1, b2))
|
|
|
|
res4 = torch.addbmm(res2, b1, b2, beta=1, alpha=.5)
|
|
self.assertEqual(res4, res.sum(0, False) * 3),
|
|
|
|
res5 = torch.addbmm(res2, b1, b2, beta=0, alpha=1)
|
|
self.assertEqual(res5, res.sum(0, False))
|
|
|
|
res6 = torch.addbmm(res2, b1, b2, beta=.1, alpha=.5)
|
|
self.assertEqual(res6, res2 * .1 + .5 * res.sum(0)),
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float)
|
|
def test_baddbmm(self, device, dtype):
|
|
num_batches = 10
|
|
M, N, O = 12, 8, 5
|
|
b1 = torch.randn(num_batches, M, N, dtype=dtype, device=device)
|
|
b2 = torch.randn(num_batches, N, O, dtype=dtype, device=device)
|
|
res = torch.bmm(b1, b2)
|
|
res2 = torch.tensor((), dtype=dtype, device=device).resize_as_(res).zero_()
|
|
res3 = torch.tensor((), dtype=dtype, device=device).resize_as_(res).zero_()
|
|
|
|
res2.baddbmm_(b1, b2)
|
|
self.assertEqual(res2, res)
|
|
res3.copy_(res2)
|
|
|
|
with self.maybeWarnsRegex(
|
|
UserWarning, "This overload of baddbmm_ is deprecated"):
|
|
res2.baddbmm_(1, b1, b2)
|
|
self.assertEqual(res2, res * 2)
|
|
res3.baddbmm_(b1, b2, beta=1)
|
|
self.assertEqual(res3, res2)
|
|
|
|
with self.maybeWarnsRegex(
|
|
UserWarning, "This overload of baddbmm_ is deprecated"):
|
|
res2.baddbmm_(1, .5, b1, b2)
|
|
self.assertEqual(res2, res * 2.5)
|
|
res3.baddbmm_(b1, b2, beta=1, alpha=.5)
|
|
self.assertEqual(res3, res2)
|
|
|
|
|
|
with self.maybeWarnsRegex(
|
|
UserWarning, "This overload of baddbmm is deprecated"):
|
|
self.assertEqual(torch.baddbmm(1, res2, 0, b1, b2), res2)
|
|
|
|
res4 = torch.baddbmm(res2, b1, b2, beta=1, alpha=.5)
|
|
self.assertEqual(res4, res * 3, atol=2e-5, rtol=0)
|
|
|
|
res5 = torch.baddbmm(res2, b1, b2, beta=0, alpha=1)
|
|
self.assertEqual(res5, res)
|
|
|
|
res6 = torch.baddbmm(res2, b1, b2, beta=.1, alpha=.5)
|
|
self.assertEqual(res6, res2 * .1 + res * .5)
|
|
|
|
def _test_cop(self, torchfn, mathfn, dtype, device):
|
|
def reference_implementation(res2):
|
|
for i, j in iter_indices(sm1):
|
|
idx1d = i * sm1.size(0) + j
|
|
res2[i, j] = mathfn(sm1[i, j], sm2[idx1d])
|
|
return res2
|
|
|
|
# contiguous
|
|
m1 = torch.randn(10, 10, 10, dtype=dtype, device=device)
|
|
m2 = torch.randn(10, 10 * 10, dtype=dtype, device=device)
|
|
sm1 = m1[4]
|
|
sm2 = m2[4]
|
|
|
|
res1 = torchfn(sm1, sm2.view(10, 10))
|
|
res2 = reference_implementation(res1.clone())
|
|
self.assertEqual(res1, res2)
|
|
|
|
# non-contiguous
|
|
m1 = torch.randn(10, 10, 10, dtype=dtype, device=device)
|
|
m2 = torch.randn(10 * 10, 10 * 10, dtype=dtype, device=device)
|
|
sm1 = m1[:, 4]
|
|
sm2 = m2[:, 4]
|
|
# view as sm1.size()
|
|
sm2.set_(sm2.storage(), sm2.storage_offset(), sm1.size(), (sm2.stride()[0] * 10, sm2.stride()[0]))
|
|
res1 = torchfn(sm1, sm2)
|
|
# reference_implementation assumes 1-d sm2
|
|
sm2.set_(sm2.storage(), sm2.storage_offset(), m2[:, 4].size(), m2[:, 4].stride())
|
|
res2 = reference_implementation(res1.clone())
|
|
self.assertEqual(res1, res2)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float)
|
|
def test_cdiv(self, device, dtype):
|
|
self._test_cop(torch.div, lambda x, y: x / y, dtype, device)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float)
|
|
def test_cfmod(self, device, dtype):
|
|
self._test_cop(torch.fmod, math.fmod, dtype, device)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float)
|
|
def test_cremainder(self, device, dtype):
|
|
self._test_cop(torch.remainder, lambda x, y: x % y, dtype, device)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float)
|
|
def test_cmul(self, device, dtype):
|
|
self._test_cop(torch.mul, lambda x, y: x * y, dtype, device)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float)
|
|
def test_cpow(self, device, dtype):
|
|
self._test_cop(torch.pow, lambda x, y: nan if x < 0 else math.pow(x, y), dtype, device)
|
|
|
|
@onlyCUDA
|
|
@dtypes(torch.float16, torch.float32)
|
|
def test_prod_gpu(self, device, dtype):
|
|
x = torch.tensor([2, 3, 6, 9, 8], dtype=dtype, device=device)
|
|
|
|
# Check all combinations: fp16 input - fp16 output, fp16 input - fp32
|
|
# output, fp32 input - fp16 output, fp32 input - fp32 output
|
|
for dtype_output in [torch.float16, torch.float32]:
|
|
result_expected = torch.tensor(2592, dtype=dtype_output, device=device)
|
|
output = torch.prod(x, dtype=dtype_output)
|
|
self.assertEqual(output, result_expected)
|
|
|
|
output = x.prod(dtype=dtype_output)
|
|
self.assertEqual(output, result_expected)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float)
|
|
def test_prod(self, device, dtype):
|
|
x = torch.rand(100, 100, dtype=dtype, device=device)
|
|
res1 = torch.prod(x, 1)
|
|
res2 = torch.tensor((), dtype=dtype, device=device)
|
|
torch.prod(x, 1, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float)
|
|
def test_cross(self, device, dtype):
|
|
x = torch.rand(100, 3, 100, dtype=dtype, device=device)
|
|
y = torch.rand(100, 3, 100, dtype=dtype, device=device)
|
|
res1 = torch.cross(x, y)
|
|
res2 = torch.tensor((), dtype=dtype, device=device)
|
|
torch.cross(x, y, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float)
|
|
def test_cross_with_and_without_dim(self, device, dtype):
|
|
x = torch.rand(100, 3, dtype=dtype, device=device)
|
|
y = torch.rand(100, 3, dtype=dtype, device=device)
|
|
res1 = torch.cross(x, y, dim=1)
|
|
res2 = torch.cross(x, y, dim=-1)
|
|
res3 = torch.cross(x, y)
|
|
self.assertEqual(res1, res2)
|
|
self.assertEqual(res1, res3)
|
|
|
|
@dtypes(torch.float, torch.double, torch.int8, torch.int16, torch.int32, torch.int64)
|
|
def test_random(self, device, dtype):
|
|
# This test is flaky with p<=(2/(ub-lb))^200=6e-36
|
|
t = torch.empty(200, dtype=dtype, device=device)
|
|
lb = 1
|
|
ub = 4
|
|
|
|
t.fill_(-1)
|
|
t.random_(lb, ub)
|
|
self.assertEqual(t.min(), lb)
|
|
self.assertEqual(t.max(), ub - 1)
|
|
|
|
t.fill_(-1)
|
|
t.random_(ub)
|
|
self.assertEqual(t.min(), 0)
|
|
self.assertEqual(t.max(), ub - 1)
|
|
|
|
def test_random_bool(self, device):
|
|
size = 2000
|
|
t = torch.empty(size, dtype=torch.bool, device=device)
|
|
|
|
t.fill_(False)
|
|
t.random_()
|
|
self.assertEqual(t.min(), False)
|
|
self.assertEqual(t.max(), True)
|
|
self.assertTrue(0.4 < (t.eq(True)).to(torch.int).sum().item() / size < 0.6)
|
|
|
|
t.fill_(True)
|
|
t.random_()
|
|
self.assertEqual(t.min(), False)
|
|
self.assertEqual(t.max(), True)
|
|
self.assertTrue(0.4 < (t.eq(True)).to(torch.int).sum().item() / size < 0.6)
|
|
|
|
def test_random_from_to_bool(self, device):
|
|
size = 2000
|
|
|
|
int64_min_val = torch.iinfo(torch.int64).min
|
|
int64_max_val = torch.iinfo(torch.int64).max
|
|
|
|
min_val = 0
|
|
max_val = 1
|
|
|
|
froms = [int64_min_val, -42, min_val - 1, min_val, max_val, max_val + 1, 42]
|
|
tos = [-42, min_val - 1, min_val, max_val, max_val + 1, 42, int64_max_val]
|
|
|
|
for from_ in froms:
|
|
for to_ in tos:
|
|
t = torch.empty(size, dtype=torch.bool, device=device)
|
|
if to_ > from_:
|
|
if not (min_val <= from_ <= max_val):
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"from is out of bounds",
|
|
lambda: t.random_(from_, to_)
|
|
)
|
|
elif not (min_val <= (to_ - 1) <= max_val):
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"to - 1 is out of bounds",
|
|
lambda: t.random_(from_, to_)
|
|
)
|
|
else:
|
|
t.random_(from_, to_)
|
|
range_ = to_ - from_
|
|
delta = 1
|
|
self.assertTrue(from_ <= t.to(torch.int).min() < (from_ + delta))
|
|
self.assertTrue((to_ - delta) <= t.to(torch.int).max() < to_)
|
|
else:
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_),
|
|
lambda: t.random_(from_, to_)
|
|
)
|
|
|
|
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes()))
|
|
def test_random_full_range(self, device, dtype):
|
|
# TODO: https://github.com/pytorch/pytorch/issues/33793
|
|
if IS_WINDOWS and device.startswith('cuda') and dtype == torch.bfloat16:
|
|
raise unittest.SkipTest("Crashes with CUDA error: unspecified launch failure")
|
|
|
|
size = 2000
|
|
alpha = 0.1
|
|
|
|
int64_min_val = torch.iinfo(torch.int64).min
|
|
int64_max_val = torch.iinfo(torch.int64).max
|
|
|
|
if dtype == torch.double:
|
|
fp_limit = 2**53
|
|
elif dtype == torch.float:
|
|
fp_limit = 2**24
|
|
elif dtype == torch.half:
|
|
fp_limit = 2**11
|
|
elif dtype == torch.bfloat16:
|
|
fp_limit = 2**8
|
|
else:
|
|
fp_limit = 0
|
|
|
|
t = torch.empty(size, dtype=dtype, device=device)
|
|
|
|
if dtype in [torch.float, torch.double, torch.half, torch.bfloat16]:
|
|
from_ = int(max(-fp_limit, int64_min_val))
|
|
to_inc_ = int(min(fp_limit, int64_max_val))
|
|
else:
|
|
from_ = int(max(torch.iinfo(dtype).min, int64_min_val))
|
|
to_inc_ = int(min(torch.iinfo(dtype).max, int64_max_val))
|
|
range_ = to_inc_ - from_ + 1
|
|
|
|
t.random_(from_, None)
|
|
delta = max(1, alpha * range_)
|
|
self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta))
|
|
self.assertTrue((to_inc_ - delta) < t.to(torch.double).max() <= to_inc_)
|
|
|
|
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes()))
|
|
def test_random_from_to(self, device, dtype):
|
|
# TODO: https://github.com/pytorch/pytorch/issues/33793
|
|
if IS_WINDOWS and device.startswith('cuda') and dtype == torch.bfloat16:
|
|
raise unittest.SkipTest("Crashes with CUDA error: unspecified launch failure")
|
|
|
|
size = 2000
|
|
alpha = 0.1
|
|
|
|
int64_min_val = torch.iinfo(torch.int64).min
|
|
int64_max_val = torch.iinfo(torch.int64).max
|
|
|
|
if dtype in [torch.float, torch.double, torch.half]:
|
|
min_val = int(max(torch.finfo(dtype).min, int64_min_val))
|
|
max_val = int(min(torch.finfo(dtype).max, int64_max_val))
|
|
froms = [min_val, -42, 0, 42]
|
|
tos = [-42, 0, 42, max_val >> 1]
|
|
elif dtype == torch.bfloat16:
|
|
min_val = int64_min_val
|
|
max_val = int64_max_val
|
|
froms = [min_val, -42, 0, 42]
|
|
tos = [-42, 0, 42, max_val >> 1]
|
|
elif dtype == torch.uint8:
|
|
min_val = torch.iinfo(dtype).min
|
|
max_val = torch.iinfo(dtype).max
|
|
froms = [int64_min_val, -42, min_val - 1, min_val, 42, max_val, max_val + 1]
|
|
tos = [-42, min_val - 1, min_val, 42, max_val, max_val + 1, int64_max_val]
|
|
elif dtype == torch.int64:
|
|
min_val = int64_min_val
|
|
max_val = int64_max_val
|
|
froms = [min_val, -42, 0, 42]
|
|
tos = [-42, 0, 42, max_val]
|
|
else:
|
|
min_val = torch.iinfo(dtype).min
|
|
max_val = torch.iinfo(dtype).max
|
|
froms = [int64_min_val, min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1]
|
|
tos = [min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1, int64_max_val]
|
|
|
|
if dtype == torch.double:
|
|
fp_limit = 2**53
|
|
elif dtype == torch.float:
|
|
fp_limit = 2**24
|
|
elif dtype == torch.half:
|
|
fp_limit = 2**11
|
|
elif dtype == torch.bfloat16:
|
|
fp_limit = 2**8
|
|
else:
|
|
fp_limit = 0
|
|
|
|
for from_ in froms:
|
|
for to_ in tos:
|
|
t = torch.empty(size, dtype=dtype, device=device)
|
|
if to_ > from_:
|
|
if not (min_val <= from_ <= max_val):
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"from is out of bounds",
|
|
lambda: t.random_(from_, to_)
|
|
)
|
|
elif not (min_val <= (to_ - 1) <= max_val):
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"to - 1 is out of bounds",
|
|
lambda: t.random_(from_, to_)
|
|
)
|
|
else:
|
|
if dtype.is_floating_point and (
|
|
not (-fp_limit <= from_ <= fp_limit) or not (-fp_limit <= (to_ - 1) <= fp_limit)):
|
|
if not (-fp_limit <= from_ <= fp_limit):
|
|
self.assertWarnsRegex(UserWarning, "from is out of bounds",
|
|
lambda: t.random_(from_, to_))
|
|
if not (-fp_limit <= (to_ - 1) <= fp_limit):
|
|
self.assertWarnsRegex(UserWarning, "to - 1 is out of bounds",
|
|
lambda: t.random_(from_, to_))
|
|
else:
|
|
t.random_(from_, to_)
|
|
range_ = to_ - from_
|
|
delta = max(1, alpha * range_)
|
|
if dtype == torch.bfloat16:
|
|
# Less strict checks because of rounding errors
|
|
# TODO investigate rounding errors
|
|
self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta))
|
|
self.assertTrue((to_ - delta) < t.to(torch.double).max() <= to_)
|
|
else:
|
|
self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta))
|
|
self.assertTrue((to_ - delta) <= t.to(torch.double).max() < to_)
|
|
else:
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_),
|
|
lambda: t.random_(from_, to_)
|
|
)
|
|
|
|
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes()))
|
|
def test_random_to(self, device, dtype):
|
|
# TODO: https://github.com/pytorch/pytorch/issues/33793
|
|
if IS_WINDOWS and device.startswith('cuda') and dtype == torch.bfloat16:
|
|
raise unittest.SkipTest("Crashes with CUDA error: unspecified launch failure")
|
|
|
|
size = 2000
|
|
alpha = 0.1
|
|
|
|
int64_min_val = torch.iinfo(torch.int64).min
|
|
int64_max_val = torch.iinfo(torch.int64).max
|
|
|
|
if dtype in [torch.float, torch.double, torch.half]:
|
|
min_val = int(max(torch.finfo(dtype).min, int64_min_val))
|
|
max_val = int(min(torch.finfo(dtype).max, int64_max_val))
|
|
tos = [-42, 0, 42, max_val >> 1]
|
|
elif dtype == torch.bfloat16:
|
|
min_val = int64_min_val
|
|
max_val = int64_max_val
|
|
tos = [-42, 0, 42, max_val >> 1]
|
|
elif dtype == torch.uint8:
|
|
min_val = torch.iinfo(dtype).min
|
|
max_val = torch.iinfo(dtype).max
|
|
tos = [-42, min_val - 1, min_val, 42, max_val, max_val + 1, int64_max_val]
|
|
elif dtype == torch.int64:
|
|
min_val = int64_min_val
|
|
max_val = int64_max_val
|
|
tos = [-42, 0, 42, max_val]
|
|
else:
|
|
min_val = torch.iinfo(dtype).min
|
|
max_val = torch.iinfo(dtype).max
|
|
tos = [min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1, int64_max_val]
|
|
|
|
from_ = 0
|
|
for to_ in tos:
|
|
t = torch.empty(size, dtype=dtype, device=device)
|
|
if to_ > from_:
|
|
if not (min_val <= (to_ - 1) <= max_val):
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"to - 1 is out of bounds",
|
|
lambda: t.random_(from_, to_)
|
|
)
|
|
else:
|
|
t.random_(to_)
|
|
range_ = to_ - from_
|
|
delta = max(1, alpha * range_)
|
|
if dtype == torch.bfloat16:
|
|
# Less strict checks because of rounding errors
|
|
# TODO investigate rounding errors
|
|
self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta))
|
|
