mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
For oss this diff adds a decorator @profile_sb_fbcode that is a nop for non meta workload. Facebook: With this diff someone can generate a strobelight profile for pt2 compilation. users need to set the env variable TORCH_COMPILE_SL_PROFILE =TRUE . For example: ``` TORCH_COMPILE_SL_PROFILE =TRUE buck2 run @//mode/inplace @//mode/opt //caffe2/fb/strobelight:compiletime_profile_example ``` see sample output bellow, at the end of summary. The way this works, is that a unique id is generated and associated with all samples that are collected for functions that are decorated with profile_sb_fbcode. This id can then be used to combine different strobe light profile into one. (for example three compilation events happens in the code bellow). Right now the following two functions are annotated with profile_sb_fbcode. bw_compiler and _compile. if two profile_sl_fbcode is called recursively, recursive invocations are ignored and a log is printed. The output is: ``` Strobelight is enabled for pt2 compilation Unique user-id for this run is: 2024-04-03-13:59:49147091devvm4561.ash0.facebook.com You can use the following link to access the strobelight profile at the end of the run: https://www.internalfb.com/intern/scuba/query/?dataset=pyperf_experimental%2Fon_demand&drillstate=%7B%22purposes%22%3A[]%2C%22end%22%3A%22now%22%2C%22start%22%3A%22-30%20days%22%2C%22filterMode%22%3A%22DEFAULT%22%2C%22modifiers%22%3A[]%2C%22sampleCols%22%3A[]%2C%22cols%22%3A[%22namespace_id%22%2C%22namespace_process_id%22]%2C%22derivedCols%22%3A[]%2C%22mappedCols%22%3A[]%2C%22enumCols%22%3A[]%2C%22return_remainder%22%3Afalse%2C%22should_pivot%22%3Afalse%2C%22is_timeseries%22%3Afalse%2C%22hideEmptyColumns%22%3Afalse%2C%22timezone%22%3A%22America%2FLos_Angeles%22%2C%22compare%22%3A%22none%22%2C%22samplingRatio%22%3A%221%22%2C%22metric%22%3A%22count%22%2C%22aggregation_field%22%3A%22async_stack_complete%22%2C%22top%22%3A10000%2C%22aggregateList%22%3A[]%2C%22param_dimensions%22%3A[%7B%22dim%22%3A%22py_async_stack%22%2C%22op%22%3A%22edge%22%2C%22param%22%3A%220%22%2C%22anchor%22%3A%220%22%7D]%2C%22order%22%3A%22weight%22%2C%22order_desc%22%3Atrue%2C%22constraints%22%3A[[%7B%22column%22%3A%22run_user%22%2C%22op%22%3A%22eq%22%2C%22value%22%3A[%22[%5C%222024-04-03-13:59:49147091devvm4561.ash0.facebook.com%5C%22]%22]%7D]]%2C%22c_constraints%22%3A[[]]%2C%22b_constraints%22%3A[[]]%2C%22ignoreGroupByInComparison%22%3Afalse%7D&view=GraphProfilerView&&pool=uber&graphprofiler_filter=&graphprofiler_column_to_sort_by=exclusive the link below takes you to the collected strobelight profile https://www.internalfb.com/intern/scuba/query/?dataset=pyperf_experimental%2Fon_demand&drillstate=%7B%22dimensions%22%3A%5B%5D%2C%22param_dimensions%22%3A%5B%7B%22anchor%22%3A%220%22%2C%22param%22%3A%220%22%2C%22op%22%3A%22edge%22%2C%22dim%22%3A%22py_async_stack%22%7D%5D%2C%22constraints%22%3A%5B%5B%7B%22value%22%3A%5B%22%5B%5C%22-6800545191281321%5C%22%5D%22%5D%2C%22op%22%3A%22eq%22%2C%22column%22%3A%22run_id%22%7D%2C%7B%22value%22%3A%5B%22%5B%5C%222024-04-03-13%3A59%3A49147091devvm4561.ash0.facebook.com%5C%22%5D%22%5D%2C%22op%22%3A%22eq%22%2C%22column%22%3A%22run_user%22%7D%5D%5D%2C%22top%22%3A10000%2C%22end%22%3A%221712181610%22%2C%22start%22%3A%221712174410%22%7D&view=GraphProfilerView& 1 storbelight success runs out of 1 non-ignored runs. strobelight run id is: 6181728288420687 the link below takes you to the collected strobelight profile https://www.internalfb.com/intern/scuba/query/?dataset=pyperf_experimental%2Fon_demand&drillstate=%7B%22dimensions%22%3A%5B%5D%2C%22param_dimensions%22%3A%5B%7B%22anchor%22%3A%220%22%2C%22param%22%3A%220%22%2C%22op%22%3A%22edge%22%2C%22dim%22%3A%22py_async_stack%22%7D%5D%2C%22constraints%22%3A%5B%5B%7B%22value%22%3A%5B%22%5B%5C%226181728288420687%5C%22%5D%22%5D%2C%22op%22%3A%22eq%22%2C%22column%22%3A%22run_id%22%7D%2C%7B%22value%22%3A%5B%22%5B%5C%222024-04-03-13%3A59%3A49147091devvm4561.ash0.facebook.com%5C%22%5D%22%5D%2C%22op%22%3A%22eq%22%2C%22column%22%3A%22run_user%22%7D%5D%5D%2C%22top%22%3A10000%2C%22end%22%3A%221712181621%22%2C%22start%22%3A%221712174421%22%7D&view=GraphProfilerView& 2 