mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/26060 This PR enables BUILD_NAMEDTENSOR by default. This is done via including a header, `c10/core/EnableNamedTensor`, that sets `BUILD_NAMEDTENSOR`. In the future, the plan is to get rid of the flag entirely: we can incrementally delete usages after this PR goes in. This PR also maintains the namedtensor ci vs regular ci distinction. `test/test_namedtensor.py` only runs if TEST_NAMEDTENSOR=1 is specified. TEST_NAMEDTENSOR=1 is set on the namedtensor ci. I'll remove this distinction later and send out an announcement about it; devs will be responsible for named tensor failures after that. The initial reason why we had the BUILD_NAMEDTENSOR flag was so that we could quickly prototype named tensor features without worrying about adding overhead to the framework. The overheads can be categorized as memory overhead and performance overhead. Memory overhead: named tensors adds 1 additional word per Tensor. This is because TensorImpl stores a `unique_ptr<NamedTensorMetaInterface>` field. This is not a lot of overhead. Performance overhead: At all entry points to name inference, we check if inputs to an op are named. If inputs are not named, we short-circuit and don't do name inference. These calls should therefore be as efficient as error-checking code and not take up a lot of time. My plan is to benchmark a few functions and then post the results in a comment to this PR. Test Plan: - [namedtensor ci] Differential Revision: D17331635 Pulled By: zou3519 fbshipit-source-id: deed901347448ae2c26066c1fa432e3dc0cadb92
616 lines
21 KiB
C++
616 lines
21 KiB
C++
#include <torch/csrc/autograd/python_variable.h>
|
|
|
|
#include <torch/csrc/THP.h>
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/Device.h>
|
|
#include <torch/csrc/Size.h>
|
|
#include <torch/csrc/Types.h>
|
|
#include <torch/csrc/autograd/edge.h>
|
|
#include <torch/csrc/autograd/python_cpp_function.h>
|
|
#include <torch/csrc/autograd/python_hook.h>
|
|
#include <torch/csrc/autograd/python_variable_indexing.h>
|
|
#include <torch/csrc/autograd/variable.h>
|
|
#include <torch/csrc/autograd/functions/accumulate_grad.h>
|
|
#include <torch/csrc/autograd/function.h>
|
|
#include <torch/csrc/autograd/generated/VariableType.h>
|
|
#include <torch/csrc/autograd/utils/python_error_messages.h>
|
|
#include <torch/csrc/autograd/utils/wrap_outputs.h>
|
|
#include <torch/csrc/tensor/python_tensor.h>
|
|
#include <torch/csrc/utils/auto_gil.h>
|
|
#include <torch/csrc/utils/cuda_lazy_init.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
#include <torch/csrc/utils/python_strings.h>
|
|
#include <torch/csrc/utils/python_arg_parser.h>
|
|
#include <torch/csrc/utils/tensor_new.h>
|
|
#include <torch/csrc/jit/tracer.h>
|
|
#include <ATen/core/EnableNamedTensor.h>
|
|
#ifdef BUILD_NAMEDTENSOR
|
|
#include <ATen/NamedTensorUtils.h>
|
|
#endif
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <pybind11/pybind11.h>
|
|
|
|
#include <structmember.h>
|
|
#include <memory>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace at;
|
|
using namespace torch;
|
|
using namespace torch::autograd;
|
|
|
|
namespace py = pybind11;
|
|
|
|
PyObject *THPVariableClass = nullptr;
|
|
|
|
static const char* VOLATILE_WARNING =
|
|
"volatile was removed and now has no effect. Use "
|
|
"`with torch.no_grad():` instead.";
|
|
|
|
// Creates a new Python object for a Variable. The Variable must not already
|
|
// have a PyObject* associated with it.