self.assertTrue((to_ - delta) < t.to(torch.double).max() <= to_)
|
|
else:
|
|
self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta))
|
|
self.assertTrue((to_ - delta) <= t.to(torch.double).max() < to_)
|
|
else:
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_),
|
|
lambda: t.random_(from_, to_)
|
|
)
|
|
|
|
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes()))
|
|
def test_random_default(self, device, dtype):
|
|
# TODO: https://github.com/pytorch/pytorch/issues/33793
|
|
if IS_WINDOWS and device.startswith('cuda') and dtype == torch.bfloat16:
|
|
raise unittest.SkipTest("Crashes with CUDA error: unspecified launch failure")
|
|
|
|
size = 2000
|
|
alpha = 0.1
|
|
|
|
if dtype == torch.float:
|
|
to_inc = 1 << 24
|
|
elif dtype == torch.double:
|
|
to_inc = 1 << 53
|
|
elif dtype == torch.half:
|
|
to_inc = 1 << 11
|
|
elif dtype == torch.bfloat16:
|
|
to_inc = 1 << 8
|
|
else:
|
|
to_inc = torch.iinfo(dtype).max
|
|
|
|
t = torch.empty(size, dtype=dtype, device=device)
|
|
t.random_()
|
|
self.assertTrue(0 <= t.to(torch.double).min() < alpha * to_inc)
|
|
self.assertTrue((to_inc - alpha * to_inc) < t.to(torch.double).max() <= to_inc)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.half, torch.double, torch.int)
|
|
def test_cat(self, device, dtype):
|
|
SIZE = 10
|
|
for dim in range(-3, 3):
|
|
pos_dim = dim if dim >= 0 else 3 + dim
|
|
x = torch.randint(low=-100, high=100, size=(13, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim)
|
|
y = torch.randint(low=-100, high=100, size=(17, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim)
|
|
z = torch.randint(low=-100, high=100, size=(19, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim)
|
|
|
|
res1 = torch.cat((x, y, z), dim)
|
|
self.assertEqual(res1.narrow(pos_dim, 0, 13), x, atol=0, rtol=0)
|
|
self.assertEqual(res1.narrow(pos_dim, 13, 17), y, atol=0, rtol=0)
|
|
self.assertEqual(res1.narrow(pos_dim, 30, 19), z, atol=0, rtol=0)
|
|
|
|
x = torch.randint(low=-100, high=100, size=(20, SIZE, SIZE), device=device).to(dtype)
|
|
self.assertEqual(torch.cat(torch.split(x, 7)), x)
|
|
self.assertEqual(torch.cat(torch.chunk(x, 7)), x)
|
|
|
|
y = torch.randint(low=-100, high=100, size=(1, SIZE, SIZE), device=device).to(dtype)
|
|
z = torch.cat([x, y])
|
|
self.assertEqual(z.size(), (21, SIZE, SIZE))
|
|
|
|
self.assertRaises(RuntimeError, lambda: torch.cat([]))
|
|
self.assertRaisesRegex(TypeError, 'got None', lambda: torch.cat([x, None]))
|
|
|
|
@onlyCPU
|
|
def test_cat_scalars(self, device):
|
|
x = torch.tensor(0, device=device)
|
|
y = torch.tensor(1, device=device)
|
|
with self.assertRaisesRegex(RuntimeError, 'zero-dimensional.*cannot be concatenated'):
|
|
torch.cat([x, y])
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64)
|
|
def test_div_zero(self, device, dtype):
|
|
a = torch.tensor([0, 1], dtype=dtype, device=device)
|
|
b = torch.tensor([0, 1], dtype=dtype, device=device)
|
|
with self.assertRaisesRegex(RuntimeError, 'ZeroDivisionError'):
|
|
a // b
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64)
|
|
def test_fmod_zero(self, device, dtype):
|
|
a = torch.tensor([1, 0], dtype=dtype, device=device)
|
|
with self.assertRaisesRegex(RuntimeError, 'ZeroDivisionError'):
|
|
a.fmod(a)
|
|
|
|
@onlyCPU
|
|
def test_cat_bad_input_sizes(self, device):
|
|
x = torch.randn(2, 1, device=device)
|
|
y = torch.randn(2, 1, 1, device=device)
|
|
z = torch.randn(2, 1, 1, device=device)
|
|
self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z]))
|
|
|
|
x = torch.randn(2, 1, 2, device=device)
|
|
y = torch.randn(2, 1, 1, device=device)
|
|
z = torch.randn(2, 2, 1, device=device)
|
|
self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z], dim=1))
|
|
|
|
@slowTest
|
|
@onlyCPU
|
|
def test_cat_big(self, device):
|
|
SIZE1 = 6500
|
|
SIZE2 = 4500
|
|
concat_list = []
|
|
concat_list.append(torch.ones((SIZE1, 1024 * 512), dtype=torch.uint8, device=device))
|
|
concat_list.append(torch.ones((SIZE2, 1024 * 512), dtype=torch.uint8, device=device))
|
|
result = torch.cat(concat_list)
|
|
self.assertEqual(result.size(0), SIZE1 + SIZE2)
|
|
|
|
|
|
@onlyCPU
|
|
def test_max_mixed_devices(self, device):
|
|
a = torch.randn(10, device=device)
|
|
if torch.cuda.is_available():
|
|
values = torch.randn(10).cuda()
|
|
indices = torch.cuda.LongTensor()
|
|
self.assertRaises(RuntimeError,
|
|
lambda: torch.max(a, 0, out=(values, indices)))
|
|
|
|
@onlyCPU
|
|
def test_min_mixed_devices(self, device):
|
|
a = torch.randn(10, device=device)
|
|
if torch.cuda.is_available():
|
|
values = torch.randn(10).cuda()
|
|
indices = torch.cuda.LongTensor()
|
|
self.assertRaises(RuntimeError,
|
|
lambda: torch.min(a, 0, out=(values, indices)))
|
|
|
|
# NOTE: inferring the dtype from bool or integer fill values is
|
|
# disabled because the behavior is changing from PyTorch 1.5,
|
|
# where the default scalar type would be inferred, to PyTorch 1.7,
|
|
# where bool or long, respectively, will be inferred.
|
|
def test_full_unsupported_integer_inference(self, device):
|
|
size = (2, 2)
|
|
# Tests bool and integer fill_values deprecated without specific dtype set
|
|
with self.assertRaisesRegex(RuntimeError, '.+is currently unsupported.+'):
|
|
self.assertEqual(torch.full(size, True).dtype, torch.float)
|
|
with self.assertRaisesRegex(RuntimeError, '.+is currently unsupported.+'):
|
|
self.assertEqual(torch.full(size, 1).dtype, torch.float)
|
|
|
|
# Explicitly setting the dtype doesn't warn
|
|
self.assertEqual(torch.full(size, 1, dtype=torch.long).dtype, torch.long)
|
|
self.assertEqual(torch.full(size, True, dtype=torch.bool).dtype, torch.bool)
|
|
|
|
# Performs same tests with named tensor
|
|
with self.assertRaisesRegex(RuntimeError, '.+is currently unsupported.+'):
|
|
self.assertEqual(torch.full(size, True, names=('a', 'b')).dtype, torch.float)
|
|
with self.assertRaisesRegex(RuntimeError, '.+is currently unsupported.+'):
|
|
self.assertEqual(torch.full(size, 1, names=('a', 'b')).dtype, torch.float)
|
|
|
|
with self.maybeWarnsRegex(UserWarning, 'Named tensors .+'):
|
|
dt = torch.full(size, True, names=('a', 'b'), dtype=torch.bool).dtype
|
|
self.assertEqual(dt, torch.bool)
|
|
with self.maybeWarnsRegex(UserWarning, 'Named tensors .+'):
|
|
dt = torch.full(size, 1, names=('a', 'b'), dtype=torch.long).dtype
|
|
self.assertEqual(dt, torch.long)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(torch.half, torch.float, torch.double)
|
|
def test_full_inference(self, device, dtype):
|
|
size = (2, 2)
|
|
|
|
prev_default = torch.get_default_dtype()
|
|
torch.set_default_dtype(dtype)
|
|
|
|
# Tests bool fill value inference (currently unsupported)
|
|
# Note: in the future this will return a tensor of torch.bool dtype
|
|
with self.assertRaisesRegex(RuntimeError, '.+is currently unsupported.+'):
|
|
t = torch.full(size, True)
|
|
self.assertEqual(t.dtype, dtype)
|
|
|
|
# Tests integer fill value inference (currently unsupported)
|
|
# Note: in the future this will return a tensor of torch.long dtype
|
|
with self.assertRaisesRegex(RuntimeError, '.+is currently unsupported.+'):
|
|
t = torch.full(size, 1)
|
|
self.assertEqual(t.dtype, dtype)
|
|
|
|
# Tests float fill value inference
|
|
t = torch.full(size, 1.)
|
|
self.assertEqual(t.dtype, dtype)
|
|
|
|
# Tests complex inference
|
|
t = torch.full(size, (1 + 1j))
|
|
ctype = torch.complex128 if dtype is torch.double else torch.complex64
|
|
self.assertEqual(t.dtype, ctype)
|
|
|
|
torch.set_default_dtype(prev_default)
|
|
|
|
# Full-like precedence is the explicit dtype then the dtype of the "like"
|
|
# tensor.
|
|
@onlyOnCPUAndCUDA
|
|
def test_full_like_inference(self, device):
|
|
size = (2, 2)
|
|
like = torch.empty((5,), device=device, dtype=torch.long)
|
|
|
|
self.assertEqual(torch.full_like(like, 1.).dtype, torch.long)
|
|
self.assertEqual(torch.full_like(like, 1., dtype=torch.complex64).dtype,
|
|
torch.complex64)
|
|
|
|
def test_full_out(self, device):
|
|
size = (5,)
|
|
o = torch.empty(size, device=device, dtype=torch.long)
|
|
|
|
# verifies dtype/out conflict throws a RuntimeError
|
|
with self.assertRaises(RuntimeError):
|
|
torch.full(o.shape, 1., dtype=torch.float, out=o)
|
|
|
|
# verifies out dtype overrides inference
|
|
self.assertEqual(torch.full(o.shape, 1., out=o).dtype, o.dtype)
|
|
self.assertEqual(torch.full(size, 1, out=o).dtype, o.dtype)
|
|
|
|
def _float_to_int_conversion_helper(self, vals, device, dtype):
|
|
assert TEST_NUMPY
|
|
|
|
a = np.array(vals, dtype=np.float32).astype(torch_to_numpy_dtype_dict[dtype])
|
|
t = torch.tensor(vals, device=device, dtype=torch.float).to(dtype)
|
|
self.assertEqual(torch.from_numpy(a), t.cpu())
|
|
|
|
# Checks that float->integer casts don't produce undefined behavior errors.
|
|
# Note: In C++, casting from a floating value to an integral dtype
|
|
# is undefined if the floating point value is not within the integral
|
|
# dtype's dynamic range. This can (and should) cause undefined behavior
|
|
# errors with UBSAN. These casts are deliberate in PyTorch, however, and
|
|
# NumPy has the same behavior.
|
|
@onlyOnCPUAndCUDA
|
|
@unittest.skipIf(IS_MACOS, "Test is broken on MacOS, see https://github.com/pytorch/pytorch/issues/38752")
|
|
@unittest.skipIf(IS_PPC, "Test is borken on PowerPC, see https://github.com/pytorch/pytorch/issues/39671")
|
|
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
|
|
@dtypes(torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64)
|
|
def test_float_to_int_conversion_finite(self, device, dtype):
|
|
min = torch.finfo(torch.float).min
|
|
max = torch.finfo(torch.float).max
|
|
|
|
# Note: CUDA max float -> integer conversion is divergent on some dtypes
|
|
vals = (min, -2, -1.5, -.5, 0, .5, 1.5, 2, max)
|
|
if self.device_type == 'cuda':
|
|
if torch.version.hip:
|
|
# HIP min float -> int64 conversion is divergent
|
|
vals = (-2, -1.5, -.5, 0, .5, 1.5, 2)
|
|
else:
|
|
vals = (min, -2, -1.5, -.5, 0, .5, 1.5, 2)
|
|
|
|
self._float_to_int_conversion_helper(vals, device, dtype)
|
|
|
|
# Note: CUDA will fail this test on most dtypes, often dramatically.
|
|
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
|
|
@onlyCPU
|
|
@dtypes(torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64)
|
|
def test_float_to_int_conversion_nonfinite(self, device, dtype):
|
|
vals = (float('-inf'), float('inf'), float('nan'))
|
|
|
|
self._float_to_int_conversion_helper(vals, device, dtype)
|
|
|
|
# TODO: re-enable this test
|
|
@unittest.skipIf(True, "real and imag not implemented for complex")
|
|
@onlyOnCPUAndCUDA
|
|
def test_complex_type_conversions(self, device):
|
|
dtypes = [torch.float, torch.complex64, torch.complex128]
|
|
for from_type in dtypes:
|
|
for to_type in dtypes:
|
|
from_tensor = torch.randn(4, dtype=from_type, device=device)
|
|
to_tensor = from_tensor.to(to_type)
|
|
if from_type.is_complex and not to_type.is_complex:
|
|
self.assertEqual(torch.real(from_tensor), to_tensor, exact_dtype=False)
|
|
elif not from_type.is_complex and to_type.is_complex:
|
|
self.assertEqual(from_tensor, torch.real(to_tensor), exact_dtype=False)
|
|
self.assertEqual(torch.zeros_like(torch.imag(to_tensor)), torch.imag(to_tensor), exact_dtype=False)
|
|
else:
|
|
self.assertEqual(from_tensor, to_tensor, exact_dtype=False)
|
|
|
|
@dtypes(torch.complex64, torch.complex128)
|
|
def test_complex_unsupported(self, device, dtype):
|
|
t = torch.tensor((1 + 1j), device=device, dtype=dtype)
|
|
# Note: this is consistent with NumPy
|
|
with self.assertRaises(RuntimeError):
|
|
torch.floor(t)
|
|
with self.assertRaises(RuntimeError):
|
|
torch.ceil(t)
|
|
with self.assertRaises(RuntimeError):
|
|
torch.trunc(t)
|
|
|
|
# Tests min and max variants with complex inputs
|
|
# Note: whether PyTorch should support min and max on complex
|
|
# tensors is an open question.
|
|
# See https://github.com/pytorch/pytorch/issues/36374
|
|
with self.assertRaises(RuntimeError):
|
|
torch.min(t)
|
|
with self.assertRaises(RuntimeError):
|
|
t.min()
|
|
with self.assertRaises(RuntimeError):
|
|
torch.min(t, dim=0)
|
|
with self.assertRaises(RuntimeError):
|
|
torch.min(t, t)
|
|
with self.assertRaises(RuntimeError):
|
|
torch.min(t, t, out=t)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
torch.max(t)
|
|
with self.assertRaises(RuntimeError):
|
|
t.max()
|
|
with self.assertRaises(RuntimeError):
|
|
torch.max(t, dim=0)
|
|
with self.assertRaises(RuntimeError):
|
|
torch.max(t, t)
|
|
with self.assertRaises(RuntimeError):
|
|
torch.max(t, t, out=t)
|
|
|
|
# Tests clamp variants with complex inputs
|
|
# Note: whether PyTorch should support clamp on complex
|
|
# tensors is an open question.
|
|
# See https://github.com/pytorch/pytorch/issues/33568
|
|
min_val = 1 + 1j
|
|
max_val = 4 + 4j
|
|
out = torch.empty((0,), device=device, dtype=dtype)
|
|
with self.assertRaises(RuntimeError):
|
|
torch.clamp(t, min=min_val)
|
|
with self.assertRaises(RuntimeError):
|
|
torch.clamp(t, max=max_val)
|
|
with self.assertRaises(RuntimeError):
|
|
torch.clamp(t, min_val, max_val)
|
|
with self.assertRaises(RuntimeError):
|
|
torch.clamp(t, min=min_val, out=out)
|
|
with self.assertRaises(RuntimeError):
|
|
torch.clamp(t, max=max_val, out=out)
|
|
with self.assertRaises(RuntimeError):
|
|
torch.clamp(t, min_val, max_val, out=out)
|
|
|
|
@dtypes(torch.long)
|
|
def test_abs_big_number(self, device, dtype):
|
|
bignumber = 2 ** 31 + 1
|
|
res = torch.tensor([bignumber], device=device, dtype=dtype)
|
|
self.assertGreater(res.abs()[0], 0)
|
|
|
|
@dtypes(torch.float, torch.double)
|
|
def test_abs_signed_zero(self, device, dtype):
|
|
# Both abs(0.0) and abs(-0.0) should result in 0.0
|
|
size = 128 + 1 # pick a large enough number with remainder so that
|
|
# both vectorized and nonvectorized op is tested
|
|
inp = torch.zeros(size, device=device, dtype=dtype)
|
|
inp[::2] = -0.0
|
|
inp = inp.abs()
|
|
for v in inp:
|
|
self.assertGreater(math.copysign(1.0, v), 0.0)
|
|
|
|
@dtypes(torch.float)
|
|
def test_absolute(self, device, dtype):