storbelight success runs out of 2 non-ignored runs. strobelight run id is: -1026103682715688 the link below takes you to the collected strobelight profile https://www.internalfb.com/intern/scuba/query/?dataset=pyperf_experimental%2Fon_demand&drillstate=%7B%22dimensions%22%3A%5B%5D%2C%22param_dimensions%22%3A%5B%7B%22anchor%22%3A%220%22%2C%22param%22%3A%220%22%2C%22op%22%3A%22edge%22%2C%22dim%22%3A%22py_async_stack%22%7D%5D%2C%22constraints%22%3A%5B%5B%7B%22value%22%3A%5B%22%5B%5C%22-1026103682715688%5C%22%5D%22%5D%2C%22op%22%3A%22eq%22%2C%22column%22%3A%22run_id%22%7D%2C%7B%22value%22%3A%5B%22%5B%5C%222024-04-03-13%3A59%3A49147091devvm4561.ash0.facebook.com%5C%22%5D%22%5D%2C%22op%22%3A%22eq%22%2C%22column%22%3A%22run_user%22%7D%5D%5D%2C%22top%22%3A10000%2C%22end%22%3A%221712181647%22%2C%22start%22%3A%221712174447%22%7D&view=GraphProfilerView& 3 storbelight success runs out of 3 non-ignored runs. ``` Test Plan: Was tested on buck2 run @//mode/inplace @//mode/opt //caffe2/fb/strobelight:compiletime_profile_example This was also tested in one of the ads benchmarks ``` TORCH_COMPILE_SL_PROFILE =TRUE buck2 run mode/opt mode/inplace //pytorch/benchmark:run -- ads_mc_igctr_mc3_v0 -d cuda -t train --torchdynamo inductor ``` The results matches the results reported in https://fb.workplace.com/groups/257735836456307/permalink/657458576484029 Differential Revision: D55672271 Pull Request resolved: https://github.com/pytorch/pytorch/pull/123311 Approved by: https://github.com/aorenste
944 lines
34 KiB
Python
944 lines
34 KiB
Python
import collections
|
|
import dis
|
|
import functools
|
|
import itertools
|
|
import logging
|
|
import os
|
|
import random
|
|
import sys
|
|
import threading
|
|
import time
|
|
import types
|
|
import typing
|
|
import weakref
|
|
from typing import Any, Callable, Dict, List, Optional, Set
|
|
|
|
from torch.fx._lazy_graph_module import ( # type: ignore[attr-defined]
|
|
_use_lazy_graph_module,
|
|
)
|
|
from torch.utils._traceback import CapturedTraceback
|
|
|
|
try:
|
|
import numpy as np
|
|
except ModuleNotFoundError:
|
|
np = None # type: ignore[assignment]
|
|
|
|
import torch
|
|
import torch._logging
|
|
from torch._guards import compile_context, CompileContext, CompileId, tracing
|
|
from torch._logging import structured
|
|
from torch._utils_internal import compiletime_sl_profile_meta, signpost_event
|
|
from torch.fx.experimental.symbolic_shapes import (
|
|
ConstraintViolationError,
|
|
GuardOnDataDependentSymNode,
|
|
)
|
|
from torch.fx.graph_module import _forward_from_src as original_forward_from_src
|
|
from torch.nn.parallel.distributed import DistributedDataParallel
|
|
from torch.utils._python_dispatch import _disable_current_modes
|
|
from torch.utils._traceback import format_traceback_short
|
|
|
|
from . import config, exc, trace_rules
|
|
from .backends.registry import CompilerFn
|
|
from .bytecode_analysis import remove_dead_code, remove_pointless_jumps
|
|
from .bytecode_transformation import (
|
|
check_inst_exn_tab_entries_valid,
|
|
Instruction,
|
|
is_generator,
|
|
propagate_inst_exn_table_entries,
|
|
transform_code_object,
|
|
)
|
|
from .cache_size import (
|
|
CacheSizeRelevantForFrame,
|
|
compute_cache_size,
|
|
exceeds_cache_size_limit,
|
|
is_recompilation,
|
|
)
|
|
from .eval_frame import always_optimize_code_objects, skip_code, TorchPatcher
|
|
from .exc import (
|
|
augment_exc_message,
|
|
BackendCompilerFailed,
|
|
format_error_msg,
|
|
InternalTorchDynamoError,
|
|
TorchRuntimeError,
|
|
UncapturedHigherOrderOpError,
|
|
unimplemented,
|
|
Unsupported,
|
|
)
|
|
from .guards import (
|
|
CheckFunctionManager,
|
|
get_and_maybe_log_recompilation_reason,
|
|
GuardedCode,
|
|
)
|
|
from .hooks import Hooks
|
|
from .output_graph import OutputGraph
|
|
from .replay_record import ExecutionRecord
|
|
from .symbolic_convert import InstructionTranslator, SpeculationLog
|
|
from .trace_rules import is_numpy
|
|
from .types import BytecodeHook
|
|
from .utils import (
|
|
CleanupManager,
|
|
CompilationMetrics,
|
|
counters,
|
|
dynamo_timed,
|
|
format_bytecode,
|
|
frame_phase_timing,
|
|
gen_record_file_name,
|
|
increment_frame,
|
|
is_namedtuple,
|
|