|
|
static PyObject* THPVariable_NewWithVar(PyTypeObject* type, Variable var)
|
|
{
|
|
PyObject* obj = type->tp_alloc(type, 0);
|
|
if (obj) {
|
|
auto v = (THPVariable*) obj;
|
|
new (&v->cdata) Variable(std::move(var));
|
|
v->cdata.set_pyobj(obj);
|
|
}
|
|
return obj;
|
|
}
|
|
|
|
PyObject * THPVariable_Wrap(Variable var)
|
|
{
|
|
if (!var.defined()) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
if (auto obj = var.pyobj()) {
|
|
Py_INCREF(obj);
|
|
return obj;
|
|
}
|
|
|
|
return THPVariable_NewWithVar((PyTypeObject *)THPVariableClass, std::move(var));
|
|
}
|
|
|
|
static int THPVariable_traverse(THPVariable *self, visitproc visit, void *arg)
|
|
{
|
|
Py_VISIT(self->backward_hooks);
|
|
// We don't want to traverse the grad_fn, even if the Variable owns it and the
|
|
// shared pointer's use count is 1. This is because we would need to treat
|
|
// the grad_fn as part of the Python state and hold the GIL sometimes when
|
|
// grad_fn's shared_ptr is copied, otherwise a race condition with the Python
|
|
// GC could occur. Holding the GIL when the shared_ptr is copied adds
|
|
// undesirable complexity/overhead.
|
|
//
|
|
// When hooks, a Variable, and its grad_fn are involved in a Python reference
|
|
// cycle, because we're not traversing the grad_fn, the reference cycle will
|
|
// in fact leak.
|
|
//
|
|
// See https://gist.github.com/zou3519/7ac92b84dd7d206dcc6eae55fee8372c
|
|
// for more details about the race condition involving traversing the grad_fn
|
|
// and the python GC.
|
|
if (self->cdata.defined()) {
|
|
for (const auto& hook : self->cdata.hooks()) {
|
|
if (auto pyhook = dynamic_cast<PyFunctionPreHook*>(hook.get())) {
|
|
Py_VISIT(pyhook->dict);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int THPVariable_clear(THPVariable *self)
|
|
{
|
|
Py_CLEAR(self->backward_hooks);
|
|
if (self->cdata.defined()) {
|
|
if (auto grad_acc = self->cdata.try_get_grad_accumulator()) {
|
|
grad_acc->pre_hooks().clear();
|
|
}
|
|
// We must clear the pyobj field in the base C++ Variable, to ensure
|
|
// that if we attempt to pass the Variable to Python, we don't
|
|
// attempt to reuse the (now-dead) PyObject.
|
|
//
|
|
// One non-obvious consequence of this: if you have a tensor x, you
|
|
// take its id(), and then you let it become dead in Python, if you
|
|
// get another reference to the tensor in Python later (because you
|
|
// passed it from C++ to Python), you'll get a *different* id() the
|
|
// second time around. So you better make sure that if you're using
|
|
// id() to keep track of Tensors, you better make sure their Python
|
|
// objects stay live, buster! See
|
|
// https://github.com/pytorch/pytorch/issues/22884 for an example of
|
|
// this actually showing up.
|
|
self->cdata.set_pyobj(nullptr);
|
|
}
|
|
self->cdata.reset();
|
|
return 0;
|
|
}
|
|
|
|
static void THPVariable_dealloc(THPVariable* self)
|
|
{
|
|
PyObject_GC_UnTrack(self);
|
|
THPVariable_clear(self);
|
|
self->cdata.~Variable();
|
|
Py_TYPE(self)->tp_free((PyObject*)self);
|
|
}
|
|
|
|
static PyObject *THPVariable_pynew(PyTypeObject *type, PyObject *args, PyObject *kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("torch.Tensor", jit::tracer::WARN_CONSTRUCTOR);
|
|
auto tensor = torch::utils::legacy_tensor_ctor(torch::tensors::get_default_tensor_type_id(), torch::tensors::get_default_scalar_type(), args, kwargs);
|
|
return THPVariable_NewWithVar(type, std::move(tensor));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// Instantiates a subclass of torch.Tensor. Used by nn.Parameter()
|
|
static PyObject* THPVariable_make_subclass(PyObject* _ignored, PyObject* args, PyObject* kwargs) {
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({
|
|
"_make_subclass(PyObject* cls, Tensor data, bool require_grad=False)",
|
|
});
|
|
ParsedArgs<3> parsed_args{};
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
PyObject* cls = r.pyobject(0);
|
|
if (!PyType_Check(cls)) {
|
|
throw TypeError("cls must be a type (got %s)", Py_TYPE(cls)->tp_name);
|
|
}
|
|
auto data = as_variable_ref(r.tensor(1)).detach();
|
|
// We set `data`'s `allow_tensor_metadata_change` to true here, because we want to
|
|
// allow the following use case for backward compatibility:
|
|
//
|
|
// ```python
|
|
// rnn = torch.nn.RNN(100, 100, 2)
|
|
// # The following calls `torch._cudnn_rnn_flatten_weight(rnn._flat_weights, ...)`,
|
|
// # which changes storage of `rnn`'s weights in-place
|
|
// rnn.flatten_parameters()
|
|
// ```
|
|
data.unsafeGetTensorImpl()->set_allow_tensor_metadata_change(true);
|
|
auto var = data.set_requires_grad(r.toBool(2));
|
|
return THPVariable_NewWithVar((PyTypeObject*)cls, std::move(var));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
typedef PyObject *(*getter)(PyObject *, void *);