|
|
# absolute is an alias for abs. Just check to see that results
|
|
# are the same.
|
|
t = torch.randn(10, 10, device=device, dtype=dtype)
|
|
r_abs = t.abs()
|
|
r_absolute = t.absolute()
|
|
self.assertEqual(r_abs, r_absolute)
|
|
|
|
r_abs = torch.abs(t)
|
|
r_absolute = torch.absolute(t)
|
|
self.assertEqual(r_abs, r_absolute)
|
|
|
|
r_abs = torch.empty((10, 10), device=device, dtype=dtype)
|
|
r_absolute = torch.empty((10, 10), device=device, dtype=dtype)
|
|
torch.abs(t, out=r_abs)
|
|
torch.absolute(t, out=r_absolute)
|
|
self.assertEqual(r_abs, r_absolute)
|
|
|
|
from copy import deepcopy
|
|
t_copy = deepcopy(t)
|
|
t.absolute_()
|
|
t_copy.abs_()
|
|
self.assertEqual(t, t_copy)
|
|
|
|
def test_bucketization(self, device):
|
|
values_1d = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9], device=device)
|
|
values_3d = torch.tensor([[[1, 3, 5], [2, 4, 6]], [[1, 2, 3], [4, 5, 6]]], device=device)
|
|
|
|
# regular case 3d boundary and 3d input value
|
|
boundaries = torch.tensor([[[1, 2, 3, 4], [3, 4, 5, 6]], [[1, 3, 5, 7], [2, 4, 6, 8]]], device=device)
|
|
expected_result = torch.tensor([[[0, 2, 4], [0, 1, 3]], [[0, 1, 1], [1, 2, 2]]], device=device)
|
|
output = torch.empty(2, 2, 3, device=device, dtype=torch.int64)
|
|
self.assertEqual(torch.searchsorted(boundaries, values_3d), expected_result)
|
|
self.assertEqual(torch.searchsorted(boundaries, values_3d, out=output), expected_result)
|
|
expected_result = torch.tensor([[[1, 3, 4], [0, 2, 4]], [[1, 1, 2], [2, 2, 3]]], device=device)
|
|
self.assertEqual(torch.searchsorted(boundaries, values_3d, right=True), expected_result)
|
|
self.assertEqual(torch.searchsorted(boundaries, values_3d, right=True, out=output), expected_result)
|
|
|
|
# simple 1d boundary and 3d input value
|
|
boundaries = torch.tensor([1, 2, 3, 4, 5, 6], device=device)
|
|
expected_result = torch.tensor([[[0, 2, 4], [1, 3, 5]], [[0, 1, 2], [3, 4, 5]]], device=device)
|
|
output = torch.empty(2, 2, 3, device=device, dtype=torch.int64)
|
|
self.assertEqual(torch.searchsorted(boundaries, values_3d), expected_result)
|
|
self.assertEqual(torch.bucketize(values_3d, boundaries), expected_result)
|
|
self.assertEqual(torch.bucketize(values_3d, boundaries, out=output), expected_result)
|
|
expected_result = torch.tensor([[[1, 3, 5], [2, 4, 6]], [[1, 2, 3], [4, 5, 6]]], device=device)
|
|
self.assertEqual(torch.searchsorted(boundaries, values_3d, right=True), expected_result)
|
|
self.assertEqual(torch.bucketize(values_3d, boundaries, right=True), expected_result)
|
|
self.assertEqual(torch.bucketize(values_3d, boundaries, out=output, right=True), expected_result)
|
|
|
|
# simple float 1d boundary and 1d input with output int32 type
|
|
values_1d_float = values_1d.to(torch.float32)
|
|
boundaries = torch.tensor([0.9, 1, 2, 2, 3, 3, 4, 4.1, 9, 9], device=device, dtype=torch.float32)
|
|
expected_result = torch.tensor([1, 2, 4, 6, 8, 8, 8, 8, 8], device=device, dtype=torch.int32)
|
|
self.assertEqual(torch.searchsorted(boundaries, values_1d_float, out_int32=True), expected_result)
|
|
self.assertEqual(torch.bucketize(values_1d_float, boundaries, out_int32=True), expected_result)
|
|
|
|
# multiple dimension input with 0 elements
|
|
boundaries = torch.tensor([1, 2, 3, 4, 5, 6], device=device, dtype=torch.int64)
|
|
values_0_el = torch.tensor([[[]]], device=device, dtype=torch.int64)
|
|
expected_result = values_0_el.to(torch.int64)
|
|
self.assertEqual(torch.searchsorted(boundaries, values_0_el), expected_result)
|
|
self.assertEqual(torch.bucketize(values_0_el, boundaries), expected_result)
|
|
|
|
# nan input
|
|
values_nan = torch.tensor([1.0, float('nan'), 2.0, float('nan')], device=device, dtype=torch.float64)
|
|
boundaries = torch.tensor([0.0, 1.0, 2.0, 3.0], device=device, dtype=torch.float64)
|
|
expected_result = torch.tensor([1, 4, 2, 4], device=device)
|
|
self.assertEqual(torch.searchsorted(boundaries, values_nan), expected_result)
|
|
expected_result = torch.tensor([2, 4, 3, 4], device=device)
|
|
self.assertEqual(torch.searchsorted(boundaries, values_nan, right=True), expected_result)
|
|
|
|
# type promotion and non contiguous tensors
|
|
values_3d_permute = values_3d.permute(2, 1, 0).to(torch.int32)
|
|
boundaries_permute = values_3d.permute(2, 1, 0).to(torch.float64)
|
|
expected_result = torch.tensor([[[0, 0], [0, 1]], [[2, 0], [0, 1]], [[2, 0], [0, 0]]], device=device)
|
|
if self.device_type != 'xla':
|
|
self.assertWarnsRegex(
|
|
UserWarning, "tensor is non-contiguous",
|
|
lambda: self.assertEqual(torch.searchsorted(boundaries_permute, values_3d_permute), expected_result))
|
|
else:
|
|
# All tensors in XLA is contiguous even doing permute, no warning msg will be generate in XLA
|
|
self.assertEqual(torch.searchsorted(boundaries_permute, values_3d_permute), expected_result)
|
|
|
|
# scalar type
|
|
boundaries = torch.tensor([1.5, 2.5, 3.5], device=device)
|
|
expected_result = torch.tensor(1, device=device)
|
|
self.assertEqual(torch.searchsorted(boundaries, 2), expected_result)
|
|
self.assertEqual(torch.bucketize(torch.tensor(2, device=device), boundaries), expected_result)
|
|
expected_result = torch.tensor(3, device=device)
|
|
scalar_tensor_nan = torch.tensor(float('nan'), device=device)
|
|
self.assertEqual(torch.searchsorted(boundaries, scalar_tensor_nan), expected_result)
|
|
self.assertEqual(torch.bucketize(float('nan'), boundaries, right=True), expected_result)
|
|
|
|
# invalid input dimensions
|
|
boundaries = torch.tensor([[1, 2, 3], [4, 5, 6]], device=device)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "first N-1 dimensions of boundaries tensor and input value tensor must match"):
|
|
torch.searchsorted(boundaries, values_3d)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "boundaries tensor must be 1 dimension"):
|
|
torch.bucketize(values_3d, boundaries)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "only when boundaries tensor dimension is 1"):
|
|
torch.searchsorted(boundaries, 1)
|
|
|
|
# incompatiable output tensor's dtype
|
|
def test_output_dtype(dtype, is_int32):
|
|
output = values_1d.to(dtype)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "output tensor's dtype is wrong"):
|
|
torch.searchsorted(values_1d, values_1d, out=output, out_int32=is_int32)
|
|
|
|
test_output_dtype(torch.float32, False)
|
|
test_output_dtype(torch.int32, False)
|
|
test_output_dtype(torch.int64, True)
|
|
|
|
def test_pickle_gradscaler(self, device):
|
|
# This test is not in test_cuda.py because it should pass in 3 cases:
|
|
# 1. cuda is not available.
|
|
# 2. cuda is available but device is not cuda.
|
|
# 3. cuda is available and device is cuda.
|
|
# In case 1, a and b disable themselves on construction and shouldn't try to pickle workhorse attributes.
|
|
# In case 2, a and b are enabled. Workhorse attributes participate in pickling, but none are lazy-inited
|
|
# to cuda Tensors, because I don't want to do cuda things if device is not cuda.
|
|
# In case 3, a and b are enabled and we may also try lazy-initing _scale to a cuda tensor.
|
|
device = torch.device(device)
|
|
try_lazy_inits = (True, False) if device.type == "cuda" else (False,)
|
|
for lazy_init_scale in try_lazy_inits:
|
|
a = torch.cuda.amp.GradScaler(init_scale=3., growth_factor=4., backoff_factor=.5, growth_interval=2)
|
|
self.assertTrue(a.is_enabled() if torch.cuda.is_available() else not a.is_enabled())
|
|
if lazy_init_scale:
|
|
# Dummy a.scale() call lazy-inits a._scale Tensor.
|
|
a.scale(torch.tensor([4.0], dtype=torch.float32, device=device))
|
|
self.assertTrue(isinstance(a._scale, torch.cuda.FloatTensor))
|
|
# The following three lines should work whether or not cuda is available.
|
|
serialized = pickle.dumps(a)
|
|
b = pickle.loads(serialized)
|
|
self.assertEqual(b.is_enabled(), a.is_enabled())
|
|
if a.is_enabled():
|
|
self.assertEqual(b.get_scale(), 3.)
|
|
self.assertEqual(b.get_growth_factor(), 4.)
|
|
self.assertEqual(b.get_backoff_factor(), .5)
|
|
self.assertEqual(b.get_growth_interval(), 2)
|
|
self.assertEqual(b._init_growth_tracker, 0)
|
|
# supplies a dummy key to test the defaultdict's default_factory
|
|
self.assertEqual(b._per_optimizer_states["fdsa"],
|
|
torch.cuda.amp.grad_scaler._refresh_per_optimizer_state())
|
|
if lazy_init_scale:
|
|
self.assertEqual(b.scale(torch.tensor([4.0], dtype=torch.float32, device=device)), 12.0)
|
|
|
|
@onlyCUDA
|
|
def test_mv_stride_0(self, device):
|
|
# Reference: https://github.com/pytorch/pytorch/issues/38315
|
|
mat = torch.randn(2, 2, device=device)
|
|
vec = torch.tensor(2., device=device).expand(2)
|
|
mat_cpu = mat.cpu()
|
|
vec_cpu = vec.cpu()
|
|
self.assertEqual(mat @ vec, mat_cpu @ vec_cpu)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
|
|
@dtypes(torch.float32, torch.float64)
|
|
def test_unpack_double(self, device, dtype):
|
|
# Reference: https://github.com/pytorch/pytorch/issues/33111
|
|
vals = (2 ** 24 + 1, 2 ** 53 + 1,
|
|
np.iinfo(np.int64).max, np.iinfo(np.uint64).max, np.iinfo(np.uint64).max + 1,
|
|
-1e500, 1e500)
|
|
for val in vals:
|
|
t = torch.tensor(val, dtype=dtype, device=device)
|
|
a = np.array(val, dtype=torch_to_numpy_dtype_dict[dtype])
|
|
self.assertEqual(t, torch.from_numpy(a))
|
|
|
|
def test_multinomial_invalid(self, device):
|
|
def test(probs):
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
'probability tensor contains either `inf`, `nan` or element < 0'):
|
|
torch.multinomial(probs.to(device), 2)
|
|
torch.cuda.synchronize()
|
|
|
|
test(torch.Tensor([1, -1, 1]))
|
|
test(torch.Tensor([1, inf, 1]))
|
|
test(torch.Tensor([1, -inf, 1]))
|
|
test(torch.Tensor([1, 1, nan]))
|
|
|
|
def test_multinomial_invalid_distribution(self, device):
|
|
def test(probs, replacement):
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
r"invalid multinomial distribution \(sum of probabilities <= 0\)"):
|
|
torch.multinomial(probs, 2, replacement)
|
|
torch.cuda.synchronize()
|
|
|
|
x = torch.zeros(3, device=device)
|
|
y = torch.zeros(3, 3, device=device)
|
|
z = torch.zeros(3, 3, device=device)
|
|
z[1, :] = 1
|
|
|
|
test(x, False)
|
|
test(y, False)
|
|
test(z, False)
|
|
|
|
# Verify only for CPU as replacement=True
|
|
# throws device side assert triggered.
|
|
if self.device_type == 'cpu':
|
|
test(x, True)
|
|
test(y, True)
|
|
test(z, True)
|
|
|
|
def test_multinomial_empty(self, device):
|
|
probs = torch.ones(0, 3)
|
|
num_samples = 1
|
|
expected = torch.empty(0, num_samples, dtype=torch.int64)
|
|
for replacement in (True, False):
|
|
out = torch.multinomial(probs, num_samples=num_samples, replacement=replacement)
|
|
self.assertEqual(out, expected)
|
|
|
|
def _generate_input(self, shape, dtype, device, with_extremal):
|
|
if shape == ():
|
|
x = torch.tensor((), dtype=dtype, device=device)
|
|
else:
|
|
if dtype.is_floating_point or dtype.is_complex:
|
|
x = torch.randn(*shape, dtype=dtype, device=device) * random.randint(30, 100)
|
|
x[torch.randn(*shape) > 0.5] = 0
|
|
if with_extremal and dtype.is_floating_point:
|
|
# Use extremal values
|
|
x[torch.randn(*shape) > 0.5] = float('nan')
|
|
x[torch.randn(*shape) > 0.5] = float('inf')
|
|
x[torch.randn(*shape) > 0.5] = float('-inf')
|
|
elif with_extremal and dtype.is_complex:
|
|
x[torch.randn(*shape) > 0.5] = complex('nan')
|
|
x[torch.randn(*shape) > 0.5] = complex('inf')
|
|
x[torch.randn(*shape) > 0.5] = complex('-inf')
|
|
else:
|
|
x = torch.randint(15, 100, shape, dtype=dtype, device=device)
|
|
|
|
return x
|
|
|
|
def _test_reduction_function_with_numpy(self, torch_func, np_func, device, dtype, with_extremal=False):
|
|
# Test 0-d to 3-d tensors.
|
|
for ndims in range(0, 4):
|
|
shape = self._rand_shape(ndims, min_size=5, max_size=10)
|
|
for n in range(ndims + 1):
|
|
for c in combinations(list(range(ndims)), n):
|
|
for count_dim in permutations(c):
|
|
# Generate Input.
|
|
x = self._generate_input(shape, dtype, device, with_extremal)
|
|
|
|
if count_dim == ():
|
|
# Default `dims=None` case
|
|
self.compare_with_numpy(torch_func, np_func, x, device=None, dtype=None)
|
|
else:
|
|
# With `dims: tuple of ints` case
|
|
torch_func_partial = partial(torch_func, dim=count_dim)
|
|
np_func_partial = partial(np_func, axis=count_dim)
|
|
self.compare_with_numpy(torch_func_partial, np_func_partial, x, device=None, dtype=None)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
|
|
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes(include_bfloat16=False) +
|
|
torch.testing.get_all_complex_dtypes()))
|
|
def test_count_nonzero(self, device, dtype):
|
|
self._test_reduction_function_with_numpy(torch.count_nonzero, np.count_nonzero, device, dtype)
|
|
self._test_reduction_function_with_numpy(torch.count_nonzero, np.count_nonzero, device, dtype, True)
|
|
|
|
@dtypes(torch.int32, torch.int64)
|
|
def test_large_linspace(self, device, dtype):
|
|
start = torch.iinfo(dtype).min
|
|
end = torch.iinfo(dtype).max & ~0xfff
|
|
steps = 15
|
|
x = torch.linspace(start, end, steps, dtype=dtype, device=device)
|
|
self.assertGreater(x[1] - x[0], (end - start) / steps)
|
|
|
|
# NOTE [Linspace+Logspace precision override]
|
|
# Our Linspace and logspace torch.half CUDA kernels are not very precise.
|
|
# Since linspace/logspace are deterministic, we can compute an expected
|
|
# amount of error (by testing without a precision override), adding a tiny
|
|
# amount (EPS) to that, and using that value as the override.
|
|
LINSPACE_LOGSPACE_EXTRA_EPS = 1e-5
|
|
|
|
# Tests that compare a device's computation with the (gold-standard) CPU's.
|
|
class TestDevicePrecision(TestCase):