istype,
|
|
LazyString,
|
|
maybe_cprofile,
|
|
orig_code_map,
|
|
record_compilation_metrics,
|
|
reset_graph_break_dup_checker,
|
|
setup_compile_debug,
|
|
troubleshooting_url,
|
|
write_record_to_file,
|
|
)
|
|
|
|
log = logging.getLogger(__name__)
|
|
bytecode_log = torch._logging.getArtifactLogger(__name__, "bytecode")
|
|
GlobalStateGuard = torch._C._dynamo.guards.GlobalStateGuard
|
|
|
|
compile_lock = threading.RLock()
|
|
|
|
|
|
class Tracker:
|
|
def __init__(self):
|
|
self.seen = []
|
|
self.seen_ids = set()
|
|
|
|
def add(self, strong_obj):
|
|
idx = id(strong_obj)
|
|
if idx not in self.seen_ids:
|
|
obj = weakref.ref(strong_obj, lambda _: self.seen_ids.remove(idx))
|
|
self.seen.append(obj)
|
|
self.seen_ids.add(idx)
|
|
|
|
def __contains__(self, item):
|
|
return id(item) in self.seen_ids
|
|
|
|
def clear(self):
|
|
self.seen.clear()
|
|
self.seen_ids.clear()
|
|
|
|
|
|
input_codes = Tracker()
|
|
output_codes = Tracker()
|
|
|
|
initial_global_state: Optional[GlobalStateGuard] = None
|
|
|
|
|
|
@functools.wraps(original_forward_from_src)
|
|
def fx_forward_from_src_skip_result(*args, **kwargs):
|
|
# we monkey patch FX to prevent infinite loop of trying to convert
|
|
# our generated code
|
|
result: types.FunctionType = original_forward_from_src(*args, **kwargs)
|
|
skip_code(result.__code__)
|
|
return result
|
|
|
|
|
|
def preserve_global_state(fn):
|
|
"""
|
|
Context manager to:
|
|
1) Save/restore torch.is_grad_enabled() state
|
|
2) Save/restore python random state
|
|
3) Save/restore torch random state
|
|
4) Monkey patch torch.fx.graph_module._forward_from_src
|
|
"""
|
|
|
|
@functools.wraps(fn)
|
|
def _fn(*args, **kwargs):
|
|
guards = GlobalStateGuard()
|
|
prior_grad_mode = torch.is_grad_enabled()
|
|
prior_inference_mode = torch.is_inference_mode_enabled()
|
|
prior_deterministic = torch.are_deterministic_algorithms_enabled()
|
|
prior_warn_only = torch.is_deterministic_algorithms_warn_only_enabled()
|
|
py_rng_state = random.getstate()
|
|
torch_rng_state = torch.random.get_rng_state()
|
|
if torch.cuda.is_available():
|
|
cuda_rng_state = torch.cuda.get_rng_state()
|
|
prior_fwd_from_src = torch.fx.graph_module._forward_from_src
|
|
torch.fx.graph_module._forward_from_src = fx_forward_from_src_skip_result
|
|
cleanup = setup_compile_debug()
|
|
try:
|
|
return fn(*args, **kwargs)
|
|
finally:
|
|
cleanup.close()
|
|
torch._C._set_grad_enabled(prior_grad_mode)
|
|
torch.torch.autograd.grad_mode._enter_inference_mode(prior_inference_mode)
|
|
torch.use_deterministic_algorithms(
|
|
prior_deterministic, warn_only=prior_warn_only
|
|
)
|
|
random.setstate(py_rng_state)
|
|
torch.random.set_rng_state(torch_rng_state)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.set_rng_state(cuda_rng_state) # type: ignore[possibly-undefined]
|
|
torch.fx.graph_module._forward_from_src = prior_fwd_from_src
|
|
assert (
|
|
guards.check()
|
|
), "Global state changed while dynamo tracing, please report a bug"
|
|
|
|
_fn._torchdynamo_orig_callable = fn # type: ignore[attr-defined]
|
|
return _fn
|
|
|
|
|
|
@TorchPatcher.suppress_torch_distributed_warnings
|
|
def has_tensor_in_frame(frame):
|
|
"""Check if the frame has torch.* related bits"""
|
|
# Check if the function was decorated using torch._dynamo.optimize
|
|
if frame.f_code in always_optimize_code_objects:
|
|
return True
|
|
|
|
# Check if there is global import of torch.*
|
|
for co_name in frame.f_code.co_names:
|
|
if co_name in frame.f_globals:
|
|
obj = frame.f_globals[co_name]
|
|
if isinstance(obj, types.ModuleType) and (
|
|
obj.__name__.startswith("torch.") or obj is torch
|
|
):
|
|
return True
|
|
# ... or a global import of numpy.*
|
|
if np and config.trace_numpy and (obj is np or is_numpy(obj)):
|
|
return True
|
|
|
|
seen_ids: Dict[int, bool] = dict()
|
|
|
|
def has_tensor(obj):
|
|
"""Recursively check if the obj has a tensor"""
|
|
obj_id = id(obj)
|
|
if obj_id in seen_ids:
|
|
return seen_ids[obj_id]
|
|
seen_ids[obj_id] = False
|
|
|
|
if isinstance(obj, (torch.Tensor, torch.nn.Module)) or (
|
|
istype(obj, type) and issubclass(obj, torch.nn.Module)
|
|
):
|
|
seen_ids[obj_id] = True
|
|
return seen_ids[obj_id]