|
|
typedef int (*setter)(PyObject *, PyObject *, void *);
|
|
|
|
PyObject *THPVariable_get_T(THPVariable *self, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& var = self->cdata;
|
|
return THPVariable_Wrap(var.numpy_T());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_get_cdata(THPVariable *self, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& var = self->cdata;
|
|
return PyLong_FromVoidPtr(var.unsafeGetTensorImpl());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_get_version(THPVariable *self, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& var = self->cdata;
|
|
return PyInt_FromLong(var.current_version());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_get_grad_fn(THPVariable *self, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& var = self->cdata;
|
|
if (!var.grad_fn()) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
return functionToPyObject(var.grad_fn());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static int THPVariable_set_grad_fn(THPVariable *self, PyObject *obj, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assertRet(-1, obj, "Deletion of _grad_fn not allowed. Detach tensor instead!");
|
|
THPUtils_assertRet(-1, obj == Py_None, "_grad_fn can be only set to None");
|
|
self->cdata.detach_();
|
|
return 0;
|
|
END_HANDLE_TH_ERRORS_RET(-1)
|
|
}
|
|
|
|
static PyObject *THPVariable_is_leaf(THPVariable *self, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
return PyBool_FromLong(!self->cdata.grad_fn());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_get_data(THPVariable *self, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto var = self->cdata.variable_data();
|
|
return THPVariable_Wrap(var);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
int THPVariable_set_data(THPVariable *self, PyObject *data, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assertRet(-1, data, "Deleting tensor data is not allowed. Delete tensor instead!");
|
|
if (!THPVariable_Check(data)) {
|
|
throw torch::TypeError("Variable data has to be a tensor, but got %s", Py_TYPE(data)->tp_name);
|
|
}
|
|
|
|
self->cdata.set_data(THPVariable_Unpack(data));
|
|
return 0;
|
|
END_HANDLE_TH_ERRORS_RET(-1)
|
|
}
|
|
|
|
PyObject *THPVariable_get_grad(THPVariable *self, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
return THPVariable_Wrap(self->cdata.grad());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
int THPVariable_set_grad(THPVariable *self, PyObject *py_grad, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& var = self->cdata;
|
|
if (!py_grad || py_grad == Py_None) {
|
|
var.grad().reset();
|
|
return 0;
|
|
}
|
|
|
|
THPUtils_assertRet(-1, THPVariable_Check(py_grad),
|
|
"expected Variable or None (got %s)", THPUtils_typename(py_grad));
|
|
THPUtils_assertRet(-1, self != (THPVariable*)py_grad,
|
|
"can't assign Variable as its own grad");
|
|
|
|
auto& grad = ((THPVariable*)py_grad)->cdata;
|
|
bool gradIsSparse = (var.dtype() == grad.dtype() &&
|
|
var.device().type() == grad.device().type() &&
|
|
grad.layout() == kSparse);
|
|
THPUtils_assertRet(-1, grad.type() == var.type() || gradIsSparse,
|
|
"assigned grad has data of a different type");
|
|
if (var.is_cuda()) {
|
|
THPUtils_assertRet(-1, grad.get_device() == var.get_device(),
|
|
"assigned grad has data located on a different device");
|
|
}
|
|
THPUtils_assertRet(-1, grad.sizes().equals(var.sizes()),
|
|
"assigned grad has data of a different size");
|
|
|
|
var.grad() = grad;
|
|
return 0;
|
|
END_HANDLE_TH_ERRORS_RET(-1)
|
|
}
|
|
|
|
PyObject *THPVariable_get_volatile(THPVariable *self, void *unused)
|
|
{
|
|
const char* msg = "volatile was removed (Variable.volatile is always False)";
|
|
PyErr_WarnEx(PyExc_UserWarning, msg, 1);
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
int THPVariable_set_volatile(THPVariable *self, PyObject *obj, void *unused)
|
|
{
|
|
return PyErr_WarnEx(PyExc_UserWarning, VOLATILE_WARNING, 1);
|
|
}
|
|
|
|
PyObject *THPVariable_get_output_nr(THPVariable *self, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
const auto output_nr = static_cast<long>(self->cdata.output_nr());
|
|
return PyInt_FromLong(output_nr);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_get_requires_grad(THPVariable *self, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
return PyBool_FromLong(self->cdata.requires_grad());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_get_ndim(THPVariable *self, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
return PyInt_FromLong(self->cdata.dim());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
#ifdef BUILD_NAMEDTENSOR
|
|
PyObject *THPVariable_get_names(THPVariable *self, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
// The long-term plan is to return a list of (python) torch.Dimname.