|
|
exact_dtype = True
|
|
|
|
# The implementation of linspace+logspace goes through a different path
|
|
# when the steps arg is equal to 0 or 1. For other values of `steps`
|
|
# they call specialized linspace (or logspace) kernels.
|
|
LINSPACE_LOGSPACE_SPECIAL_STEPS = [0, 1]
|
|
|
|
def _test_linspace(self, device, dtype, steps):
|
|
a = torch.linspace(0, 10, steps=steps, dtype=dtype, device=device)
|
|
b = torch.linspace(0, 10, steps=steps)
|
|
self.assertEqual(a, b, exact_dtype=False)
|
|
|
|
# See NOTE [Linspace+Logspace precision override]
|
|
@precisionOverride({torch.half: 0.0039 + LINSPACE_LOGSPACE_EXTRA_EPS})
|
|
@dtypesIfCUDA(torch.half, torch.float, torch.double)
|
|
@dtypes(torch.float, torch.double)
|
|
def test_linspace(self, device, dtype):
|
|
self._test_linspace(device, dtype, steps=10)
|
|
|
|
@dtypesIfCUDA(torch.half, torch.float, torch.double)
|
|
@dtypes(torch.float, torch.double)
|
|
def test_linspace_special_steps(self, device, dtype):
|
|
for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS:
|
|
self._test_linspace(device, dtype, steps=steps)
|
|
|
|
def _test_logspace(self, device, dtype, steps):
|
|
a = torch.logspace(1, 1.1, steps=steps, dtype=dtype, device=device)
|
|
b = torch.logspace(1, 1.1, steps=steps)
|
|
self.assertEqual(a, b, exact_dtype=False)
|
|
|
|
def _test_logspace_base2(self, device, dtype, steps):
|
|
a = torch.logspace(1, 1.1, steps=steps, base=2, dtype=dtype, device=device)
|
|
b = torch.logspace(1, 1.1, steps=steps, base=2)
|
|
self.assertEqual(a, b, exact_dtype=False)
|
|
|
|
# See NOTE [Linspace+Logspace precision override]
|
|
@precisionOverride({torch.half: 0.025 + LINSPACE_LOGSPACE_EXTRA_EPS})
|
|
@dtypesIfCUDA(torch.half, torch.float, torch.double)
|
|
@dtypes(torch.float, torch.double)
|
|
def test_logspace(self, device, dtype):
|
|
self._test_logspace(device, dtype, steps=10)
|
|
|
|
# See NOTE [Linspace+Logspace precision override]
|
|
@precisionOverride({torch.half: 0.0201 + LINSPACE_LOGSPACE_EXTRA_EPS})
|
|
@dtypesIfCUDA(torch.half, torch.float, torch.double)
|
|
@dtypes(torch.float, torch.double)
|
|
def test_logspace_base2(self, device, dtype):
|
|
self._test_logspace_base2(device, dtype, steps=10)
|
|
|
|
@dtypesIfCUDA(torch.half, torch.float, torch.double)
|
|
@dtypes(torch.float, torch.double)
|
|
def test_logspace_special_steps(self, device, dtype):
|
|
for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS:
|
|
self._test_logspace(device, dtype, steps=steps)
|
|
self._test_logspace_base2(device, dtype, steps=steps)
|
|
|
|
# Note: ROCm fails when using float tensors
|
|
@dtypes(torch.double)
|
|
def test_polygamma(self, device, dtype):
|
|
cpu_tensor = torch.randn(10, 10, 10, dtype=dtype)
|
|
device_tensor = cpu_tensor.to(device)
|
|
zeros = torch.zeros(10, 10, 10, dtype=dtype)
|
|
for n in [0, 1]:
|
|
cpu_out = cpu_tensor.polygamma(n)
|
|
device_out = device_tensor.polygamma(n)
|
|
norm_errors = (device_out - cpu_out.to(device)) / device_out
|
|
self.assertEqual(norm_errors, zeros)
|
|
|
|
# Note: fails when using float tensors
|
|
@dtypes(torch.double)
|
|
def test_digamma(self, device, dtype):
|
|
cpu_tensor = torch.randn(10, 10, 10, dtype=dtype)
|
|
device_tensor = cpu_tensor.to(device)
|
|
zeros = torch.zeros(10, 10, 10, dtype=dtype)
|
|
cpu_out = cpu_tensor.digamma()
|
|
device_out = device_tensor.digamma()
|
|
norm_errors = (device_out - cpu_out.to(device)) / device_out
|
|
self.assertEqual(norm_errors, zeros)
|
|
|
|
# Tests pole behavior
|
|
cpu_tensor = torch.tensor([-0.999999994, -1.999999994, -2.0000000111,
|
|
-100.99999994, -1931.99999994, 0.000000111,
|
|
-0.000000111, 0, -1, -2, -931], dtype=dtype)
|
|
expected_errors = torch.tensor([0, 0, 0, 0, 0, 0, 0, nan, nan, nan, nan], dtype=dtype)
|
|
device_tensor = cpu_tensor.to(device)
|
|
cpu_out = cpu_tensor.digamma()
|
|
device_out = device_tensor.digamma()
|
|
norm_errors = (device_out - cpu_out.to(device)) / device_out
|
|
self.assertEqual(norm_errors, expected_errors)
|
|
|
|
def test_var(self, device):
|
|
cpu_tensor = torch.randn(2, 3, 3)
|
|
device_tensor = cpu_tensor.to(device)
|
|
self.assertEqual(device_tensor.var(), cpu_tensor.var())
|
|
self.assertEqual(device_tensor.var(1), cpu_tensor.var(1))
|
|
self.assertEqual(device_tensor.var(2), cpu_tensor.var(2))
|
|
self.assertEqual(device_tensor.std(), cpu_tensor.std())
|
|
self.assertEqual(device_tensor.std(1), cpu_tensor.std(1))
|
|
self.assertEqual(device_tensor.var(2), cpu_tensor.var(2))
|
|
|
|
cpu_tensor = torch.randn(100)
|
|
device_tensor = cpu_tensor.to(device)
|
|
self.assertEqual(device_tensor.var(), cpu_tensor.var())
|
|
|
|
def test_var_large_input(self, device):
|
|
# Large, not-nice input
|
|
cpu_tensor = torch.randn(2 * 32 * 1024 + 1, 2, 67)
|
|
device_tensor = cpu_tensor.to(device)
|
|
|
|
self.assertEqual(cpu_tensor.var(2), device_tensor.var(2))
|
|
|
|
@dtypesIfCUDA(torch.half, torch.float, torch.double)
|
|
@dtypes(torch.float, torch.double)
|
|
def test_device_rounding(self, device, dtype):
|
|
# test half-to-even
|
|
a = [-5.8, -3.5, -2.3, -1.5, -0.5, 0.5, 1.5, 2.3, 3.5, 5.8]
|
|
res = [-6., -4., -2., -2., 0., 0., 2., 2., 4., 6.]
|
|
|
|
a_tensor = torch.tensor(a, device=device).round()
|
|
res_tensor = torch.tensor(res, device='cpu')
|
|
self.assertEqual(a_tensor, res_tensor)
|
|
|
|
@dtypes(torch.int, torch.long, torch.float, torch.double)
|
|
def test_arange(self, device, dtype):
|
|
cpu_tensor = torch.arange(0, 10, dtype=dtype, device='cpu')
|
|
device_tensor = torch.arange(0, 10, dtype=dtype, device=device)
|
|
self.assertEqual(cpu_tensor, device_tensor)
|
|
|
|
@onlyCUDA
|
|
@skipCUDAIfNotRocm
|
|
def test_arange_bfloat16(self, device):
|
|
ref_tensor = torch.tensor([0, 1, 2, 3], dtype=torch.bfloat16, device=device)
|
|
bfloat16_tensor = torch.arange(0, 4, dtype=torch.bfloat16, device=device)
|
|
self.assertEqual(ref_tensor, bfloat16_tensor)
|
|
|
|
# step=2
|
|
ref_tensor = torch.tensor([0, 2, 4], dtype=torch.bfloat16, device=device)
|
|
bfloat16_tensor = torch.arange(0, 6, step=2, dtype=torch.bfloat16, device=device)
|
|
self.assertEqual(ref_tensor, bfloat16_tensor)
|
|
|
|
@onlyCUDA
|
|
@skipCUDAIfNotRocm
|
|
def test_index_add_bfloat16(self, device):
|
|
inp_tensor = torch.randn(5, 3, device='cpu').bfloat16()
|
|
t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.bfloat16, device='cpu')
|
|
index = torch.tensor([0, 4, 2], device='cpu')
|
|
out_cpu = inp_tensor.index_add(0, index, t)
|
|
|
|
inp_tensor = inp_tensor.to(device=device)
|
|
t = t.to(device=device)
|
|
index = index.to(device=device)
|
|
out_gpu = inp_tensor.index_add(0, index, t)
|
|
|
|
self.assertEqual(out_cpu, out_gpu, atol=1e-2, rtol=0)
|
|
|
|
@skipCUDAIfRocm
|
|
@dtypes(torch.double)
|
|
def test_sum_noncontig(self, device, dtype):
|
|
x = torch.randn(1, 75, 57, 20, dtype=dtype, device=device).permute(0, 3, 1, 2)
|
|
y = x.cpu()
|
|
self.assertEqual(x.sum().cpu(), y.sum())
|
|
self.assertEqual(x.sum(dim=(-1, -2)).cpu(), y.sum(dim=(-1, -2)))
|
|
self.assertEqual(x.sum(dim=(1, 3)).cpu(), y.sum(dim=(1, 3)))
|
|
|
|
def test_device_serialization(self, device):
|
|
x = torch.randn(4, 4, device=device)
|
|
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
torch.save(x, f)
|
|
f.seek(0)
|
|
x_copy = torch.load(f)
|
|
|
|
self.assertEqual(x_copy, x)
|
|
self.assertIs(type(x_copy), type(x))
|
|
self.assertEqual(x_copy.device, x.device)
|
|
|
|
@deviceCountAtLeast(2)
|
|
def test_multidevice_serialization(self, devices):
|
|
x = [torch.randn(4, 4, device=devices[0]),
|
|
torch.randn(4, 4, device=devices[1])]
|
|
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
torch.save(x, f)
|
|
f.seek(0)
|
|
x_copy = torch.load(f)
|
|
|
|
for original, cp in zip(x, x_copy):
|
|
self.assertEqual(cp, original)
|
|
self.assertIs(type(cp), type(original))
|
|
self.assertEqual(cp.device, original.device)
|
|
|
|
@deviceCountAtLeast(1)
|
|
def test_copy_noncontig(self, devices):
|
|
def do_test(d0, d1):
|
|
x = torch.tensor([1.5, 2.5, 3.5, 4.5, 5.5, 6.5], device=d0)
|
|
y = torch.tensor([0, 0, 0, 0, 0, 0], device=d1)
|
|
self.assertNotEqual(x.dtype, y.dtype)
|
|
|
|
y[::2].copy_(x[::2])
|
|
self.assertEqual(y, [1, 0, 3, 0, 5, 0])
|
|
|
|
do_test('cpu', devices[0])
|
|
do_test(devices[0], 'cpu')
|
|
|
|
if len(devices) > 1:
|
|
do_test(devices[0], devices[1])
|
|
|
|
@dtypes(torch.float, torch.double)
|
|
def test_abs_zero(self, device, dtype):
|
|
# Both abs(0.0) and abs(-0.0) should result in 0.0
|
|
abs_zeros = torch.tensor([0.0, -0.0], device=device, dtype=dtype).abs().tolist()
|
|
for num in abs_zeros:
|
|
self.assertGreater(math.copysign(1.0, num), 0.0)
|
|
|
|
@deviceCountAtLeast(2)
|
|
def test_type_conversions_same_device(self, devices):
|
|
x = torch.randn(5, 5, device=devices[1])
|
|
self.assertEqual(x.int().device, torch.device(devices[1]))
|
|
self.assertEqual(x.type(torch.int).device, torch.device(devices[1]))
|
|
self.assertEqual(x.to(torch.int).device, torch.device(devices[1]))
|
|
|
|
def test_min_max_nan(self, device):
|
|
tests = [(lambda x: x.min(), 'min'),
|
|
(lambda x: x.max(), 'max'),
|
|
(lambda x: x.min(0)[0], 'min_dim'),
|
|
(lambda x: x.max(0)[0], 'max_dim')]
|
|
for f, name in tests:
|
|
a = torch.arange(25.0).view(5, 5)
|
|
a[2, 2] = nan
|
|
actual = f(a.to(device)).cpu()
|
|
expected = f(a).cpu()
|
|
self.assertEqual(torch.isnan(actual), torch.isnan(expected), msg='nans for {}'.format(name))
|
|
self.assertEqual(actual[~torch.isnan(actual)],
|
|
expected[~torch.isnan(expected)], msg='nans for {}'.format(name))
|
|
|
|
@dtypesIfCUDA(torch.half, torch.float, torch.double,
|
|
torch.int8, torch.short, torch.int, torch.long,
|
|
torch.uint8)
|
|
@dtypes(torch.float, torch.double,
|
|
torch.int8, torch.short, torch.int, torch.long,
|
|
torch.uint8)
|
|
def test_from_sequence(self, device, dtype):
|
|
seq = [list(range(i * 4, i * 4 + 4)) for i in range(5)]
|
|
reference = torch.arange(0, 20).resize_(5, 4)
|
|
self.assertEqual(torch.tensor(seq, dtype=dtype, device=device), reference, exact_dtype=False)
|
|
|
|
def test_cat(self, device):
|
|
SIZE = 10
|
|
for dim in range(-3, 3):
|
|
pos_dim = dim if dim >= 0 else 3 + dim
|
|
x = torch.rand(13, SIZE, SIZE, device=device).transpose(0, pos_dim)
|
|
y = torch.rand(17, SIZE, SIZE, device=device).transpose(0, pos_dim)
|
|
z = torch.rand(19, SIZE, SIZE, device=device).transpose(0, pos_dim)
|
|
|
|
res1 = torch.cat((x, y, z), dim)
|
|
self.assertEqual(res1.narrow(pos_dim, 0, 13), x, atol=0, rtol=0)
|
|
self.assertEqual(res1.narrow(pos_dim, 13, 17), y, atol=0, rtol=0)
|
|
self.assertEqual(res1.narrow(pos_dim, 30, 19), z, atol=0, rtol=0)
|
|
|
|
x = torch.randn(20, SIZE, SIZE, device=device)
|
|
self.assertEqual(torch.cat(torch.split(x, 7)), x)
|
|
self.assertEqual(torch.cat(torch.chunk(x, 7)), x)
|
|
|
|
y = torch.randn(1, SIZE, SIZE, device=device)
|
|
z = torch.cat([x, y])
|
|
self.assertEqual(z.size(), (21, SIZE, SIZE))
|
|
|
|
def test_sum_cpu_device_mismatch(self, device):
|
|
x = torch.randn(20, dtype=torch.float32, device=device)
|
|
y = torch.randn(1, dtype=torch.float32)
|
|
|
|
err_string = "Expected all tensors to be on the same device, but found at least two devices, {0}".format(device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, err_string):
|
|
torch.sum(x, dim=[0], dtype=torch.float32, out=y)
|
|
|
|
# tests half to float promotion
|
|
if self.device_type == 'cuda':
|
|
x = x.half()
|
|
with self.assertRaisesRegex(RuntimeError, err_string):
|
|
torch.sum(x, dim=[0], dtype=torch.float32, out=y)
|
|
|
|
@deviceCountAtLeast(1)
|
|
def test_advancedindex_mixed_cpu_devices(self, devices) -> None:
|
|
def test(x: torch.Tensor, ia: torch.Tensor, ib: torch.Tensor) -> None:
|
|
# test getitem
|
|
self.assertEqual(x[:, ia, None, ib, 0].cpu(),
|
|
x.cpu()[:, ia.cpu(), None, ib.cpu(), 0])
|
|
self.assertEqual(x[ia], x.cpu()[ia.cpu()])
|
|
# test setitem
|
|
x_clone1 = x.clone()
|
|
x_clone2 = x.clone()
|
|
first_shape = x[:, ia, None, ib, 0].shape
|
|
second_shape = x[ia].shape
|
|
x_clone1[:, ia, None, ib, 0] = torch.randn(first_shape).to(x_clone1)
|
|
x_clone2[ia] = torch.randn(second_shape).to(x_clone2)
|
|
|
|
cpu = torch.device('cpu')
|
|
for device in devices:
|
|
# Index cpu tensor with device tensor
|
|
x = torch.randn(3, 4, 4, 4, 3)
|
|
ia = torch.tensor([0, 2, 1]).to(device)
|
|
ib = torch.tensor([0, 2, 1]).to(device)
|
|
test(x, ia, ib)
|
|
|
|
# Index device tensor with cpu tensor
|
|
x = x.to(device)
|
|
ia = ia.to(cpu)
|
|
ib = ib.to(cpu)
|
|
test(x, ia, ib)
|
|
|
|
# Index cpu tensor with mixed cpu, device tensors
|
|
x = x.to(cpu)
|
|
ia = ia.to(cpu)
|
|
ib = ib.to(device)
|
|
test(x, ia, ib)
|
|
|
|
# Index device tensor with mixed cpu, device tensors
|
|
x = x.to(device)
|
|
ia = ia.to(cpu)
|
|
ib = ib.to(device)
|
|
test(x, ia, ib)
|
|
|
|
if len(devices) > 1:
|
|
other_device = devices[0]
|
|
if device == devices[0]:
|
|
other_device = devices[1]
|
|
# Index device tensor with mixed cpu, device tensors on different devices
|
|
x = x.to(device)
|
|
ia = ia.to(cpu)
|
|
ib = ib.to(other_device)
|
|
test(x, ia, ib)
|
|
|
|
def test_copy_broadcast(self, device) -> None:
|
|
x = torch.randn(10, 5)
|
|
y = torch.randn(5, device=device)
|
|
x.copy_(y)
|
|
self.assertEqual(x[3], y)
|
|
|
|
x = torch.randn(10, 5, device=device)
|
|
y = torch.randn(5)
|
|
x.copy_(y)
|
|
self.assertEqual(x[3], y)
|
|
|
|
def test_solve_methods_arg_device(self, device):
|
|
for b_device, A_device in product(['cpu', device], repeat=2):
|
|
if b_device == A_device:
|
|
continue
|
|
|
|
b = torch.randn(3, 1, device=b_device)
|
|
A = torch.randn(3, 3, device=A_device)
|
|
err_str = "Expected b and A to be on the same device"
|
|
with self.assertRaisesRegex(RuntimeError, err_str):
|
|
torch.solve(b, A)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, err_str):
|
|
torch.cholesky_solve(b, A)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, err_str):
|
|
torch.triangular_solve(b, A)
|
|
|
|
# b and A have to be modified to match accepted inputs sizes for lu_solve
|
|
b = b.unsqueeze(0)
|
|
A = A.unsqueeze(0)
|
|
with self.assertRaisesRegex(RuntimeError, err_str):
|
|
torch.lu_solve(b, A, torch.rand(A.shape[:-1], device=A_device).int())
|
|
|
|
# This checks if a suitable error message is thrown
|
|
# when LU output and pivots are on the same device
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
"Expected LU_pivots and LU_data to be on the same device"):
|
|
torch.lu_solve(b, A, torch.rand(A.shape[:-1], device=b_device).int())
|
|
|
|
@deviceCountAtLeast(2)
|
|
def test_zeros_like_multiple_device(self, devices):
|
|
expected = torch.zeros(100, 100, device=devices[0])
|
|
x = torch.randn(100, 100, device=devices[1], dtype=torch.float32)
|
|
output = torch.zeros_like(x)
|
|
self.assertEqual(output, expected)
|
|
|
|
def test_ones_like(self, device) -> None:
|
|
expected = torch.ones(100, 100, device=device)
|
|
|
|
res1 = torch.ones_like(expected)
|
|
self.assertEqual(res1, expected)
|
|
|
|
@deviceCountAtLeast(2)
|
|
def test_ones_like_multiple_device(self, devices):
|
|
expected = torch.ones(100, 100, device=devices[0])
|
|
x = torch.randn(100, 100, device=devices[1], dtype=torch.float32)
|
|
output = torch.ones_like(x)
|
|
self.assertEqual(output, expected)