|
|
elif (
|
|
config.trace_numpy
|
|
and np
|
|
and (istype(obj, np.ndarray) or isinstance(obj, np.generic))
|
|
):
|
|
seen_ids[obj_id] = True
|
|
return seen_ids[obj_id]
|
|
elif istype(obj, (list, tuple)):
|
|
seen_ids[obj_id] = any(has_tensor(v) for v in obj)
|
|
return seen_ids[obj_id]
|
|
elif istype(obj, dict):
|
|
# Some packages like pytest can be updated during runtime. So, make a
|
|
# copy of values to avoid issues like "RuntimeError: dictionary
|
|
# changed size during iteration"
|
|
values = list(obj.values())
|
|
seen_ids[obj_id] = any(has_tensor(v) for v in values)
|
|
return seen_ids[obj_id]
|
|
elif istype(obj, (str, int, float, type(None), bool)):
|
|
seen_ids[obj_id] = False
|
|
return seen_ids[obj_id]
|
|
elif is_namedtuple(obj) and hasattr(obj, "_fields"):
|
|
seen_ids[obj_id] = any(has_tensor(getattr(obj, v)) for v in obj._fields)
|
|
return seen_ids[obj_id]
|
|
else:
|
|
# if config.debug:
|
|
# print(
|
|
# f"Assuming that object of type {type(obj)} does not have a tensor"
|
|
# )
|
|
return False
|
|
|
|
# Check if the passed arguments are of type Tensor
|
|
for value in frame.f_locals.values():
|
|
if has_tensor(value):
|
|
return True
|
|
|
|
log.debug(
|
|
"skipping because no torch.* %s \
|
|
%s %s",
|
|
frame.f_code.co_name,
|
|
frame.f_code.co_filename,
|
|
frame.f_code.co_firstlineno,
|
|
)
|
|
|
|
return False
|
|
|
|
|
|
def exception_handler(e, code, frame=None, export=False):
|
|
record_filename = None
|
|
if hasattr(e, "exec_record"):
|
|
record_filename = gen_record_file_name(e, code)
|
|
write_record_to_file(record_filename, e.exec_record)
|
|
e.record_filename = record_filename
|
|
|
|
augment_exc_message(e, export=export)
|
|
|
|
|
|
FRAME_COUNTER = 0
|
|
FRAME_COMPILE_COUNTER: typing.Counter[int] = collections.Counter()
|
|
|
|
|
|
def convert_frame_assert(
|
|
compiler_fn: CompilerFn,
|
|
one_graph: bool = True,
|
|
export: bool = False,
|
|
export_constraints=None,
|
|
):
|
|
"""Fully convert a frame into an FX graph"""
|
|
reset_graph_break_dup_checker()
|
|
|
|
def _convert_frame_assert(
|
|
frame: types.FrameType, cache_entry, hooks: Hooks, frame_state, *, skip: int = 0
|
|
):
|
|
increment_frame()
|
|
|
|
code = frame.f_code
|
|
|
|
cache_size = compute_cache_size(frame, cache_entry)
|
|
recompile_reasons = None
|
|
if is_recompilation(cache_size):
|
|
recompile_reasons = get_and_maybe_log_recompilation_reason(
|
|
cache_entry, frame
|
|
)
|
|
|
|
input_codes.add(code)
|
|
if code in output_codes:
|
|
return None
|
|
if (
|
|
os.environ.get("TORCHDYNAMO_DEBUG_FUNCTION")
|
|
and os.environ.get("TORCHDYNAMO_DEBUG_FUNCTION") != code.co_name
|
|
):
|
|
return None
|
|
if code.co_name == "<genexpr>" and code.co_filename.endswith(
|
|
(
|
|
"transformers/file_utils.py",
|
|
"transformers/utils/generic.py",
|
|
"diffusers/utils/outputs.py",
|
|
)
|
|
):
|
|
# not needed, but cleans up torchbench error stats
|
|
return None
|
|
if code.co_name == "__setattr__":
|
|
# setattr could be tricky to handle generally,
|
|
# but also not likely useful to compile- skip the whole frame
|
|
return None
|
|
if code.co_name == "__init__" and code.co_filename.startswith(
|
|
os.path.dirname(torch.optim.__file__)
|
|
):
|
|
# optimizer support is still incomplete see
|
|
# test_state_dict in test/dynamo/test_optimizers.py
|
|
return None
|
|
|
|
# Check if the frame is generated by an exec builtin call
|
|
# TODO - Running exec generated frame seems propagates f_globals to the
|
|
# next frames.
|
|
if code.co_name == "<module>" and code.co_filename == "<string>":
|
|
return None
|
|
|
|
if (
|
|
code.co_name == "<lambda>"
|
|
and code.co_filename == "<string>"
|
|
and not bool(frame.f_builtins)
|
|
):
|
|
# namedtuple subclass constructor. Empty builtins cause issue with
|
|
# len keyword in LIST_LEN guard.
|
|
return None
|
|
|
|
if is_generator(code):
|
|
unimplemented("generator")
|
|
exceeded, limit_type = exceeds_cache_size_limit(cache_size)
|
|
if exceeded:
|
|
|
|
def format_func_info(code):
|
|
return f"'{code.co_name}' ({code.co_filename}:{code.co_firstlineno})"
|
|
|
|
def format_guard_failures():
|
|
assert recompile_reasons, "TODO(whc) any other recompile reasons?"