|
|
// However, for now, return a list of string.
|
|
size_t size = self->cdata.dim();
|
|
THPObjectPtr tuple(PyTuple_New(size));
|
|
if (!tuple) throw python_error();
|
|
|
|
const auto dimnames = self->cdata.names();
|
|
for (size_t i = 0; i < size; ++i) {
|
|
PyObject* str = Py_None;
|
|
if (dimnames[i].type() != at::NameType::WILDCARD) {
|
|
str = THPUtils_packString(dimnames[i].full_name().toUnqualString());
|
|
if (!str) throw python_error();
|
|
}
|
|
PyTuple_SET_ITEM(tuple.get(), i, str);
|
|
}
|
|
return tuple.release();
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
int THPVariable_set_names(THPVariable *self, PyObject *names) {
|
|
HANDLE_TH_ERRORS
|
|
auto& var = self->cdata;
|
|
if (names == Py_None) {
|
|
at::internal_set_names_inplace(var, at::nullopt);
|
|
} else {
|
|
THPUtils_assertRet(-1,
|
|
THPUtils_checkDimnameList(names),
|
|
"names must either be None or a tuple of dim names");
|
|
at::internal_set_names_inplace(var, torch::parseDimnameList(names));
|
|
}
|
|
return 0;
|
|
END_HANDLE_TH_ERRORS_RET(-1)
|
|
}
|
|
#endif
|
|
|
|
int THPVariable_set_requires_grad(THPVariable *self, PyObject *obj, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assertRet(-1, obj && PyBool_Check(obj), "requires_grad must be a bool");
|
|
auto& var = self->cdata;
|
|
auto requires_grad = (obj == Py_True);
|
|
if (!var.is_leaf()) {
|
|
THPUtils_setError(autograd::utils::requires_grad_leaf_error(obj == Py_True).c_str());
|
|
return -1;
|
|
}
|
|
if (requires_grad && !var.is_floating_point()) {
|
|
THPUtils_setError("only Tensors of floating point dtype can require gradients");
|
|
return -1;
|
|
}
|
|
var.set_requires_grad(requires_grad);
|
|
return 0;
|
|
END_HANDLE_TH_ERRORS_RET(-1)
|
|
}
|
|
|
|
PyObject *THPVariable_get_name(THPVariable* self, void *unused)
|
|
{
|
|
if (self->cdata.name() == "")
|
|
Py_RETURN_NONE;
|
|
return THPUtils_packString(self->cdata.name().c_str());
|
|
}
|
|
|
|
PyObject *THPVariable_get_backwards_hooks(THPVariable *self, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
if (self->backward_hooks) {
|
|
Py_INCREF(self->backward_hooks);
|
|
return self->backward_hooks;
|
|
}
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
int THPVariable_set_backwards_hooks(THPVariable *self, PyObject *obj, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assertRet(-1, obj, "Deletion of _backwards_hooks not allowed!");
|
|
if (obj == Py_None) {
|
|
obj = nullptr;
|
|
}
|
|
Py_XINCREF(obj);
|
|
Py_XDECREF(self->backward_hooks);
|
|
self->backward_hooks = obj;
|
|
self->cdata.clear_hooks();
|
|
if (obj) {
|
|
self->cdata.add_hook(std::make_shared<PyFunctionPreHook>(obj, 0));
|
|
}
|
|
return 0;
|
|
END_HANDLE_TH_ERRORS_RET(-1)
|
|
}
|
|
|
|
PyObject *THPVariable_get_base(THPVariable *self, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
if (self->cdata.is_view()) {
|
|
return THPVariable_Wrap(self->cdata.base());
|
|
}
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_get_shape(THPVariable *self, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
return THPSize_New(self->cdata);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_is_cuda(THPVariable *self, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = self->cdata;
|
|
return torch::autograd::utils::wrap(self_.is_cuda());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_is_sparse(THPVariable *self, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = self->cdata;
|
|