|
|
|
|
|
|
# Tests ops and indexing to ensure they return views (and new tensors) as
|
|
# appropriate.
|
|
class TestViewOps(TestCase):
|
|
exact_dtype = True
|
|
|
|
def is_view_of(self, base, other):
|
|
if (not other._is_view() or
|
|
other is base or
|
|
other._base is not base or
|
|
base.device != other.device):
|
|
return False
|
|
# Note: only validates storage on native device types
|
|
# because some accelerators, like XLA, do not expose storage
|
|
if base.device.type == 'cpu' or base.device.type == 'cuda':
|
|
if base.storage().data_ptr() != other.storage().data_ptr():
|
|
return False
|
|
|
|
return True
|
|
|
|
# Performs transpose if contiguous=True, else returns the input tensor as is
|
|
def _do_transpose(self, x, contiguous=False, dim0=0, dim1=1):
|
|
if contiguous:
|
|
return x
|
|
else:
|
|
return x.transpose(dim0, dim1)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
def test_view_as_complex(self, device):
|
|
def fn(contiguous_input=True, dim0=0, dim1=1):
|
|
t = torch.randn(3, 2, 2, device=device)
|
|
c_t = t[:, :, 0] + 1j * t[:, :, 1]
|
|
|
|
input = self._do_transpose(t, contiguous_input, dim0, dim1)
|
|
|
|
if input.size()[-1] != 2:
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "Tensor must have a last dimension of size 2",
|
|
lambda: torch.view_as_complex(input))
|
|
return
|
|
|
|
if input.stride()[-1] != 1:
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "Tensor must have a last dimension with stride 1",
|
|
lambda: torch.view_as_complex(input))
|
|
return
|
|
|
|
res = torch.view_as_complex(input)
|
|
self.assertEqual(res, self._do_transpose(c_t, contiguous_input, dim0, dim1))
|
|
self.assertTrue(self.is_view_of(t, res))
|
|
|
|
fn()
|
|
fn(contiguous_input=False)
|
|
# RuntimeError since in this case the last dim of input would not be of size 2
|
|
fn(contiguous_input=False, dim0=0, dim1=2)
|
|
# RuntimeError since in this case the last dim of input would not have stride 1
|
|
fn(contiguous_input=False, dim0=1, dim1=2)
|
|
|
|
|
|
# RuntimeError since in this case the stride of non-last dim of input would not be of size 2
|
|
x = torch.randn(3, 3, device=device)
|
|
t = torch.as_strided(x, (2, 2), (1, 1))
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "Tensor must have a stride divisible by 2 for all but last dimension",
|
|
lambda: torch.view_as_complex(t))
|
|
|
|
# tensor with zero elements
|
|
x = torch.tensor([], device=device) # torch.Size([0])
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "Tensor must have a last dimension of size 2",
|
|
lambda: torch.view_as_complex(x))
|
|
|
|
y = x.reshape(0, 2) # torch.Size([0, 2])
|
|
res = torch.view_as_complex(y)
|
|
self.assertTrue(self.is_view_of(x, res))
|
|
self.assertEqual(res.shape, torch.Size([0]))
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(*torch.testing.get_all_complex_dtypes())
|
|
def test_view_as_real(self, device, dtype):
|
|
def fn(contiguous_input=True):
|
|
t = torch.randn(3, 4, dtype=dtype, device=device)
|
|
input = self._do_transpose(t, contiguous_input)
|
|
res = torch.view_as_real(input)
|
|
self.assertEqual(res[:, :, 0], input.real)
|
|
self.assertEqual(res[:, :, 1], input.imag)
|
|
self.assertTrue(self.is_view_of(t, res))
|
|
|
|
fn()
|
|
fn(contiguous_input=False)
|
|
|
|
# tensor with zero elements
|
|
x = torch.tensor([], dtype=dtype, device=device)
|
|
res = torch.view_as_real(x)
|
|
self.assertTrue(self.is_view_of(x, res))
|
|
self.assertEqual(res.shape, torch.Size([0, 2]))
|
|
|
|
# tensor with zero dim
|
|
x = torch.tensor(2 + 3j, dtype=dtype, device=device)
|
|
res = torch.view_as_real(x)
|
|
self.assertTrue(self.is_view_of(x, res))
|
|
self.assertEqual(res.shape, torch.Size([2]))
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(*(torch.testing.get_all_int_dtypes() + torch.testing.get_all_fp_dtypes()))
|
|
def test_real_imag_noncomplex(self, device, dtype):
|
|
t = torch.ones((5, 5), dtype=dtype, device=device)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
torch.real(t)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
torch.imag(t)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(*torch.testing.get_all_complex_dtypes())
|
|
def test_real_imag_view(self, device, dtype):
|
|
def compare_with_numpy(contiguous_input=True):
|
|
t = torch.randn(3, 3, dtype=dtype, device=device)
|
|
if not contiguous_input:
|
|
u = t.T
|
|
else:
|
|
u = t
|
|
|
|
re = u.real
|
|
exp = torch.from_numpy(u.cpu().numpy().real).to(device=device)
|
|
self.assertEqual(re, exp)
|
|
# for the case of contiguous_input, t=u
|
|
# for the case of non contiguous_input, the base still remains
|
|
# t since we are performing a view operation to make the input non-contiguous
|
|
self.assertTrue(self.is_view_of(t, re))
|
|
|
|
im = u.imag
|
|
exp = torch.from_numpy(u.cpu().numpy().imag).to(device=device)
|
|
self.assertEqual(im, exp)
|
|
self.assertTrue(self.is_view_of(t, im))
|
|
|
|
compare_with_numpy()
|
|
compare_with_numpy(contiguous_input=False)
|
|
|
|
# ensure storage offset is being correctly set
|
|
a = torch.randn(10, dtype=dtype)
|
|
self.assertEqual(a[5:].real, a.real[5:])
|
|
self.assertEqual(a[5:].imag, a.imag[5:])
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(*product(torch.testing.get_all_complex_dtypes(), torch.testing.get_all_dtypes()))
|
|
@suppress_warnings
|
|
def test_set_real_imag(self, device, dtypes):
|
|
x = torch.randn(10, dtype=dtypes[0], device=device)
|
|
|
|
new_real = _make_tensor((10,), dtypes[1], device)
|
|
new_imag = _make_tensor((10,), dtypes[1], device)
|
|
|
|
x.real = new_real
|
|
x.imag = new_imag
|
|
|
|
if dtypes[1].is_complex:
|
|
self.assertEqual(x.real, new_real.real, exact_dtype=False)
|
|
self.assertEqual(x.imag, new_imag.real, exact_dtype=False)
|
|
|
|
else:
|
|
self.assertEqual(x.real, new_real, exact_dtype=False)
|
|
self.assertEqual(x.imag, new_imag, exact_dtype=False)
|
|
|
|
def test_diagonal_view(self, device) -> None:
|
|
t = torch.ones((5, 5), device=device)
|
|
v = torch.diagonal(t)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0] = 0
|
|
self.assertEqual(t[0, 0], v[0])
|
|
|
|
t = torch.ones((3, 3, 3), device=device)
|
|
v = torch.diagonal(t, offset=1, dim1=1, dim2=2)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 0] = 0
|
|
self.assertEqual(t[0, 0, 1], v[0, 0])
|
|
|
|
def test_select_view(self, device) -> None:
|
|
t = torch.ones((5, 5), device=device)
|
|
v = t.select(0, 2)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0] = 0
|
|
self.assertEqual(t[2, 0], v[0])
|
|
|
|
def test_unbind_view(self, device) -> None:
|
|
t = torch.zeros((5, 5), device=device)
|
|
tup = torch.unbind(t)
|
|
|
|
for idx, v in enumerate(tup):
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0] = idx + 1
|
|
self.assertEqual(t[idx, 0], v[0])
|
|
|
|
def test_expand_view(self, device) -> None:
|
|
t = torch.ones((5, 1), device=device)
|
|
v = t.expand(5, 5)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[2, 2] = 0
|
|
self.assertEqual(t[2, 0], v[2, 2])
|
|
|
|
def test_expand_as_view(self, device):
|
|
t = torch.ones((5, 1), device=device)
|
|
e = torch.empty((5, 5), device=device)
|
|
v = t.expand_as(e)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[2, 2] = 0
|
|
self.assertEqual(t[2, 0], v[2, 2])
|
|
|
|
def test_narrow_view(self, device):
|
|
t = torch.ones((5, 5), device=device)
|
|
v = torch.narrow(t, 1, 2, 2)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 0] = 0
|
|
self.assertEqual(t[0, 2], v[0, 0])
|
|
|
|
def test_permute_view(self, device) -> None:
|
|
t = torch.ones((5, 5), device=device)
|
|
v = t.permute(1, 0)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 1] = 0
|
|
self.assertEqual(t[1, 0], v[0, 1])
|
|
|
|
def test_transpose_view(self, device):
|
|
t = torch.ones((5, 5), device=device)
|
|
v = torch.transpose(t, 0, 1)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 1] = 0
|
|
self.assertEqual(t[1, 0], v[0, 1])
|
|
|
|
def test_t_view(self, device):
|
|
t = torch.ones((5, 5), device=device)
|
|
v = t.t()
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 1] = 0
|
|
self.assertEqual(t[1, 0], v[0, 1])
|
|
|
|
def test_T_view(self, device):
|
|
t = torch.ones((5, 5), device=device)
|
|
v = t.T
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 1] = 0
|
|
self.assertEqual(t[1, 0], v[0, 1])
|
|
|
|
def test_unfold_view(self, device):
|
|
t = torch.ones(10, device=device)
|
|
v = t.unfold(0, 3, 2)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[1, 0] = 0
|
|
self.assertEqual(t[2], v[1, 0])
|
|
|
|
def test_squeeze_view(self, device):
|
|
t = torch.ones(5, 1, 5, device=device)
|
|
v = torch.squeeze(t)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
v[0, 1] = 0
|
|
self.assertEqual(t, v._base)
|
|
|
|
def test_unsqueeze_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
v = torch.unsqueeze(t, 1)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 0, 1] = 0
|
|
self.assertEqual(t[0, 1], v[0, 0, 1])
|
|
|
|
def test_as_strided_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
v = torch.as_strided(t, (25,), (1,))
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[6] = 0
|
|
self.assertEqual(t[1, 1], v[6])
|
|
|
|
def test_view_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
v = t.view(25)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[6] = 0
|
|
self.assertEqual(t[1, 1], v[6])
|
|
|
|
def test_view_as_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
e = torch.empty((25,))
|
|
v = t.view_as(e)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[6] = 0
|
|
self.assertEqual(t[1, 1], v[6])
|
|
|
|
def test_contiguous_self(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
s = t.contiguous()
|
|
self.assertTrue(s is t)
|
|
|
|
def test_contiguous_nonview(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
nv = t.t().contiguous()
|
|
self.assertTrue(not self.is_view_of(t, nv))
|
|
|
|
nv[0, 0] = 0
|
|
self.assertNotEqual(t[0, 0], nv[0, 0])
|
|
|
|
def test_reshape_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
v = torch.reshape(t, (25,))
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[6] = 0
|
|
self.assertEqual(t[1, 1], v[6])
|
|
|
|
def test_reshape_as_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
e = torch.empty((25,), device=device)
|
|
v = t.reshape_as(e)
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[6] = 0
|
|
self.assertEqual(t[1, 1], v[6])
|
|
|
|
def test_reshape_nonview(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
nv = torch.reshape(t.t(), (25,))
|
|
self.assertTrue(not self.is_view_of(t, nv))
|
|
|
|
nv[6] = 0
|
|
self.assertNotEqual(t[1, 1], nv[6])
|
|
|
|
def test_basic_indexing_slice_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
v = t[:2, :3]
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 0] = 0
|
|
self.assertEqual(t[0, 0], v[0, 0])
|
|
|
|
def test_basic_indexing_ellipses_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
v = t[..., :2]
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 0] = 0
|
|
self.assertEqual(t[0, 0], v[0, 0])
|
|
|
|
def test_basic_indexing_newaxis_view(self, device):
|
|
t = torch.ones(5, 5, device=device)
|
|
v = t[None, :2, 3]
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 0] = 0
|
|
self.assertEqual(t[0, 3], v[0, 0])
|
|
|
|
def test_advanced_indexing_nonview(self, device):
|
|
t = torch.ones(3, 3, device=device)
|
|
rows = torch.tensor([[0, 0], [2, 2]], device=device)
|
|
cols = torch.tensor([[0, 1], [2, 2]], device=device)
|
|
nv = t[rows, cols]
|
|
self.assertTrue(not self.is_view_of(t, nv))
|
|
|
|
nv[1, 1] = 0
|
|
self.assertNotEqual(t[2, 2], nv[1, 1])
|
|
|
|
def test_advanced_indexing_assignment(self, device):
|
|
t = torch.ones(3, 3, device=device)
|
|
rows = torch.tensor([[0, 0], [2, 2]], device=device)
|
|
cols = torch.tensor([[0, 1], [2, 2]], device=device)
|
|
t[rows, cols] = 0
|
|
self.assertEqual(t[2, 2], 0)
|
|
|
|
@unittest.skip("See https://github.com/pytorch/pytorch/pull/32720")
|
|
def test_chunk_view(self, device):
|
|
t = torch.zeros(3, 3, device=device)
|
|
l = torch.chunk(t, 3)
|
|
|
|
for idx, v in enumerate(l):
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 0] = idx + 1
|
|
self.assertEqual(t[idx, 0], v[0, 0])
|
|
|
|
@unittest.skip("See https://github.com/pytorch/pytorch/pull/32720")
|
|
def test_split_view(self, device):
|
|
t = torch.zeros(3, 3, device=device)
|
|
l = torch.split(t, [1, 1, 1])
|
|
|
|
for idx, v in enumerate(l):
|
|
self.assertTrue(self.is_view_of(t, v))
|
|
|
|
v[0, 0] = idx + 1
|
|
self.assertEqual(t[idx, 0], v[0, 0])
|
|
|
|
|
|
# Below are fixtures and functions that generate tensor op comparison tests
|
|
# These tests run a single op on both a CPU and device tensor and compare the
|
|
# the results. In-place variants of the ops can also be run.
|
|
|
|
# Lists of dtypes to instantiate tensor op test variants.
|
|
_types = [
|
|
torch.half, torch.float, torch.double,
|
|
torch.int8, torch.short, torch.int, torch.long,
|
|
torch.uint8
|
|
]
|
|
|
|
_types_no_half = [
|
|
torch.float, torch.double,
|
|
torch.int8, torch.short, torch.int, torch.long,
|
|
torch.uint8
|
|
]
|
|
|
|
# _types2 adds bfloat16 type to _types only on ROCm. Should eventually be unified
|
|
# with _types when bfloat16 bringup is complete on all platforms.
|
|
_types2 = _types + [torch.bfloat16] if TEST_WITH_ROCM else _types
|
|
|
|
_float_types = [torch.half, torch.float, torch.double]
|
|
|
|
_complex_types = [torch.cfloat, torch.cdouble]
|
|
|
|
_complex_types_skip_rocm = [] if TEST_WITH_ROCM else _complex_types
|
|
|
|
_float_types_no_half = [torch.float, torch.double]
|
|
|
|
_complex_types = [torch.cfloat, torch.cdouble]
|
|
|
|
# _float_types2 adds bfloat16 type to _float_types only on ROCm. Should eventually be unified
|
|
# with _float_types when bfloat16 bringup is complete on all platforms
|
|
_float_types2 = _float_types + [torch.bfloat16] if TEST_WITH_ROCM else _float_types
|
|
|
|
_complex_and_float_types2 = _float_types2 + _complex_types
|
|
|
|
_signed_types = [
|
|
torch.half, torch.float, torch.double,
|
|
torch.int8, torch.short, torch.int, torch.long
|
|
]
|
|
|
|
_signed_types_no_half = [
|
|
torch.float, torch.double,
|
|
torch.int8, torch.short, torch.int, torch.long
|
|
]
|
|
|
|
_cpu_types: List[torch.dtype] = []
|
|
|
|
_unsigned_types = [torch.uint8]
|
|
|
|
# Helper values and functions for producing tensors and scalars to use in tensor op tests.
|
|
# Tensor dimension sizes (Small, Medium, Large, Giant)
|
|
_S = 5
|
|
_M = 50
|
|
_L = 1000
|
|
_G = 275000000
|
|
|
|
# Value to clamp divisors to since dividing by small numbers can be unstable
|
|
# on devices.
|
|
_div_min = 2**-8
|
|
|
|
# Returns floating or integral scalar corresponding to dtype
|
|
def _number(floating, integer, dtype):
|
|
if dtype in [torch.half, torch.float, torch.double, torch.bfloat16]:
|
|
return floating
|
|
return integer
|
|
|
|
# Converts half/bfloat16 dtype to float when device is cpu
|
|
def _convert_t(dtype, device):
|
|
if device == 'cpu' and dtype in {torch.half, torch.bfloat16}:
|
|
return torch.float
|
|
return dtype
|
|
|
|
# Returns a tensor of the requested shape, dtype, and device
|
|
# Requesting a half CPU tensor returns a float CPU tensor with
|
|
# values representable by a half.
|
|
# Initialization uses randint for non-float types and randn for float types.
|
|
def _make_tensor(shape, dtype, device, fill_ones=False) -> torch.Tensor:
|
|
# Returns a tensor filled with ones
|
|
if fill_ones:
|
|
return torch.ones(*shape, dtype=_convert_t(dtype, device), device=device)
|
|
|
|
# Returns a tensor with random integer values
|
|
if not (dtype.is_floating_point or dtype.is_complex):
|
|
t = torch.randint(0, 10, shape, device=device)
|
|
if dtype != torch.uint8:
|
|
t = t - 5 # generate negative values also
|
|
return t.to(_convert_t(dtype, device))
|
|
|
|
# Populates the CPU tensor with floats representable as half/bfloat16
|
|
if dtype == torch.half and device == 'cpu':
|
|
return torch.randn(*shape, dtype=torch.float, device=device).half().float()
|
|
if dtype == torch.bfloat16 and device == 'cpu':
|
|
return torch.randn(*shape, dtype=torch.float, device=device).bfloat16().float()
|
|
|
|
# Default: returns a tensor with random float values
|
|
return torch.randn(shape, dtype=dtype, device=device).to(dtype=dtype)
|
|
|
|
def _small_0d(dtype, device) -> torch.Tensor:
|
|
return _make_tensor((1,), dtype, device).squeeze()
|
|
|
|
def _small_2d(dtype, device, has_zeros=True, fill_ones=False, oneish=False):
|
|
t = _make_tensor((_S, _S), dtype, device, fill_ones=fill_ones)
|
|
if oneish:
|
|
return t.clamp(min=_number(.99, 1, dtype), max=1.01)
|
|
if not has_zeros:
|
|
return t.clamp(min=(_number(_div_min, 1, dtype)))
|
|
return t
|
|
|
|
def _small_3d(dtype, device, has_zeros=True, fill_ones=False, oneish=False):
|
|
t = _make_tensor((_S, _S, _S), dtype, device, fill_ones=fill_ones)
|
|
if oneish:
|
|
return t.clamp(min=_number(.99, 1, dtype), max=1.01)
|
|
if not has_zeros:
|
|
return t.clamp(min=(_number(_div_min, 1, dtype)))
|
|
return t
|
|
|
|
def _small_3d_ones(dtype, device):
|
|
return _small_3d(dtype, device, fill_ones=True)
|
|
|
|
def _small_3d_unique(dtype, device):
|
|
return (torch.randperm(_S * _S * _S,
|
|
dtype=_convert_t(dtype, device), device=device) + 1).view(_S, _S, _S)
|
|
|
|
def _medium_1d(dtype, device):
|
|
return _make_tensor((_M,), dtype, device)
|
|
|
|
def _medium_2d(dtype, device):
|
|
return _make_tensor((_M, _M), dtype, device)
|
|
|
|
def _large_2d(dtype, device):
|
|
t = _make_tensor((_L, _L), dtype, device)
|
|
return t.normal_()
|
|
|
|
def _giant_1d(dtype, device):
|
|
return _make_tensor((_G), dtype, device)