|
|
return recompile_reasons[-1]
|
|
|
|
log.warning(
|
|
"torch._dynamo hit config.%s (%s)\n"
|
|
" function: %s\n"
|
|
" last reason: %s\n"
|
|
'To log all recompilation reasons, use TORCH_LOGS="recompiles".\n'
|
|
"To diagnose recompilation issues, see %s.",
|
|
limit_type,
|
|
getattr(config, limit_type),
|
|
format_func_info(code),
|
|
format_guard_failures(),
|
|
troubleshooting_url,
|
|
)
|
|
unimplemented(f"{limit_type} reached")
|
|
|
|
if not has_tensor_in_frame(frame):
|
|
return None
|
|
|
|
global initial_global_state
|
|
initial_global_state = GlobalStateGuard()
|
|
|
|
global FRAME_COUNTER
|
|
if "_id" not in frame_state:
|
|
frame_state["_id"] = FRAME_COUNTER
|
|
FRAME_COUNTER += 1
|
|
frame_id = frame_state["_id"]
|
|
|
|
frame_compile_id = FRAME_COMPILE_COUNTER[frame_id]
|
|
FRAME_COMPILE_COUNTER[frame_id] += 1
|
|
|
|
compile_id = CompileId(frame_id, frame_compile_id)
|
|
|
|
signpost_event(
|
|
"dynamo",
|
|
"_convert_frame_assert._compile",
|
|
{
|
|
"co_name": code.co_name,
|
|
"co_filename": code.co_filename,
|
|
"co_firstlineno": code.co_firstlineno,
|
|
"cache_size": cache_size.num_cache_entries_with_same_id_matched_objs,
|
|
"accumulated_cache_size": cache_size.num_cache_entries,
|
|
},
|
|
)
|
|
|
|
return _compile(
|
|
frame.f_code,
|
|
frame.f_globals,
|
|
frame.f_locals,
|
|
frame.f_builtins,
|
|
compiler_fn,
|
|
one_graph,
|
|
export,
|
|
export_constraints,
|
|
hooks,
|
|
cache_size,
|
|
frame,
|
|
frame_state=frame_state,
|
|
compile_id=compile_id,
|
|
skip=skip + 1,
|
|
)
|
|
|
|
_convert_frame_assert._torchdynamo_orig_callable = compiler_fn # type: ignore[attr-defined]
|
|
|
|
def _clone_with_backend(backend):
|
|
return convert_frame_assert(backend, one_graph, export, export_constraints)
|
|
|
|
_convert_frame_assert._clone_with_backend = _clone_with_backend # type: ignore[attr-defined]
|
|
return _convert_frame_assert
|
|
|
|
|
|
from collections import OrderedDict
|
|
|
|
from torch.utils.hooks import RemovableHandle
|
|
|
|
# we have to use `OrderedDict` to make `RemovableHandle` work.
|
|
_bytecode_hooks: Dict[int, BytecodeHook] = OrderedDict()
|
|
|
|
|
|
def register_bytecode_hook(hook: BytecodeHook) -> RemovableHandle:
|
|
"""Register hooks for bytecode generated by Dynamo. The hook can do some
|
|
logging, as well as return a new code object to be used. Please refer
|
|
to `BytecodeHook` for the hook signature.
|
|
"""
|
|
handle = RemovableHandle(_bytecode_hooks)
|
|
_bytecode_hooks[handle.id] = hook
|
|
return handle
|
|
|
|
|
|
@compiletime_sl_profile_meta(phase_name="_compile")
|
|
@_use_lazy_graph_module(config.use_lazy_graph_module)
|
|
@maybe_cprofile
|
|
def _compile(
|
|
code: types.CodeType,
|
|
globals: Dict[str, object],
|
|
locals: Dict[str, object],
|
|
builtins: Dict[str, object],
|
|
compiler_fn: CompilerFn,
|
|
one_graph: bool,
|
|
export: bool,
|
|
export_constraints,
|
|
hooks: Hooks,
|
|
cache_size: CacheSizeRelevantForFrame,
|
|
frame: Optional[types.FrameType] = None,
|
|
frame_state=None,
|
|
compile_id=None,
|
|
*,
|
|
skip: int = 0,
|
|
) -> Optional[GuardedCode]:
|
|
from torch.fx.experimental.validator import (
|
|
bisect,
|
|
BisectValidationException,
|
|
translation_validation_enabled,
|
|
ValidationException,
|
|
)
|
|
|
|
# Time spent compiling this frame before restarting or failing analysis
|
|
dynamo_time_before_restart: float = 0.0
|
|
restart_reasons: set[str] = set()
|
|
output: Optional[OutputGraph] = None
|
|
tracer: Optional[InstructionTranslator] = None
|
|
# This is shared across restarts
|
|
mutated_closure_cell_contents: Set[str] = set()
|
|
speculation_log = SpeculationLog()
|
|
torch._dynamo.callback_handler.run_start_callbacks()
|
|
|
|
@preserve_global_state
|
|
def transform(instructions, code_options):
|
|
nonlocal output
|
|
nonlocal tracer
|
|
speculation_log.restart()
|
|
tracer = InstructionTranslator(
|
|
instructions,
|
|
code,
|
|
locals,
|
|
globals,
|
|
builtins,
|
|
code_options,
|
|
compiler_fn,
|
|
one_graph,
|
|
export,
|
|
export_constraints,
|
|
mutated_closure_cell_contents,
|
|
frame_state=frame_state,
|
|
speculation_log=speculation_log,
|
|
)
|
|
|
|
try:
|
|
with tracing(tracer.output.tracing_context), tracer.set_current_tx():
|
|
tracer.run()
|
|
except exc.UnspecializeRestartAnalysis:
|
|
speculation_log.clear()
|
|
raise
|
|
except (exc.SpeculationRestartAnalysis, exc.SkipFrame):
|
|
raise
|
|
except Exception:
|
|
if translation_validation_enabled():
|
|
bisect(tracer.output.shape_env)
|
|
raise
|
|