return torch::autograd::utils::wrap(self_.is_sparse());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_is_mkldnn(THPVariable *self, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = self->cdata;
|
|
return torch::autograd::utils::wrap(self_.is_mkldnn());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_is_quantized(THPVariable *self, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = self->cdata;
|
|
return torch::autograd::utils::wrap(self_.is_quantized());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject *THPVariable_dtype(THPVariable *self, void *unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = self->cdata;
|
|
return torch::autograd::utils::wrap(torch::getDtype(self_.scalar_type()));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_layout(THPVariable* self, void *unused) {
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = self->cdata;
|
|
return torch::autograd::utils::wrap(torch::getLayout(self_.type().backend()));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_device(THPVariable* self, void *unused) {
|
|
HANDLE_TH_ERRORS
|
|
return THPDevice_New(self->cdata.device());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static struct PyGetSetDef THPVariable_properties[] = {
|
|
{"T", (getter)THPVariable_get_T, nullptr, nullptr, nullptr},
|
|
{"_cdata", (getter)THPVariable_get_cdata, nullptr, nullptr, nullptr},
|
|
{"_version", (getter)THPVariable_get_version, nullptr, nullptr, nullptr},
|
|
{"grad_fn", (getter)THPVariable_get_grad_fn, nullptr, nullptr, nullptr},
|
|
{"_grad_fn", (getter)THPVariable_get_grad_fn, (setter)THPVariable_set_grad_fn, nullptr, nullptr},
|
|
{"is_leaf", (getter)THPVariable_is_leaf, nullptr, nullptr, nullptr},
|
|
{"data", (getter)THPVariable_get_data, (setter)THPVariable_set_data, nullptr, nullptr},
|
|
{"_grad", (getter)THPVariable_get_grad, (setter)THPVariable_set_grad, nullptr, nullptr}, // only for legacy reasons
|
|
{"grad", (getter)THPVariable_get_grad, (setter)THPVariable_set_grad, nullptr, nullptr},
|
|
{"_base", (getter)THPVariable_get_base, nullptr, nullptr, nullptr},
|
|
{"volatile", (getter)THPVariable_get_volatile, (setter)THPVariable_set_volatile, nullptr, nullptr},
|
|
{"output_nr", (getter)THPVariable_get_output_nr, nullptr, nullptr, nullptr},
|
|
{"requires_grad", (getter)THPVariable_get_requires_grad, (setter)THPVariable_set_requires_grad, nullptr, nullptr},
|
|
{"_backward_hooks", (getter)THPVariable_get_backwards_hooks, (setter)THPVariable_set_backwards_hooks, nullptr, nullptr},
|
|
{"name", (getter)THPVariable_get_name, nullptr, nullptr, nullptr},
|
|
{"shape", (getter)THPVariable_get_shape, nullptr, nullptr, nullptr},
|
|
{"is_cuda", (getter)THPVariable_is_cuda, nullptr, nullptr, nullptr},
|
|
{"is_sparse", (getter)THPVariable_is_sparse, nullptr, nullptr, nullptr},
|
|
{"is_mkldnn", (getter)THPVariable_is_mkldnn, nullptr, nullptr, nullptr},
|
|
{"is_quantized", (getter)THPVariable_is_quantized, nullptr, nullptr, nullptr},
|
|
{"dtype", (getter)THPVariable_dtype, nullptr, nullptr, nullptr},
|
|
{"layout", (getter)THPVariable_layout, nullptr, nullptr, nullptr},
|
|
{"device", (getter)THPVariable_device, nullptr, nullptr, nullptr},
|
|
{"ndim", (getter)THPVariable_get_ndim, nullptr, nullptr, nullptr},
|
|
#ifdef BUILD_NAMEDTENSOR
|
|
{"names", (getter)THPVariable_get_names, (setter)THPVariable_set_names, nullptr, nullptr},
|
|
#endif
|
|
{nullptr}
|
|
};
|
|
|
|
static PyMappingMethods THPVariable_as_mapping = {
|
|
THPVariable_length,
|
|
THPVariable_getitem,
|
|
THPVariable_setitem,
|
|
};
|
|
|