|
|
|
|
# Helper method that returns a function which takes dtype and device and
|
|
# instantiates tensors of the given shape.
|
|
# Useful for tensor op tests with custom shapes.
|
|
def _new_t(shape):
|
|
def tmp(dtype, device):
|
|
return _make_tensor(shape, dtype, device)
|
|
return tmp
|
|
|
|
def _wrap_maybe_warns(regex):
|
|
def decorator(fn):
|
|
def inner(self, device, dtype):
|
|
with self.maybeWarnsRegex(UserWarning, regex):
|
|
fn(self, device, dtype)
|
|
return inner
|
|
return decorator
|
|
|
|
|
|
# TODO: random functions, cat, gather, scatter, index*, masked*,
|
|
# resize, resizeAs, storage_offset, storage, stride, unfold
|
|
# Each tests is defined in tensor_op_tests as a tuple of:
|
|
# - op name (string)
|
|
# - (sub)test name (string)
|
|
# - tensor constructor, takes dtype and device and constructs the tensor to run the op on
|
|
# - arg constructor, takes dtype and device and constructs op arguments
|
|
# - torch.half precision (=1e-5)
|
|
# - torch.bfloat16 precision (=1e-5)
|
|
# - precision (=1e-5), precision to use for all other dtypes
|
|
# - dtype_list (=_types), a list of torch dtypes to test the op(s) with
|
|
# - cpu_dtype_list (=[]), a list of torch dtypes to test the op(s) on cpu
|
|
# - make_inplace_variant (=True), if true the inplace version of the op (op_) is also tested
|
|
# - decorators (=[]), a list of decorators to apply to the test
|
|
tensor_op_tests = [
|
|
('add', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-2),
|
|
('add', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d)], 1e-2),
|
|
('sub', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-2),
|
|
('sub', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d)], 1e-2),
|
|
('mul', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-2),
|
|
('mul', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d)], 1e-2),
|
|
('mul', 'scalar', _small_0d, lambda t, d: [_small_0d(torch.int32, d)], 1e-2),
|
|
('div', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-1,
|
|
1e-1, 1e-5, _float_types2),
|
|
('div', 'tensor', _small_3d,
|
|
lambda t, d: [_small_3d(t, d, has_zeros=False)], 1e-1,
|
|
1e-1, 1e-5, _float_types2),
|
|
('true_divide', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-1,
|
|
1e-5, 1e-5, _types, _cpu_types, False),
|
|
('true_divide', 'with_inplace', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-1,
|
|
1e-1, 1e-5, _float_types2),
|
|
('true_divide', 'tensor', _small_3d,
|
|
lambda t, d: [_small_3d(t, d, has_zeros=False)], 1e-1,
|
|
1e-5, 1e-5, _types, _cpu_types, False),
|
|
('true_divide', 'tensor_with_inplace', _small_3d,
|
|
lambda t, d: [_small_3d(t, d, has_zeros=False)], 1e-1,
|
|
1e-1, 1e-5, _float_types2),
|
|
('floor_divide', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1, 1e-5, 1e-5, _types),
|
|
('floor_divide', 'tensor', _small_3d,
|
|
lambda t, d: [_small_3d(t, d, has_zeros=False)], 1, 1e-5, 1e-5, _types),
|
|
('pow', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-1, 1e-1, 1e-5, _float_types2),
|
|
('pow', '1', _small_3d, lambda t, d: [_number(1., 1, t)], 1e-1, 1e-1, 1e-5, _float_types2),
|
|
('pow', '2', _small_3d, lambda t, d: [_number(2., 2, t)], 1e-1, 1e-1, 1e-5, _float_types2),
|
|
('pow', '3', _small_3d, lambda t, d: [_number(3., 3, t)], 1e-1, 1e-1, 1e-5, _float_types2),
|
|
('pow', '-1', _small_3d, lambda t, d: [_number(-1., -1, t)], 1e-1, 1e-1, 1e-5, _float_types2),
|
|
('pow', '-2', _small_3d, lambda t, d: [_number(-2., -2, t)],
|
|
1e-1, 1e-5, 1e-5, _float_types_no_half, _cpu_types, False, [skipCUDAIfRocm]),
|
|
('pow', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d).abs()],
|
|
1e-1, 1e-1, 1e-5, _float_types2),
|
|
('addbmm', '', _small_2d, lambda t, d: [_small_3d(t, d), _small_3d(t, d)],
|
|
1e-1, 1e-1, 1e-4, _float_types2),
|
|
('addbmm', 'scalar', _small_2d, lambda t, d: [_number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)],
|
|
1e-1, 1e-1, 1e-4, _float_types2, _cpu_types, True,
|
|
[_wrap_maybe_warns("This overload of addbmm_? is deprecated")]),
|
|
('addbmm', 'two_scalars', _small_2d, lambda t, d: [_number(0.5, 3, t), _number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)],
|
|
1e-1, 1e-1, 1e-4, _float_types2, _cpu_types, True,
|
|
[_wrap_maybe_warns("This overload of addbmm_? is deprecated")]),
|
|
('baddbmm', '', _small_3d, lambda t, d: [_small_3d(t, d), _small_3d(t, d)],
|
|
1e-2, 1e-1, 1e-4, _float_types2),
|
|
('baddbmm', 'scalar', _small_3d, lambda t, d: [_number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)],
|
|
1e-2, 1e-1, 1e-4, _float_types2, _cpu_types, True,
|
|
[_wrap_maybe_warns("This overload of baddbmm_? is deprecated")]),
|
|
('baddbmm', 'two_scalars', _small_3d, lambda t, d: [_number(0.5, 3, t), _number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)],
|
|
1e-2, 1e-1, 1e-4, _float_types2, _cpu_types, True,
|
|
[_wrap_maybe_warns("This overload of baddbmm_? is deprecated")]),
|
|
('bmm', '', _small_3d, lambda t, d: [_small_3d(t, d)],
|
|
1e-5, 1e-5, 1e-5, _float_types_no_half, _cpu_types, False),
|
|
('addcdiv', '', _small_2d,
|
|
lambda t, d: [_small_2d(t, d),
|
|
_small_2d(t, d, has_zeros=False)], 1, 1, 1e-3,
|
|
_float_types2, _cpu_types, True),
|
|
('addcdiv', 'scalar', _small_2d,
|
|
lambda t, d: [_number(2.8, 1, t), _small_2d(t, d),
|
|
_small_2d(t, d, has_zeros=False)], 1, 1e-5, 1e-3,
|
|
_float_types, _cpu_types, True),
|
|
('addcmul', '', _small_3d, lambda t, d: [_small_3d(t, d), _small_3d(t, d)], 1e-2, 1e-1, 1e-3, _types2),
|
|
('addcmul', 'scalar', _small_3d,
|
|
lambda t, d: [_number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)], 1e-2,
|
|
1e-1, 1e-5, _types2, _cpu_types, True,
|
|
[_wrap_maybe_warns("This overload of addcmul_? is deprecated")]),
|
|
('addmm', '', _medium_2d, lambda t, d: [_medium_2d(t, d), _medium_2d(t, d)],
|
|
1e-1, 1e-1, 1e-4, _float_types2),
|
|
('addmm', 'scalar', _medium_2d,
|
|
lambda t, d: [_number(0.4, 2, t), _medium_2d(t, d), _medium_2d(t, d)],
|
|
1e-1, 1e-1, 1e-4, _float_types2, _cpu_types, True,
|
|
[_wrap_maybe_warns("This overload of addmm_? is deprecated")]),
|
|
('addmm', 'two_scalars', _medium_2d,
|
|
lambda t, d: [_number(0.5, 3, t), _number(0.4, 2, t), _medium_2d(t, d), _medium_2d(t, d)],
|
|
1e-1, 1e-1, 1e-4, _float_types2, _cpu_types, True,
|
|
[_wrap_maybe_warns("This overload of addmm_? is deprecated")]),
|
|
('addmv', '', _medium_1d, lambda t, d: [_medium_2d(t, d), _medium_1d(t, d)],
|
|
1e-2, 1e-1, 1e-4, _float_types2 + _complex_types_skip_rocm),
|
|
('addmv', 'scalar', _medium_1d,
|
|
lambda t, d: [_number(0.4, 2, t), _medium_2d(t, d), _medium_1d(t, d)],
|
|
1e-2, 1e-1, 1e-4, _float_types2 + _complex_types_skip_rocm, _cpu_types, True,
|
|
[_wrap_maybe_warns("This overload of addmv_? is deprecated")]),
|
|
('addmv', 'two_scalars', _medium_1d,
|
|
lambda t, d: [_number(0.5, 3, t), _number(0.4, 2, t), _medium_2d(t, d), _medium_1d(t, d)],
|
|
1e-2, 1e-1, 1e-4, _float_types2 + _complex_types_skip_rocm, _cpu_types, True,
|
|
[_wrap_maybe_warns("This overload of addmv_? is deprecated")]),
|
|
('addr', '', _medium_2d, lambda t, d: [_medium_1d(t, d), _medium_1d(t, d)],
|
|
1e-2, 1e-1, 1e-4, _float_types2),
|
|
('addr', 'scalar', _medium_2d,
|
|
lambda t, d: [_number(0.4, 2, t), _medium_1d(t, d), _medium_1d(t, d)],
|
|
1e-2, 1e-1, 1e-4, _float_types2, _cpu_types, True,
|
|
[_wrap_maybe_warns("This overload of addr_? is deprecated")]),
|
|
('addr', 'two_scalars', _medium_2d,
|
|
lambda t, d: [_number(0.5, 3, t), _number(0.4, 2, t), _medium_1d(t, d), _medium_1d(t, d)],
|
|
1e-2, 1e-1, 1e-4, _float_types2, _cpu_types, True,
|
|
[_wrap_maybe_warns("This overload of addr_? is deprecated")]),
|
|
('atan2', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-2, 1e-5, 1e-5, _float_types),
|
|
('angle', '', _small_3d, lambda t, d: [], 0, 0, 0, _types_no_half, [torch.bfloat16], False),
|
|
('fmod', 'value', _small_3d, lambda t, d: [3], 1e-3),
|
|
('fmod', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d, has_zeros=False)], 1e-3),
|
|
('chunk', '', _medium_2d, lambda t, d: [4], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('chunk', 'dim', _medium_2d, lambda t, d: [4, 1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('chunk', 'neg_dim', _medium_2d, lambda t, d: [4, -2], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('clamp', 'neg', _medium_2d, lambda t, d: [-1, 5], 1e-5, 1e-2, 1e-5, _signed_types, [torch.bfloat16]),
|
|
('clamp', 'pos', _medium_2d, lambda t, d: [1, 5], 1e-5, 1e-2, 1e-5, _unsigned_types, [torch.bfloat16]),
|
|
('clamp_min', '', _medium_2d, lambda t, d: [1], 1e-2, 1e-2, 1e-5, _types, [torch.bfloat16]),
|
|
('clamp_max', '', _medium_2d, lambda t, d: [1], 1e-2, 1e-2, 1e-5, _types, [torch.bfloat16]),
|
|
('clone', '', _medium_2d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('contiguous', '', _medium_2d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('conj', '', _small_3d, lambda t, d: [], 1e-5, 0, 1e-5, _types_no_half, [torch.bfloat16], False),
|
|
('cross', '', _new_t((_M, 3, _M)), lambda t, d: [_new_t((_M, 3, _M))(t, d)],
|
|
1e-2, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('logcumsumexp', '', _small_3d, lambda t, d: [1], 1e-2, 1e-5, 1e-5, _float_types, _cpu_types, False),
|
|
('logcumsumexp', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-2, 1e-5, 1e-5, _float_types, _cpu_types, False),
|
|
('cummax', '', _small_3d_unique, lambda t, d: [1], 1e-2, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('cummax', 'neg_dim', _small_3d_unique, lambda t, d: [-1], 1e-2, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('cummin', '', _small_3d_unique, lambda t, d: [1], 1e-2, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('cummin', 'neg_dim', _small_3d_unique, lambda t, d: [-1], 1e-2, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('cumprod', '', _small_3d, lambda t, d: [1], 1e-2, 1e-5, 1e-4, _types + _complex_types, _cpu_types, False),
|
|
('cumprod', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-2, 1e-5, 1e-4, _types + _complex_types, _cpu_types, False),
|
|
('cumsum', '', _small_3d, lambda t, d: [1], 1e-2, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
|
|
('cumsum', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-2, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
|
|
('dim', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('dist', '', _small_2d, lambda t, d: [_small_2d(t, d)], 1e-2, 1e-5, 1e-5, _float_types, _cpu_types, False),
|
|
('dist', '3_norm', _small_2d, lambda t, d: [_small_2d(t, d), 3], 1e-2, 1e-5, 1e-5, _float_types, _cpu_types, False),
|
|
('dist', '2_5_norm', _small_2d, lambda t, d: [_small_2d(t, d), 2.5],
|
|
1e-2, 1e-5, 1e-5, _float_types, _cpu_types, False),
|
|
('dot', '', _medium_1d, lambda t, d: [_medium_1d(t, d)],
|
|
1e-2, 1e-5, 1e-5, _float_types, _cpu_types, False),
|
|
('element_size', '', _medium_1d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _float_types_no_half, _cpu_types, False),
|
|
('eq', '', _small_3d_ones, lambda t, d: [_small_3d(t, d)], 1e-5, 1e-5, 1e-5, _types2),
|
|
('eq', 'equal', _small_3d_ones, lambda t, d: [_small_3d_ones(t, d)], 1e-5, 1e-5, 1e-5, _types2),
|
|
('ne', '', _small_3d_ones, lambda t, d: [_small_3d(t, d)], 1e-5, 1e-5, 1e-5, _types2),
|
|
('ne', 'equal', _small_3d_ones, lambda t, d: [_small_3d_ones(t, d)], 1e-5, 1e-5, 1e-5, _types2),
|
|
('equal', 'equal', _small_3d_ones, lambda t, d: [_small_3d_ones(t, d)],
|
|
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('equal', '', _small_3d_ones, lambda t, d: [_small_3d(t, d)], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('expand', '', _new_t((_M, 1, _M)), lambda t, d: [_M, 4, _M], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('expand_as', '', _new_t((_M, 1, _M)), lambda t, d: [_new_t((_M, 4, _M))(t, d)],
|
|
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('fill_', '', _medium_2d, lambda t, d: [_number(3.14, 3, t)], 1e-3, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('ge', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-5, 1e-5, 1e-5, _types2),
|
|
('le', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-5, 1e-5, 1e-5, _types2),
|
|
('gt', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-5, 1e-5, 1e-5, _types2),
|
|
('lt', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-5, 1e-5, 1e-5, _types2),
|
|
('is_contiguous', '', _medium_2d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
# TODO: can't check negative case - cross-device copy is contiguous
|
|
('is_same_size', 'negative', _medium_2d, lambda t, d: [_small_3d(t, d)],
|
|
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('is_same_size', 'positive', _medium_2d, lambda t, d: [_medium_2d(t, d)],
|
|
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('is_set_to', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
# TODO: positive case
|
|
('kthvalue', '', _small_3d_unique, lambda t, d: [3], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('kthvalue', 'dim', _small_3d_unique, lambda t, d: [3, 1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('kthvalue', 'neg_dim', _small_3d_unique, lambda t, d: [3, -1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('lerp', '', _small_3d, lambda t, d: [_small_3d(t, d), 0.3],
|
|
1e-2, 1e-5, 1e-5, _float_types_no_half),
|
|
('max', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('max', 'dim', _small_3d_unique, lambda t, d: [1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('max', 'neg_dim', _small_3d_unique, lambda t, d: [-1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('max', 'elementwise', _medium_2d, lambda t, d: [_medium_2d(t, d)],
|
|
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('min', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('min', 'dim', _small_3d_unique, lambda t, d: [1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('min', 'neg_dim', _small_3d_unique, lambda t, d: [-1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('min', 'elementwise', _medium_2d, lambda t, d: [_medium_2d(t, d)],
|
|
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('mean', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types2, _cpu_types, False),
|
|
('mean', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-3, 1e-2, 1e-5, _float_types2, _cpu_types, False),
|
|
('mean', 'dim', _small_3d, lambda t, d: [1], 1e-3, 1e-2, 1e-2, _float_types2, _cpu_types, False),
|
|
# Double here because the CPU result will be wrong otherwise
|
|
('mean', '64bit_indexing', _giant_1d, lambda t, d: [],
|
|
1e-3, 1e-5, 1e-5, [torch.double], _cpu_types, False, [slowTest]),
|
|
('mode', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('mode', 'dim', _small_3d, lambda t, d: [1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('mode', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('mvlgamma', '2d_p=1', lambda t, d: _small_2d(t, d).clamp(0.1, 10), lambda t, d: [1],
|
|
1e-5, 1e-5, 1e-5, _float_types_no_half),
|
|
('mvlgamma', '2d_p=2', lambda t, d: _small_2d(t, d).clamp(0.6, 10), lambda t, d: [2],
|
|
1e-5, 1e-5, 1e-5, _float_types_no_half),
|
|
('remainder', 'value', _small_3d, lambda t, d: [3], 1e-1, 1e-5, 1e-5, _signed_types),
|
|
('remainder', 'negative_value', _small_3d, lambda t, d: [-3], 1e-1, 1e-5, 1e-5, _signed_types),
|
|
('remainder', 'tensor', _small_3d,
|
|
lambda t, d: [_small_3d(t, d, has_zeros=False)],