finally:
|
|
tracer.output.call_cleanup_hooks()
|
|
|
|
output = tracer.output
|
|
assert output is not None
|
|
assert output.output_instructions
|
|
instructions[:] = output.output_instructions
|
|
code_options.update(output.code_options)
|
|
|
|
if config.dead_code_elimination:
|
|
propagate_inst_exn_table_entries(instructions)
|
|
check_inst_exn_tab_entries_valid(instructions)
|
|
instructions[:] = remove_pointless_jumps(remove_dead_code(instructions))
|
|
|
|
@dynamo_timed(phase_name="entire_frame_compile")
|
|
def compile_inner(
|
|
code: types.CodeType,
|
|
one_graph: bool,
|
|
hooks: Hooks,
|
|
transform: Callable[[List[Instruction], Dict[str, Any]], Any],
|
|
) -> Optional[GuardedCode]:
|
|
nonlocal output
|
|
nonlocal dynamo_time_before_restart
|
|
nonlocal restart_reasons
|
|
last_attempt_start_time = start_time = time.time()
|
|
for attempt in itertools.count():
|
|
CompileContext.get().attempt = attempt
|
|
try:
|
|
out_code = transform_code_object(code, transform)
|
|
break
|
|
except exc.RestartAnalysis as e:
|
|
log.info(
|
|
"Restarting analysis due to %s",
|
|
LazyString(format_traceback_short, e.__traceback__),
|
|
)
|
|
# If restart reason is None just log the type of the exception
|
|
restart_reasons.add(e.restart_reason or str(type(e)))
|
|
# We now have a new "last attempt", reset the clock
|
|
last_attempt_start_time = time.time()
|
|
if attempt > 100:
|
|
unimplemented("100+ RestartAnalysis() calls")
|
|
except exc.SkipFrame as e:
|
|
log.debug(
|
|
"Skipping frame %s %s \
|
|
%s %s",
|
|
e,
|
|
code.co_name,
|
|
code.co_filename,
|
|
code.co_firstlineno,
|
|
)
|
|
if one_graph:
|
|
log.debug("No graph captured with one_graph=True")
|
|
return None
|
|
|
|
def log_bytecode(prefix, name, filename, line_no, code):
|
|
if bytecode_log.isEnabledFor(logging.DEBUG):
|
|
bytecode_log.debug(
|
|
format_bytecode(prefix, name, filename, line_no, code)
|
|
)
|
|
|
|
log_bytecode(
|
|
"ORIGINAL BYTECODE",
|
|
code.co_name,
|
|
code.co_filename,
|
|
code.co_firstlineno,
|
|
code,
|
|
)
|
|
log_bytecode(
|
|
"MODIFIED BYTECODE",
|
|
code.co_name,
|
|
code.co_filename,
|
|
code.co_firstlineno,
|
|
out_code, # type: ignore[possibly-undefined]
|
|
)
|
|
|
|
for hook in _bytecode_hooks.values():
|
|
hook_output = hook(code, out_code)
|
|
if hook_output is not None:
|
|
out_code = hook_output
|
|
|
|
orig_code_map[out_code] = code
|
|
output_codes.add(out_code)
|
|
dynamo_time_before_restart = last_attempt_start_time - start_time
|
|
assert output is not None
|
|
|
|
# Tests for new code objects.
|
|
# The rationale for these tests can be found in torch/csrc/dynamo/eval_frame.c
|
|
# Only test once the code object is created.
|
|
# They are not tested during runtime.
|
|
|
|
def count_args(code):
|
|
import inspect
|
|
|
|
return (
|
|
code.co_argcount
|
|
+ code.co_kwonlyargcount
|
|
+ bool(code.co_flags & inspect.CO_VARARGS)
|
|
+ bool(code.co_flags & inspect.CO_VARKEYWORDS)
|
|
)
|
|
|
|
total_argcount_old = count_args(code)
|
|
total_argcount_new = count_args(out_code)
|
|
msg = "arg mismatch: "
|
|
msg += f"old code object has args {code.co_varnames[:total_argcount_old]}, "
|
|
msg += f"new code object has args {out_code.co_varnames[:total_argcount_new]}"
|
|
assert (
|
|
code.co_varnames[:total_argcount_old]
|
|
== out_code.co_varnames[:total_argcount_new]
|
|
), msg
|
|
|
|
msg = "free var mismatch: "
|
|
msg += f"old code object has free var {code.co_freevars}, "
|
|
msg += f"new code object has free var {out_code.co_freevars}"
|
|
assert code.co_freevars == out_code.co_freevars, msg
|
|
|
|
msg = "cell var mismatch: "
|
|
msg += f"old code object has cell var {code.co_cellvars}, "
|
|
msg += f"new code object has cell var {out_code.co_cellvars}"
|
|
assert code.co_cellvars == out_code.co_cellvars, msg
|
|
|
|
# Skipping Dynamo on a frame without any extracted graph.
|
|
# This does not affect eager functionality. But this is necessary
|
|
# for export for cases where Dynamo-reconstructed bytecode can create
|
|
# new function frames, confusing export in thinking that there
|
|
# are extra graphs now.
|
|
|
|
if output.export and output.is_empty_graph():
|
|
return None
|
|
|
|
assert output.guards is not None
|
|
CleanupManager.instance[out_code] = output.cleanups
|
|
check_fn = CheckFunctionManager(
|
|
output,
|
|
hooks.guard_fail_fn if hooks else None,
|
|
)
|
|
|
|
guarded_code = GuardedCode(out_code, check_fn.check_fn)
|
|
|
|
if not output.is_empty_graph() and hooks.guard_export_fn is not None:
|
|
# We should not run the guard_export_fn when Dynamo does not
|
|
# generate any graph. This can happen in export when TorchDynamo
|
|
# generated bytecode has some reconstruction logic for mutated
|
|
# variables which can trigger TorchDynamo on the children frames but
|
|
# they are benign and do not generate any new graphs.
|
|
hooks.guard_export_fn(output.guards)
|
|
|
|
return guarded_code
|
|
|
|
with compile_context(CompileContext(compile_id)):
|
|
log.debug(
|
|
"torchdynamo start compiling %s %s:%s, stack (elided %s frames):\n%s",
|
|
code.co_name,
|
|
code.co_filename,
|
|
code.co_firstlineno,
|
|
skip + 2,
|
|
# -2: omit current frame, omit contextlib decorator
|
|
"".join(CapturedTraceback.extract(skip=2 + skip).format()),
|
|
)
|
|
# -4: -2 as above, plus trace_structured frames
|
|
torch._logging.trace_structured(
|
|
"dynamo_start",
|
|
lambda: {
|
|
"stack": structured.from_traceback(
|
|
CapturedTraceback.extract(skip=4 + skip).summary()
|
|
)
|
|
},
|
|
)
|
|
start_time = time.time()
|
|
fail_type: Optional[str] = None
|
|
fail_reason: Optional[str] = None
|
|
fail_user_frame_filename: Optional[str] = None
|
|
fail_user_frame_lineno: Optional[int] = None
|
|
try:
|
|
guarded_code = compile_inner(code, one_graph, hooks, transform)
|
|
return guarded_code
|
|
except (
|
|
Unsupported,
|
|
TorchRuntimeError,
|
|
BackendCompilerFailed,
|
|
AssertionError,
|
|
ConstraintViolationError,
|
|
GuardOnDataDependentSymNode,
|
|
ValidationException,
|
|
UncapturedHigherOrderOpError,
|
|
BisectValidationException,
|
|
) as e:
|
|
fail_type = str(type(e))
|
|
fail_reason = str(e)
|
|
exception_handler(e, code, frame, export=export)
|
|
if e.innermost_user_frame_summary is not None: # type: ignore[union-attr]
|
|
fail_user_frame_filename = e.innermost_user_frame_summary.filename # type: ignore[union-attr]
|
|
fail_user_frame_lineno = e.innermost_user_frame_summary.lineno # type: ignore[union-attr]
|
|
raise
|
|
except Exception as e:
|
|
fail_type = str(type(e))
|
|
fail_reason = str(e)
|
|
exception_handler(e, code, frame, export=export)
|
|
if e.innermost_user_frame_summary is not None: # type: ignore[attr-defined]
|
|
fail_user_frame_filename = e.innermost_user_frame_summary.filename # type: ignore[attr-defined]
|
|
fail_user_frame_lineno = e.innermost_user_frame_summary.lineno # type: ignore[attr-defined]
|
|
raise InternalTorchDynamoError(str(e)).with_traceback(
|
|
e.__traceback__
|
|
) from None
|
|
finally:
|
|
if tracer:
|
|
tracer.output.local_scope = {}
|
|
|
|
from .utils import curr_frame
|
|
|
|
frame_key = str(curr_frame)
|
|
if (
|
|
fail_reason is None
|
|
and output is not None
|
|
and frame_key in frame_phase_timing
|
|
):
|
|
guard_count = len(output.guards)
|
|
shape_env_guard_count = len(output.shape_env.guards)
|
|
graph_op_count = output.count_calls()
|
|
graph_node_count = len(output.graph.nodes)
|
|
graph_input_count = len(output.placeholders)
|
|
entire_frame_compile_time = frame_phase_timing[frame_key].get(
|
|
"entire_frame_compile", None
|
|
)
|
|
backend_compile_time = frame_phase_timing[frame_key].get(
|
|
"backend_compile", None
|
|
)
|
|
inductor_compile_time = frame_phase_timing[frame_key].get(
|
|
"inductor_compile", None
|
|
)
|
|
code_gen_time = frame_phase_timing[frame_key].get("code_gen", None)
|
|
non_compliant_ops = {op.__qualname__ for op in output.non_compliant_ops}
|
|
compliant_custom_ops = {
|
|
op.__qualname__ for op in output.compliant_custom_ops
|
|
}
|
|
else:
|
|
guard_count = None
|
|
shape_env_guard_count = None
|
|
graph_op_count = None
|
|
graph_node_count = None
|
|
graph_input_count = None
|
|
entire_frame_compile_time = None
|
|
backend_compile_time = None
|
|
inductor_compile_time = None
|
|
code_gen_time = None
|
|
non_compliant_ops = set({})
|
|
compliant_custom_ops = set({})
|
|
restart_reasons = set()
|
|
# If compilation failed, the entire time is wasted
|
|
dynamo_time_before_restart = time.time() - start_time
|
|
|
|
metrics = CompilationMetrics(
|
|
frame_key,
|
|
code.co_name,
|
|
code.co_filename,
|
|
code.co_firstlineno,
|
|
cache_size.num_cache_entries_with_same_id_matched_objs,
|
|
cache_size.num_cache_entries,
|
|
guard_count,
|
|
shape_env_guard_count,
|
|
graph_op_count,
|
|
graph_node_count,
|
|
graph_input_count,
|
|
start_time,
|
|
entire_frame_compile_time,
|
|
backend_compile_time,
|
|
inductor_compile_time,
|
|
code_gen_time,
|
|
fail_type,
|
|
fail_reason,
|
|
fail_user_frame_filename,
|
|
fail_user_frame_lineno,
|
|
non_compliant_ops,
|
|
compliant_custom_ops,
|
|
restart_reasons,
|
|
dynamo_time_before_restart,
|
|
)
|
|
record_compilation_metrics(metrics)
|
|
torch._dynamo.callback_handler.run_end_callbacks()
|
|
|
|
|
|
def convert_frame(compiler_fn: CompilerFn, hooks: Hooks):
|
|
"""Try to convert a frame into an FX graph, if error leave frame unmodified"""
|
|
inner_convert = convert_frame_assert(compiler_fn, one_graph=False)
|
|
|
|
def _convert_frame(
|
|
frame: types.FrameType, cache_entry, hooks: Hooks, frame_state, skip: int = 0
|
|
):
|
|
counters["frames"]["total"] += 1
|
|
try:
|
|
result = inner_convert(
|
|
frame, cache_entry, hooks, frame_state, skip=skip + 1
|
|
)
|
|
counters["frames"]["ok"] += 1
|
|
return result
|
|
except Exception as e:
|
|
# These two exception types are "soft" failure, in the sense that
|
|
# we know this is due to something we didn't implement all the
|
|
# way, scare the user less about it. That being said, if you
|
|
# are trying to understand why a graph break happened, it's still
|
|
# important to have this information, so offer it.
|
|
#
|
|
# NB: NotImplementedError used to be on this list, but actually
|
|
# it is impossible for it to reach here, as it is converted into
|
|
# InternalTorchDynamoError. This behavior seemed reasonable
|
|
# to me (ezyang, Aug 2023) so I kept it, but maybe at some point
|
|
# someone wanted these to also get suppressed. If so, you'll
|
|
# need to make these exceptions not get wrapped
|
|
|
|
# We intentionally don't want to suppress error here.
|
|
if isinstance(e, UncapturedHigherOrderOpError):
|
|
raise
|
|
|
|
soft_fail = isinstance(e, Unsupported)
|
|
if not config.suppress_errors and not soft_fail:
|
|
raise
|
|
|
|
# Suppress the error. NB: It's very important to do the
|
|
# suppression logging HERE, where the actual suppression
|
|
# happens. Previously it was somewhere else and so it was
|
|
# possible to accidentally not log at all.
|
|
record_filename = getattr(e, "record_filename", None)
|
|
code = frame.f_code
|
|
error_msg = format_error_msg(e, code, record_filename, frame)
|
|
|
|
if soft_fail:
|
|
log.info(error_msg, exc_info=True)
|
|
else:
|
|
log.warning(error_msg, exc_info=True)
|
|
return None
|
|
|
|
_convert_frame._torchdynamo_orig_callable = compiler_fn # type: ignore[attr-defined]
|
|
_convert_frame._clone_with_backend = lambda backend: convert_frame(backend, hooks) # type: ignore[attr-defined]
|
|
return _convert_frame
|
|
|
|
|
|
# TODO mlazos: add support for same args, or record them
|
|
def replay(filename):
|
|
from .backends.debugging import eager
|
|
|
|
original_replay_val = config.replay_record_enabled
|
|
config.replay_record_enabled = False
|
|
with open(filename, "rb") as in_file:
|
|
record = ExecutionRecord.load(in_file)
|
|
record.globals = dict(itertools.chain(record.globals.items(), globals().items()))
|
|
|
|
try:
|
|
_compile(
|
|
record.code,
|
|
record.globals,
|
|
record.locals,
|
|
record.builtins,
|
|
compiler_fn=eager,
|
|
one_graph=False,
|
|
export=False,
|
|
export_constraints=None,
|
|
hooks=Hooks(),
|
|
cache_size=CacheSizeRelevantForFrame(0, 0),
|
|
frame=None,
|
|
frame_state={},
|
|
)
|
|
finally:
|
|
config.replay_record_enabled = original_replay_val
|
|
|
|
|
|
def first_real_inst_idx(code):
|
|
if sys.version_info < (3, 11):
|
|
return 0
|
|
for inst in dis.get_instructions(code):
|
|
if inst.opname == "RESUME":
|
|
return inst.offset // 2
|
|
raise RuntimeError("RESUME instruction not found in code")
|
|
|
|
|
|
def catch_errors_wrapper(callback, hooks: Hooks):
|
|
@functools.wraps(callback)
|
|
def catch_errors(frame, cache_entry, frame_state):
|
|
assert frame_state is not None
|
|
|
|
is_skipfile = trace_rules.check(frame.f_code)
|
|
if (
|
|
# TODO: the first condition is not covered by any test
|
|
frame.f_lasti >= first_real_inst_idx(frame.f_code)
|
|
or is_skipfile
|
|
or config.disable
|
|
):
|
|
if log.isEnabledFor(logging.DEBUG):
|
|
skip_reason = (
|
|
"traced frame already"
|
|
if frame.f_lasti >= first_real_inst_idx(frame.f_code)
|
|
else (
|
|
"in skipfiles"
|
|
if trace_rules.check(frame.f_code)
|
|
else "dynamo tracing is disabled"
|
|
)
|
|
)
|
|
if not is_skipfile or config.verbose:
|
|
log.debug(
|
|
"skipping: %s (reason: %s, file: %s)",
|
|
frame.f_code.co_name,
|
|
skip_reason,
|
|
frame.f_code.co_filename,
|
|
)
|
|
return None
|
|
if frame.f_code.co_filename == "<string>" and frame.f_code.co_name == "__new__":
|
|
# nametuple constructor
|
|
return None
|
|
if config._get_optimize_ddp_mode() == "ddp_optimizer":
|
|
ddp_module = DistributedDataParallel._get_active_ddp_module()
|
|
if ddp_module:
|
|
with compile_lock:
|
|
from torch._dynamo.backends.distributed import DDPOptimizer
|
|
|
|
ddp_optimizer = DDPOptimizer(
|
|
bucket_bytes_cap=ddp_module.bucket_bytes_cap,
|
|
backend_compile_fn=callback._torchdynamo_orig_callable,
|
|
)
|
|
assert hasattr(
|
|
callback, "_clone_with_backend"
|
|
), "DDPOptimizer only supports callback fns that know how to clone themselves."
|
|
hijacked_callback = callback._clone_with_backend(
|
|
ddp_optimizer.compile_fn,
|
|
)
|
|
return hijacked_callback(frame, cache_entry, hooks, frame_state)
|
|
|
|
with compile_lock, _disable_current_modes():
|
|
# skip=1: skip this frame
|
|
return callback(frame, cache_entry, hooks, frame_state, skip=1)
|
|
|
|
catch_errors._torchdynamo_orig_callable = callback # type: ignore[attr-defined]
|
|
return catch_errors
|