|
static PyMethodDef extra_methods[] = {
|
|
{"_make_subclass", (PyCFunction)(void(*)(void))THPVariable_make_subclass, METH_STATIC | METH_VARARGS | METH_KEYWORDS, nullptr},
|
|
{nullptr}
|
|
};
|
|
|
|
PyTypeObject THPVariableType = {
|
|
PyVarObject_HEAD_INIT(nullptr, 0)
|
|
"torch._C._TensorBase", /* tp_name */
|
|
sizeof(THPVariable), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
(destructor)THPVariable_dealloc, /* tp_dealloc */
|
|
nullptr, /* tp_print */
|
|
nullptr, /* tp_getattr */
|
|
nullptr, /* tp_setattr */
|
|
nullptr, /* tp_reserved */
|
|
nullptr, /* tp_repr */
|
|
nullptr, /* tp_as_number */
|
|
nullptr, /* tp_as_sequence */
|
|
&THPVariable_as_mapping, /* tp_as_mapping */
|
|
nullptr, /* tp_hash */
|
|
nullptr, /* tp_call */
|
|
nullptr, /* tp_str */
|
|
nullptr, /* tp_getattro */
|
|
nullptr, /* tp_setattro */
|
|
nullptr, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /* tp_flags */
|
|
nullptr, /* tp_doc */
|
|
(traverseproc)THPVariable_traverse, /* tp_traverse */
|
|
(inquiry)THPVariable_clear, /* tp_clear */
|
|
nullptr, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
nullptr, /* tp_iter */
|
|
nullptr, /* tp_iternext */
|
|
nullptr, /* tp_methods */
|
|
nullptr, /* tp_members */
|
|
THPVariable_properties, /* tp_getset */
|
|
nullptr, /* tp_base */
|
|
nullptr, /* tp_dict */
|
|
nullptr, /* tp_descr_get */
|
|
nullptr, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
nullptr, /* tp_init */
|
|
nullptr, /* tp_alloc */
|
|
THPVariable_pynew /* tp_new */
|
|
};
|
|
|
|
namespace torch { namespace autograd {
|
|
|
|
extern PyMethodDef variable_methods[];
|
|
extern void initTorchFunctions(PyObject *module);
|
|
|
|
void initTensorImplConversion(PyObject* module) {
|
|
auto m = py::handle(module).cast<py::module>();
|
|
m.def("_wrap_tensor_impl", [](void* ptr) {
|
|
auto p = c10::intrusive_ptr<c10::TensorImpl, at::UndefinedTensorImpl>::
|
|
unsafe_reclaim_from_nonowning(static_cast<c10::TensorImpl*>(ptr));
|
|
TORCH_CHECK(p.defined(), "Can't wrap undefined tensor");
|
|
auto tensor = at::Tensor::wrap_tensor_impl(std::move(p));
|
|
// For now, there is no guarantee that the tensors returned from Caffe2 ops
|
|
// are not Variables, because inputs to Caffe2 ops can be Variables.
|
|
//
|
|
// In the near future, once we make every tensor a Variable, we can remove
|
|
// the `tensor.is_variable()` check and directly return `tensor` as a Variable.
|
|
return py::cast(tensor.is_variable() ? torch::autograd::Variable(tensor) :
|
|
torch::autograd::make_variable(std::move(tensor), false));
|
|
});
|
|
// set on the module level to avoid mixing pybind and plain CPython extensions
|
|
m.def("_tensor_impl_raw_handle", [](torch::autograd::Variable* t) -> void* {
|
|
// We return a raw non-owning pointer here, we rely on surrounding
|
|
// code to keep the original tensor alive
|
|
return t->getIntrusivePtr().get();
|
|
});
|
|
}
|
|
}}
|
|
|
|
bool THPVariable_initModule(PyObject *module)
|
|
{
|
|
static std::vector<PyMethodDef> methods;
|
|
THPUtils_addPyMethodDefs(methods, torch::autograd::variable_methods);
|
|
THPUtils_addPyMethodDefs(methods, extra_methods);
|
|
THPVariableType.tp_methods = methods.data();
|
|
if (PyType_Ready(&THPVariableType) < 0)
|
|
return false;
|
|
Py_INCREF(&THPVariableType);
|
|
PyModule_AddObject(module, "_TensorBase", (PyObject *)&THPVariableType);
|
|
torch::autograd::initTorchFunctions(module);
|
|
torch::autograd::initTensorImplConversion(module);
|
|
return true;
|
|
}
|