|
|
1e-1, 1e-5, 1e-5, _signed_types),
|
|
('remainder', 'negative_tensor', _small_3d,
|
|
lambda t, d: [0 - _small_3d(t, d, has_zeros=False)],
|
|
1e-1, 1e-5, 1e-5, _signed_types),
|
|
('std', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types, _cpu_types, False),
|
|
('std', 'dim', _small_3d, lambda t, d: [1], 1e-3, 1e-5, 1e-5, _float_types, _cpu_types, False),
|
|
('std', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-3, 1e-5, 1e-5, _float_types, _cpu_types, False),
|
|
('var', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types, _cpu_types, False),
|
|
('var', 'dim', _small_3d, lambda t, d: [1], 1e-3, 1e-5, 1e-5, _float_types, _cpu_types, False),
|
|
('var', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-3, 1e-2, 1e-5, _float_types2, _cpu_types, False),
|
|
('ndimension', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('nelement', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('numel', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('narrow', '', _small_3d, lambda t, d: [1, 3, 2], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('narrow', 'neg_dim', _small_3d, lambda t, d: [-1, 3, 2], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('nonzero', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('norm', '', _small_3d, lambda t, d: [], 1e-1, 1e-1, 1e-5, _float_types2, _cpu_types, False),
|
|
('norm', '3_norm', _small_3d, lambda t, d: [3], 1e-1, 1e-1, 1e-5, _float_types2, _cpu_types, False),
|
|
('norm', '3_norm_dim', _small_3d, lambda t, d: [3, 0], 1e-1, 1e-1, 1e-5, _float_types2, _cpu_types, False),
|
|
('norm', '3_norm_neg_dim', _small_3d, lambda t, d: [3, -2], 1e-1, 1e-1, 1e-5, _float_types2, _cpu_types, False),
|
|
('new_ones', '', _small_3d, lambda t, d: [1, 2, 3, 4, 5], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('permute', '', _new_t((1, 2, 3, 4)), lambda t, d: [2, 1, 3, 0], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('put_', '', _new_t((2, 5, 3)),
|
|
lambda t, d: [torch.LongTensor([[0], [-2]]).to(device=d),
|
|
torch.LongTensor([[3], [4]]).to(dtype=_convert_t(t, d), device=d)],
|
|
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('put_', 'empty', _new_t((2, 3)),
|
|
lambda t, d: [torch.LongTensor([]).to(device=d), torch.LongTensor([]).to(dtype=_convert_t(t, d), device=d)],
|
|
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('put_', 'accumulate', _new_t((2, 2)),
|
|
lambda t, d: [torch.LongTensor([[1], [-3]]).to(device=d),
|
|
torch.LongTensor([[1], [2]]).to(dtype=_convert_t(t, d), device=d),
|
|
True],
|
|
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('prod', '', lambda t, d: _small_2d(t, d, oneish=True),
|
|
lambda t, d: [], 1e-2, 1e-1, 1e-5, _types2, _cpu_types, False),
|
|
('prod', 'dim', _small_3d, lambda t, d: [1], 1e-3, 1e-1, 1e-5, _types2, _cpu_types, False),
|
|
('prod', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-3, 1e-1, 1e-5, _types2, _cpu_types, False),
|
|
('sum', '', _small_2d, lambda t, d: [], 1e-2, 1e-2, 1e-5, _types2, _cpu_types, False),
|
|
('sum', 'dim', _small_3d, lambda t, d: [1], 1e-2, 1e-2, 1e-5, _types2, _cpu_types, False),
|
|
('sum', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-2, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('sum', 'complex', _small_2d, lambda t, d: [], 1e-2, 1e-2, 1e-5, _complex_types, _cpu_types, False),
|
|
('sum', 'complex_dim', _small_3d, lambda t, d: [1], 1e-2, 1e-2, 1e-5, _complex_types, _cpu_types, False),
|
|
('sum', 'complex_neg_dim', _small_3d, lambda t, d: [-1], 1e-2, 1e-5, 1e-5, _complex_types, _cpu_types, False),
|
|
('renorm', '2_norm', _small_3d, lambda t, d: [2, 1, 1], 1e-3, 1e-5, 1e-5, _float_types),
|
|
('renorm', '2_norm_neg_dim', _small_3d, lambda t, d: [2, -1, 1], 1e-3, 1e-5, 1e-5, _float_types),
|
|
('renorm', '1_5_norm', _small_3d, lambda t, d: [1.5, 1, 1], 1e-3, 1e-5, 1e-5, _float_types),
|
|
('repeat', '', _small_2d, lambda t, d: [2, 2, 2], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('size', '', _new_t((1, 2, 3, 4)), lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('size', 'dim', _new_t((1, 2, 3, 4)), lambda t, d: [1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('size', 'neg_dim', _new_t((1, 2, 3, 4)), lambda t, d: [-2], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('sort', '', _small_3d_unique, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('sort', 'dim', _small_3d_unique, lambda t, d: [1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('sort', 'neg_dim', _small_3d_unique, lambda t, d: [-1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('sort', 'dim_descending', _small_3d_unique, lambda t, d: [1, True], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('sort', 'neg_dim_descending', _small_3d_unique, lambda t, d: [-1, True], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('split', '', _small_3d, lambda t, d: [2], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('split', 'dim', _small_3d, lambda t, d: [2, 1], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('split', 'neg_dim', _small_3d, lambda t, d: [2, -3], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('squeeze', '', _new_t((1, 2, 1, 4)), lambda t, d: [],),
|
|
('squeeze', 'dim', _new_t((1, 2, 1, 4)), lambda t, d: [2], ),
|
|
('squeeze', 'neg_dim', _new_t((1, 2, 1, 4)), lambda t, d: [-2], ),
|
|
('t', '', _new_t((1, 2)), lambda t, d: [],),
|
|
('take', '', _new_t((3, 4)),
|
|
lambda t, d: [torch.LongTensor([[0], [-2]]).to(device=d)],
|
|
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('transpose', '', _new_t((1, 2, 3, 4)), lambda t, d: [1, 2],),
|
|
('transpose', 'neg_dim', _new_t((1, 2, 3, 4)), lambda t, d: [-1, -2], ),
|
|
('tolist', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('topk', 'dim_sort', _small_3d_unique, lambda t, d: [2, 1, False, True],
|
|
1e-5, 1e-5, 1e-5, _types2, _cpu_types, False),
|
|
('topk', 'neg_dim_sort', _small_3d_unique, lambda t, d: [2, -1, False, True],
|
|
1e-5, 1e-5, 1e-5, _types2, _cpu_types, False),
|
|
('topk', 'dim_desc_sort', _small_3d_unique, lambda t, d: [2, 1, True, True],
|
|
1e-5, 1e-5, 1e-5, _types2, _cpu_types, False),
|
|
('trace', '', _medium_2d, lambda t, d: [], 1e-3, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('tril', '', _medium_2d, lambda t, d: [],),
|
|
('tril', 'zero_stride', _medium_2d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('tril', 'positive', _medium_2d, lambda t, d: [2], ),
|
|
('tril', 'negative', _medium_2d, lambda t, d: [-2], ),
|
|
('triu', '', _medium_2d, lambda t, d: [],),
|
|
('triu', 'zero_stride', _medium_2d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('triu', 'positive', _medium_2d, lambda t, d: [2], ),
|
|
('triu', 'negative', _medium_2d, lambda t, d: [-2], ),
|
|
('unsqueeze', '', _new_t((2, 3, 4)), lambda t, d: [2],),
|
|
('unsqueeze', 'neg_dim', _new_t((2, 3, 4)), lambda t, d: [-2], ),
|
|
('view', 'contiguous', _small_3d, lambda t, d: [25, 5], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('view_as', '', _small_3d, lambda t, d: [_make_tensor((25, 5), t, d)],
|
|
1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('zero_', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('new_zeros', '', _small_3d, lambda t, d: [1, 2, 3, 4], 1e-5, 1e-5, 1e-5, _types, _cpu_types, False),
|
|
('flip', 'd0', _small_3d, lambda t, d: [0], 1e-5, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
|
|
('flip', 'd02', _small_3d, lambda t, d: [0, 2], 1e-5, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
|
|
('flip', 'd20', _small_3d, lambda t, d: [2, 0], 1e-5, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
|
|
('flip', 'neg_d', _small_3d, lambda t, d: [-1], 1e-5, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
|
|
('rot90', 'k1_d01', _small_2d, lambda t, d: [1, [0, 1]], 1e-5, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
|
|
('rot90', 'k1_d12', _small_3d, lambda t, d: [1, [1, 2]], 1e-5, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
|
|
('rot90', 'k1_neg_d', _small_3d, lambda t, d: [1, [1, -1]], 1e-5, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
|
|
('rot90', 'default', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types + _complex_types, _cpu_types, False),
|
|
('rsqrt', '', lambda t, d: _small_3d(t, d) + 1, lambda t, d: [], 1e-2, 1e-5, 1e-4, _float_types_no_half),
|
|
('sinh', '', lambda t, d: _small_3d(t, d).clamp(-1, 1), lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types),
|
|
('tan', '', lambda t, d: _small_3d(t, d).clamp(-1, 1), lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types),
|
|
('tan', 'complex', lambda t, d: _small_3d(t, d), lambda t, d: [], 1e-3, 1e-5, 1e-5, _complex_types),
|
|
('__lshift__', '',
|
|
lambda t, d: torch.pow(2, torch.arange(1, 5).to(dtype=_convert_t(t, d), device=d)),
|
|
lambda t, d: [2],
|
|
1e-3, 1e-5, 1e-3, _signed_types, _cpu_types, False),
|
|
('__rshift__', '',
|
|
lambda t, d: torch.pow(2, torch.arange(3, 7).to(dtype=_convert_t(t, d), device=d)),
|
|
lambda t, d: [2],
|
|
1e-3, 1e-5, 1e-3, _signed_types, _cpu_types, False),
|
|
# lapack tests
|
|
('qr', 'square', _small_2d, lambda t, d: [],
|
|
1e-5, 1e-5, 3e-4, _float_types_no_half, _cpu_types, False, [skipCUDAIfNoMagma]),
|
|
('qr', 'skinny', _new_t((3, 4)), lambda t, d: [],
|
|
1e-5, 1e-5, 3e-4, _float_types_no_half, _cpu_types, False, [skipCUDAIfNoMagma]),
|
|
('qr', 'fat', _new_t((4, 3)), lambda t, d: [],
|
|
1e-5, 1e-5, 3e-4, _float_types_no_half, _cpu_types, False, [skipCUDAIfNoMagma]),
|
|
('qr', 'big', _large_2d, lambda t, d: [],
|
|
1e-5, 1e-5, 3e-4, _float_types_no_half, _cpu_types, False, [skipCUDAIfNoMagma]),
|
|
('geqrf', '', _new_t((20, 20)), lambda t, d: [],
|
|
1e-5, 1e-5, 3e-4, _float_types_no_half, _cpu_types, False, [skipCUDAIfNoMagma]),
|
|
('eig', 'with_eigvec', _new_t((10, 10)), lambda t, d: [True],
|
|
1e-5, 1e-5, 1e-5, _float_types_no_half, _cpu_types, False, [skipCUDAIfNoMagma]),
|
|
('abs', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types2, [torch.bfloat16]),
|
|
('sign', '', _small_3d, lambda t, d: []),
|
|
('log', '', _small_3d, lambda t, d: [], 1e-2, 1e-2, 1e-5, _float_types2, [torch.bfloat16]),
|
|
('log10', '', _small_3d, lambda t, d: [], 1e-2, 1e-2, 1e-5, _float_types2, [torch.bfloat16]),
|
|
('log1p', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types_no_half, [torch.bfloat16]),
|
|
('log2', '', _small_3d, lambda t, d: [], 1e-2, 1e-1, 1e-5, _float_types2, [torch.bfloat16]),
|
|
('sigmoid', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types2),
|
|
('sin', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
|
|
('sqrt', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types2, [torch.bfloat16]),
|
|
('tanh', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types2 + _complex_types, [torch.bfloat16]),
|
|
('acos', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
|
|
('asin', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
|
|
('atan', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
|
|
('acosh', '', lambda t, d: _small_3d(t, d) + 1, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types2),
|
|
('asinh', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types2),
|
|
('atanh', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types2),
|
|
('cos', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
|
|
('cosh', '', _small_3d, lambda t, d: [], 1e-2, 1e-5, 1e-5, _float_types),
|
|
('erf', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types2, [torch.bfloat16]),
|
|
('erfc', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
|
|
('exp', '', _small_3d, lambda t, d: [], 1e-2, 1e-2, 1e-5, _float_types),
|
|
('exp', 'small', lambda t, d: _small_3d(t, d).clamp(-1, 1),
|
|
lambda t, d: [], 1e-2, 1e-2, 1e-5, _float_types2, [torch.bfloat16]),
|
|
('expm1', '', _small_3d, lambda t, d: [], 1e-2, 1e-2, 1e-5, _float_types),
|
|
('expm1', 'small', lambda t, d: _small_3d(t, d).clamp(-1, 1),
|
|
lambda t, d: [], 1e-2, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
|
|
('rad2deg', '', _small_3d, lambda t, d: [], 1e-1, 1e-0, 1e-5, _float_types2, [torch.bfloat16]),
|
|
('deg2rad', '', _small_3d, lambda t, d: [], 1e-1, 1e-1, 1e-5, _float_types2, [torch.bfloat16]),
|
|
('reciprocal', '', _small_3d, lambda t, d: [], 1e-1, 1e-1, 1e-5, _float_types2, [torch.bfloat16]),
|
|
('floor', '', _small_3d, lambda t, d: [], 1e-5, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
|
|
('frac', '', _small_3d, lambda t, d: [], 1e-5, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
|
|
('neg', '', _small_3d, lambda t, d: [], 1e-5, 1e-2, 1e-5, _float_types2, [torch.bfloat16]),
|
|
('round', '', _small_3d, lambda t, d: [], 1e-5, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
|
|
('trunc', '', _small_3d, lambda t, d: [], 1e-5, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
|
|
('ceil', '', _small_3d, lambda t, d: [], 1e-5, 1e-2, 1e-5, _float_types, [torch.bfloat16]),
|
|
('lgamma', '', _small_3d, lambda t, d: [], 1e-2, 1e-1, 1e-5, _float_types_no_half, [torch.bfloat16]),
|
|
('digamma', 'op', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e0, _float_types_no_half),
|
|
]
|
|
|
|
# Creates and decorates a generic test and adds it to the class.
|
|
def generate_test_function(cls,
|
|
op_str,
|
|
subtest_str,
|
|
tensor_ctor,
|
|
arg_ctor,
|
|
half_precision,
|
|
bfloat16_precision,
|
|
float_precision,
|
|
dtype_list,
|
|
dtype_cpu_list,
|
|
decorators) -> None:
|
|
def fn(self, device, dtype) -> None:
|
|
# Generates the CPU inputs
|
|
# Note: CPU tensors are never torch.half
|
|
cpu_tensor = tensor_ctor(dtype, 'cpu')
|
|
cpu_args = arg_ctor(dtype, 'cpu')
|
|
|
|
# Converts CPU tensors to device tensors
|
|
device_tensor = cpu_tensor.to(dtype=dtype, device=device)
|
|
device_args = [arg.to(device=device) if isinstance(arg, torch.Tensor) else arg for arg in cpu_args]
|
|
|
|
# Converts float device tensors to half/bfloat16 when the dtype is half/bfloat16
|
|
# Note: CPU half tensors don't support many operations.
|
|
if dtype in {torch.half, torch.bfloat16}:
|
|
device_args = [arg.to(dtype=dtype) if
|
|
(isinstance(arg, torch.Tensor) and arg.dtype == torch.float) else arg
|
|
for arg in device_args]
|
|
|
|
# Runs the tensor op on CPU and device
|
|
cpu_result = getattr(cpu_tensor, op_str)(*cpu_args)
|
|
device_result = getattr(device_tensor, op_str)(*device_args)
|
|
|
|
dtype2precision = {torch.half : half_precision,
|
|
torch.bfloat16 : bfloat16_precision}
|
|
|
|
# Compares CPU and device inputs and outputs
|
|
precision = dtype2precision.get(dtype, float_precision)
|
|
|
|
self.assertEqual(cpu_tensor, device_tensor, atol=precision, rtol=0, exact_dtype=False)
|
|
self.assertEqual(cpu_args, device_args, atol=precision, rtol=0, exact_dtype=False)
|
|
self.assertEqual(cpu_result, device_result, atol=precision, rtol=0, exact_dtype=False)
|
|
|
|
test_name = "test_" + op_str + subtest_str
|
|
assert not hasattr(cls, test_name), "{0} already in TestDevicePrecision".format(test_name)
|
|
|
|
# Constructs decorator list and applies decorators
|
|
if decorators is None:
|
|
decorators = [dtypes(*dtype_list)]
|
|
else:
|
|
decorators = decorators + [dtypes(*dtype_list)]
|
|
decorators = decorators + [dtypesIfCPU(*dtype_cpu_list)]
|
|
|
|
for dec in decorators:
|
|
fn = dec(fn)
|
|
|
|
setattr(cls, test_name, fn)
|
|
|
|
# Instantiates variants of tensor_op_tests and adds them to the given class.
|
|
def generate_tensor_op_tests(cls) -> None:
|
|
|
|
def caller(cls,
|
|
op_str,
|
|
subtest_str,
|
|
tensor_ctor,
|
|
arg_ctor,
|
|
half_precision=1e-5,
|
|
bfloat16_precision=1e-5,
|
|
float_precision=1e-5,
|
|
dtype_list=_types,
|
|
dtype_cpu_list=_cpu_types,
|
|
make_inplace_variant=True,
|
|
decorators=None):
|
|
if subtest_str:
|
|
subtest_str = '_' + subtest_str
|
|
|
|
generate_test_function(cls, op_str, subtest_str, tensor_ctor, arg_ctor, half_precision,
|
|
bfloat16_precision, float_precision, dtype_list, dtype_cpu_list, decorators)
|
|
|
|
if make_inplace_variant:
|
|
op_str = op_str + '_'
|
|
subtest_str = 'inplace' + subtest_str
|
|
generate_test_function(cls, op_str, subtest_str, tensor_ctor, arg_ctor, half_precision,
|
|
bfloat16_precision, float_precision, dtype_list, dtype_cpu_list, decorators)
|
|
|
|
for test in tensor_op_tests:
|
|
caller(cls, *test)
|
|
|
|
def _generate_reference_input(dtype, device):
|
|
input = []
|
|
input.append(list(range(-5, 5)))
|
|
input.append([0 for x in range(-5, 5)])
|
|
input.append([x + 1e-6 for x in range(-5, 5)])
|
|
# Some vectorized implementations don't support large values
|
|
input.append([x + 1e10 for x in range(-5, 5)])
|
|
input.append([x - 1e10 for x in range(-5, 5)])
|
|
input.append([*torch.randn(7).tolist(), math.inf, -math.inf, math.nan])
|
|
input.append((torch.randn(10) * 1e6).tolist())
|
|
input.append([math.pi * (x / 2) for x in range(-5, 5)])
|
|
return torch.tensor(input, dtype=dtype, device=device)
|
|
|
|
def _generate_gamma_input(dtype, device, test_poles=True):
|
|
input = []
|
|
input.append((torch.randn(10).abs() + 1e-4).tolist())
|
|
input.append((torch.randn(10).abs() + 1e6).tolist())
|
|
zeros = torch.linspace(-9.5, -0.5, 10)
|
|
input.append(zeros.tolist())
|
|
input.append((zeros - 0.49).tolist())
|
|
input.append((zeros + 0.49).tolist())
|
|
input.append((zeros + (torch.rand(10) * 0.99) - 0.5).tolist())
|
|
if test_poles:
|
|
input.append([-0.999999994, -1.999999994, -2.0000000111,
|
|
-100.99999994, -1931.99999994, 0.000000111,
|
|
-0.000000111, 0, -2, -329])
|
|
return torch.tensor(input, dtype=dtype, device=device)
|
|
|
|
# this class contains information needed to generate tests for torch math functions
|
|
# the generated tests compare torch implementation with the reference numpy/scipy implementation,
|
|
# and also check proper behavior for contiguous/discontiguous/inplace outputs.
|
|
class _TorchMathTestMeta(object):
|
|
def __init__(self,
|
|
opstr,
|
|
args=(),
|
|
reffn=None,
|
|
refargs=lambda x: (x.numpy(),),
|
|
input_fn=_generate_reference_input,
|
|
inputargs=(),
|
|
substr='',
|
|
make_inplace=True,
|
|
decorators=None,
|
|
ref_backend='numpy',
|
|
rtol=None,
|
|
atol=None,
|
|
dtypes=_float_types_no_half,
|
|
replace_inf_with_nan=False):
|
|
self.opstr = opstr
|
|
self.args = args
|
|
self.reffn = reffn # reffn is either callable or ref_backend attribute, set to opstr if not specified
|
|
self.refargs = refargs
|
|
self.input_fn = input_fn
|
|
self.inputargs = inputargs
|
|
self.substr = substr
|
|
self.make_inplace = make_inplace
|
|
assert ref_backend == 'numpy' or ref_backend == 'scipy'
|
|
self.ref_backend = ref_backend
|
|
if ref_backend == 'numpy':
|
|
self.ref_decorator = [unittest.skipIf(not TEST_NUMPY, "Numpy not found")]
|
|
elif ref_backend == 'scipy':
|
|
self.ref_decorator = [unittest.skipIf(not TEST_SCIPY, "Scipy not found")]
|
|
self.decorators = decorators
|
|
self.rtol = rtol
|
|
self.atol = atol
|
|
self.dtypes = dtypes
|
|
self.replace_inf_with_nan = replace_inf_with_nan
|
|
|
|
torch_op_tests = [_TorchMathTestMeta('sin'),
|
|
_TorchMathTestMeta('asin', reffn='arcsin'),
|
|
_TorchMathTestMeta('asinh', reffn='arcsinh'),
|
|
_TorchMathTestMeta('sinh'),
|
|
_TorchMathTestMeta('cos'),
|
|
_TorchMathTestMeta('acos', reffn='arccos'),
|
|
_TorchMathTestMeta('acosh', reffn='arccosh'),
|
|
_TorchMathTestMeta('cosh'),
|
|
_TorchMathTestMeta('tan'),
|
|
_TorchMathTestMeta('atan', reffn='arctan'),
|
|
_TorchMathTestMeta('atanh', reffn='arctanh'),
|
|
_TorchMathTestMeta('tanh'),
|
|
_TorchMathTestMeta('log'),
|
|
_TorchMathTestMeta('log10'),
|
|
_TorchMathTestMeta('log1p'),
|
|
_TorchMathTestMeta('log2'),
|
|
_TorchMathTestMeta('sqrt'),
|
|
_TorchMathTestMeta('erf', ref_backend='scipy'),
|
|
_TorchMathTestMeta('erfc', ref_backend='scipy'),
|
|
_TorchMathTestMeta('exp'),
|
|
_TorchMathTestMeta('expm1'),
|
|
_TorchMathTestMeta('floor'),
|
|
_TorchMathTestMeta('ceil'),
|
|
_TorchMathTestMeta('rad2deg'),
|
|
_TorchMathTestMeta('deg2rad'),
|
|
_TorchMathTestMeta('rsqrt', reffn=lambda x: np.reciprocal(np.sqrt(x))),
|
|
_TorchMathTestMeta('frac', reffn='fmod', refargs=lambda x: (x.numpy(), 1)),
|
|
_TorchMathTestMeta('trunc'),
|
|
_TorchMathTestMeta('round'),
|
|
# FIXME lgamma produces different result compared to scipy at -inf
|
|
_TorchMathTestMeta('lgamma', reffn='gammaln', ref_backend='scipy', replace_inf_with_nan=True),
|
|
_TorchMathTestMeta('polygamma', args=[0], substr='_0', reffn='polygamma',
|
|
refargs=lambda x: (0, x.numpy()), input_fn=_generate_gamma_input, inputargs=[False],
|
|
ref_backend='scipy'),
|
|
_TorchMathTestMeta('polygamma', args=[1], substr='_1', reffn='polygamma',
|
|
refargs=lambda x: (1, x.numpy()), input_fn=_generate_gamma_input, inputargs=[False],
|
|
ref_backend='scipy', rtol=0.0008, atol=1e-5),
|
|
_TorchMathTestMeta('digamma',
|
|
input_fn=_generate_gamma_input, inputargs=[True], ref_backend='scipy',
|
|
replace_inf_with_nan=True),
|
|
_TorchMathTestMeta('abs', input_fn=_medium_2d, dtypes=_types_no_half, rtol=0., atol=0.)]
|
|
|
|
|
|
def generate_torch_test_functions(cls, testmeta, inplace):
|
|
opstr = testmeta.opstr if not inplace else testmeta.opstr + "_"
|
|
|
|
def torchfn(x):
|
|
return getattr(x, opstr)(*testmeta.args)
|
|
|
|
def fn_check_reference(self, device, dtype):
|
|
def reffn(x):
|
|
backend = np if testmeta.ref_backend == 'numpy' else scipy.special
|
|
opstr = None
|
|
if testmeta.reffn is None:
|
|
opstr = testmeta.opstr
|
|
elif isinstance(testmeta.reffn, str):
|
|
opstr = testmeta.reffn
|
|
if callable(testmeta.reffn):
|
|
fn = testmeta.reffn
|
|
else:
|
|
assert opstr is not None, "invalid reffn"
|
|
fn = getattr(backend, opstr)
|
|
return fn(*testmeta.refargs(x))
|
|
|
|
inp = testmeta.input_fn(dtype, device, *testmeta.inputargs)
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
expected = torch.from_numpy(reffn(inp))
|
|
actual = torchfn(inp)
|
|
if testmeta.replace_inf_with_nan:
|
|
actual[(actual == -inf) | (actual == inf)] = nan
|
|
expected[(expected == -inf) | (expected == inf)] = nan
|
|
|
|
torch.testing.assert_allclose(actual, expected, rtol=testmeta.rtol, atol=testmeta.atol)
|
|
|
|
def fn_non_contig(self, device, dtype) -> None:
|
|
shapes = [(5, 7), (1024,)]
|
|
for shape in shapes:
|
|
contig = _make_tensor(shape, dtype=dtype, device=device)
|
|
non_contig = torch.empty(shape + (2,), dtype=dtype)[..., 0]
|
|
non_contig.copy_(contig)
|
|
self.assertFalse(non_contig.is_contiguous())
|
|
self.assertEqual(torchfn(contig), torchfn(non_contig), msg='non-contiguous')
|
|
|
|
def fn_non_contig_index(self, device, dtype):
|
|
contig = _make_tensor((2, 2, 1, 2), dtype=dtype, device=device)
|
|
non_contig = contig[:, 1, ...]
|
|
contig = non_contig.clone()
|
|
self.assertFalse(non_contig.is_contiguous())
|
|
self.assertEqual(torchfn(contig), torchfn(non_contig), msg='non-contiguous index')
|
|
|
|
def fn_non_contig_expand(self, device, dtype):
|
|
shapes = [(1, 3), (1, 7), (5, 7)]
|
|
for shape in shapes:
|
|
contig = _make_tensor(shape, dtype=dtype, device=device)
|
|
non_contig = contig.clone().expand(3, -1, -1)
|
|
self.assertFalse(non_contig.is_contiguous())
|
|
contig = torchfn(contig)
|
|
non_contig = torchfn(non_contig)
|
|
for i in range(3):
|
|
self.assertEqual(contig, non_contig[i], msg='non-contiguous expand[' + str(i) + ']')
|
|
|
|
def fn_contig_size1(self, device, dtype):
|
|
contig = _make_tensor((5, 100), dtype=dtype, device=device)
|
|
contig = contig[:1, :50]
|
|
contig2 = torch.empty(contig.size(), dtype=dtype)
|
|
contig2.copy_(contig)
|
|
self.assertTrue(contig.is_contiguous())
|
|
self.assertTrue(contig2.is_contiguous())
|
|
self.assertEqual(torchfn(contig), torchfn(contig2), msg='contiguous size1')
|
|
|
|
def fn_contig_size1_large_dim(self, device, dtype):
|
|
contig = _make_tensor((5, 2, 3, 1, 4, 5, 3, 2, 1, 2, 3, 4), dtype=dtype, device=device)
|
|
contig = contig[:1, :, :, :, :, :, :, :, :, :, :, :]
|
|
contig2 = torch.empty(contig.size(), dtype=dtype)
|
|
contig2.copy_(contig)
|
|
self.assertTrue(contig.is_contiguous())
|
|
self.assertTrue(contig2.is_contiguous())
|
|
self.assertEqual(torchfn(contig), torchfn(contig2), msg='contiguous size1')
|
|
|
|
def fn_large(self, device, dtype):
|
|
input = _make_tensor((1024, 512), dtype=dtype, device=device)
|
|
# clone input to properly test inplace functions
|
|
actual = torchfn(input.clone())
|
|
expected = torch.stack([torchfn(slice) for slice in input])
|
|
self.assertEqual(actual, expected, msg='large')
|
|
|
|
test_functions = {"test_reference_": fn_check_reference,
|
|
"test_non_contig_": fn_non_contig,
|
|
"test_non_contig_index_": fn_non_contig_index,
|
|
"test_non_contig_expand_": fn_non_contig_expand,
|
|
"test_contig_size1_": fn_contig_size1,
|
|
"test_check_contig_size1_large_dim_": fn_contig_size1_large_dim,
|
|
"test_large_": fn_large}
|
|
for name in test_functions:
|
|
if inplace and 'expand' in name:
|
|
continue
|
|
test_name = name + testmeta.opstr + testmeta.substr
|
|
if inplace:
|
|
test_name += "_inplace"
|
|
assert not hasattr(cls, test_name), "{0} already in TestTorchMathOps".format(test_name)
|
|
|
|
decorators = [] if testmeta.decorators is None else testmeta.decorators
|
|
if 'reference' in name:
|
|
decorators = decorators + testmeta.ref_decorator
|
|
decorators = decorators + [dtypes(*testmeta.dtypes)]
|
|
fn_test = test_functions[name]
|
|
for dec in decorators:
|
|
fn_test = dec(fn_test)
|
|
setattr(cls, test_name, fn_test)
|
|
|
|
|
|
|
|
|
|
def generate_torch_op_tests(cls):
|
|
for t in torch_op_tests:
|
|
generate_torch_test_functions(cls, t, False)
|
|
if t.make_inplace:
|
|
generate_torch_test_functions(cls, t, True)
|
|
|
|
|
|
|
|
|
|
|
|
tensor_binary_ops = [
|
|
'__lt__', '__le__',
|
|
'__gt__', '__ge__',
|
|
'__eq__', '__ne__',
|
|
|
|
'__add__', '__radd__', '__iadd__',
|
|
'__sub__', '__rsub__', '__isub__',
|
|
'__mul__', '__rmul__', '__imul__',
|
|
'__matmul__', '__rmatmul__', '__imatmul__',
|
|
'__truediv__', '__rtruediv__', '__itruediv__',
|
|
'__floordiv__', '__rfloordiv__', '__ifloordiv__',
|
|
'__mod__', '__rmod__', '__imod__',
|
|
'__divmod__', '__rdivmod__', '__idivmod__',
|
|
'__pow__', '__rpow__', '__ipow__',
|
|
'__lshift__', '__rlshift__', '__ilshift__',
|
|
'__rshift__', '__rrshift__', '__irshift__',
|
|
'__and__', '__rand__', '__iand__',
|
|
'__xor__', '__rxor__', '__ixor__',
|
|
'__or__', '__ror__', '__ior__',
|
|
]
|
|
|
|
|
|
# Test that binary math operations return NotImplemented for unknown types.
|
|
def generate_not_implemented_tests(cls):
|
|
class UnknownType:
|
|
pass
|
|
|
|
for op in tensor_binary_ops:
|
|
@dtypes(*_types)
|
|
def test(self, device, dtype):
|
|
# Generate the inputs
|
|
tensor = _small_2d(dtype, device)
|
|
|
|
# Runs the tensor op on the device
|
|
result = getattr(tensor, op)(UnknownType())
|
|
self.assertEqual(result, NotImplemented)
|
|
|
|
test_name = "test_{}_not_implemented".format(op)
|
|
assert not hasattr(cls, test_name), "{0} already in {1}".format(
|
|
test_name, cls.__name__)
|
|
|
|
setattr(cls, test_name, test)
|
|
|
|
|
|
class TestTensorDeviceOps(TestCase):
|
|
exact_dtype = True
|
|
|
|
def _test_svd_helper(self, shape, some, col_maj, device, dtype):
|
|
cpu_tensor = torch.randn(shape, device='cpu').to(dtype)
|
|
device_tensor = cpu_tensor.to(device=device)
|
|
if col_maj:
|
|
cpu_tensor = cpu_tensor.t()
|
|
device_tensor = device_tensor.t()
|
|
cpu_result = torch.svd(cpu_tensor, some=some)
|
|
device_result = torch.svd(device_tensor, some=some)
|
|
m = min(cpu_tensor.shape[-2:])
|
|
# torch.svd returns torch.return_types.svd which is a tuple of (U, V, S).
|
|
# - When some==False, U[..., m:] can be arbitrary.
|
|
# - When some==True, U shape: [..., m], V shape: [m, m]
|
|
# - Signs are not deterministic. If the sign of a column of U is changed
|
|
# then the corresponding column of the V has to be changed.
|
|
# Thus here we only compare result[..., :m].abs() from CPU and device.
|
|
for x, y in zip(cpu_result, device_result):
|
|
self.assertEqual(x[..., :m].abs(), y[..., :m].abs(), atol=1e-5, rtol=0)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@dtypes(*_float_types_no_half)
|
|
def test_svd_square(self, device, dtype):
|
|
self._test_svd_helper((10, 10), True, False, device, dtype)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@dtypes(*_float_types_no_half)
|
|
def test_svd_square_col_maj(self, device, dtype):
|
|
self._test_svd_helper((10, 10), True, True, device, dtype)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@dtypes(*_float_types_no_half)
|
|
def test_svd_tall_some(self, device, dtype):
|
|
self._test_svd_helper((20, 5), True, False, device, dtype)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@dtypes(*_float_types_no_half)
|
|
def test_svd_tall_all(self, device, dtype):
|
|
self._test_svd_helper((20, 5), False, False, device, dtype)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@dtypes(*_float_types_no_half)
|
|
def test_svd_tall_some_col_maj(self, device, dtype):
|
|
self._test_svd_helper((5, 20), True, True, device, dtype)
|
|
|
|
@skipCUDAIfNoMagma
|
|
@dtypes(*_float_types_no_half)
|
|
def test_svd_tall_all_col_maj(self, device, dtype):
|
|
self._test_svd_helper((5, 20), False, True, device, dtype)
|
|
|
|
class TestTorchMathOps(TestCase):
|
|
exact_dtype = True
|
|
|
|
class TestTorch(AbstractTestCases._TestTorchMixin):
|
|
exact_dtype = True
|
|
|
|
|
|
# Generates tests
|
|
# Note: test generation must be done at file scope, not within main, or
|
|
# pytest will fail.
|
|
add_neg_dim_tests()
|
|
generate_tensor_op_tests(TestTensorDeviceOps)
|
|
generate_not_implemented_tests(TestTorchDeviceType)
|
|
generate_torch_op_tests(TestTorchMathOps)
|
|
instantiate_device_type_tests(TestTorchDeviceType, globals())
|
|
instantiate_device_type_tests(TestViewOps, globals())
|
|
instantiate_device_type_tests(TestDevicePrecision, globals(), except_for='cpu')
|
|
instantiate_device_type_tests(TestTensorDeviceOps, globals())
|
|
instantiate_device_type_tests(TestTorchMathOps, globals(), only_for='cpu')
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|