mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/41154 Test Plan: Imported from OSS Reviewed By: ailzhang Differential Revision: D22445213 Pulled By: suo fbshipit-source-id: 200545715c5ef13beb1437f49e01efb21498ddb7
310 lines
9.6 KiB
Python
310 lines
9.6 KiB
Python
import torch.jit
|
|
from torch.jit._builtins import _find_builtin
|
|
import inspect
|
|
import textwrap
|
|
# this file is for generating documentation using sphinx autodoc
|
|
# > help(torch.jit.supported_ops) will also give a nice listed of the
|
|
# supported ops programmatically
|
|
|
|
def _hidden(name):
|
|
return name.startswith('_') and not name.startswith('__')
|
|
|
|
def _emit_type(type):
|
|
return str(type)
|
|
|
|
def _emit_arg(indent, i, arg):
|
|
v = "{} : {}".format(arg.name, _emit_type(arg.type))
|
|
default = arg.default_value
|
|
if default is not None:
|
|
v = "{}={}".format(v, str(default))
|
|
if i > 0:
|
|
v = "\n{}{}".format(" " * indent, v)
|
|
return v
|
|
|
|
def _emit_args(indent, arguments):
|
|
return ",".join(_emit_arg(indent, i, arg) for i, arg in enumerate(arguments))
|
|
|
|
def _emit_ret(ret):
|
|
return _emit_type(ret.type)
|
|
|
|
def _emit_rets(returns):
|
|
if len(returns) == 1:
|
|
return _emit_ret(returns[0])
|
|
return "Tuple[{}]".format(", ".join(_emit_ret(r) for r in returns))
|
|
|
|
def _emit_schema(mod, name, schema, arg_start=0, padding=4):
|
|
if mod is None:
|
|
qualified_name = name
|
|
else:
|
|
qualified_name = "{}.{}".format(mod, name)
|
|
schema = "{}({}) -> {}".format(qualified_name,
|
|
_emit_args(len(qualified_name) + 1 + padding, schema.arguments[arg_start:]),
|
|
_emit_rets(schema.returns))
|
|
return schema
|
|
|
|
def _get_tensor_ops():
|
|
def is_tensor_method(schema):
|
|
if len(schema.arguments) == 0:
|
|
return False
|
|
self = schema.arguments[0]
|
|
if self.name != 'self':
|
|
return False
|
|
if not self.type.isSubtypeOf(torch._C.TensorType.get()):
|
|
return False
|
|
return True
|
|
|
|
methods = []
|
|
# discover methods
|
|
for elem in dir(torch.Tensor):
|
|
if not _hidden(elem):
|
|
schemas = torch._C._jit_get_schemas_for_operator("aten::" + elem)
|
|
for schema in schemas:
|
|
if is_tensor_method(schema):
|
|
methods.append(_emit_schema('Tensor', elem, schema, arg_start=1))
|
|
|
|
return "Supported Tensor Methods", methods
|
|
|
|
def _get_nn_functional_ops():
|
|
functions = []
|
|
|
|
# Iterate over torch.nn.functional
|
|
mod = torch.nn.functional
|
|
name = mod.__name__
|
|
for elem in dir(torch.nn.functional):
|
|
attr = getattr(mod, elem)
|
|
if not inspect.isfunction(attr) or _hidden(elem[0]):
|
|
# Ignore non-functions and internal methods
|
|
continue
|
|
|
|
if 'torch.nn.functional' not in inspect.getmodule(attr).__name__:
|
|
# Ignore functions from outside torch.nn.functional
|
|
continue
|
|
|
|
try:
|
|
# compile fn, get schema
|
|
scripted = torch.jit.script(attr)
|
|
schema = scripted.schema
|
|
functions.append(_emit_schema(name, elem, schema))
|
|
except: # noqa
|
|
# Skip interpolate / boolean dispatched things
|
|
pass
|
|
|
|
# Iterate over modules that we know contain a lot of builtins
|
|
for mod in torch.jit._builtins._modules_containing_builtins:
|
|
name = mod.__name__
|
|
for elem in dir(mod):
|
|
builtin = _find_builtin(getattr(mod, elem))
|
|
if builtin is not None:
|
|
schemas = torch._C._jit_get_schemas_for_operator(builtin)
|
|
for schema in schemas:
|
|
# remove _tan but not __and__
|
|
if not _hidden(elem):
|
|
functions.append(_emit_schema(name, elem, schema))
|
|
return "Supported PyTorch Functions", functions
|
|
|
|
def _get_builtins_helper():
|
|
builtins = []
|
|
for fn, _builtin_name in torch.jit._builtins._builtin_ops:
|
|
mod = inspect.getmodule(fn)
|
|
if not hasattr(fn, '__name__'):
|
|
# typing classes
|
|
continue
|
|
if not mod:
|
|
continue
|
|
if _hidden(fn.__name__) or _hidden(fn.__qualname__) or _hidden(mod.__name__):
|
|
# skip internal-only methods
|
|
continue
|
|
|
|
if 'torch._C' in mod.__name__:
|
|
continue
|
|
|
|
builtins.append((fn, _builtin_name))
|
|
|
|
return builtins
|
|
|
|
def _is_math_fn(fn):
|
|
mod = inspect.getmodule(fn)
|
|
return mod.__name__ == 'math'
|
|
|
|
|
|
def _get_torchscript_builtins():
|
|
functions = []
|
|
builtins = filter(lambda fn: not _is_math_fn(fn[0]), _get_builtins_helper())
|
|
builtins = list(builtins)
|
|
# Iterate over the specially added builtins
|
|
for fn, _builtin_name in builtins:
|
|
mod = inspect.getmodule(fn)
|
|
builtin = _find_builtin(fn)
|
|
if builtin is not None:
|
|
schemas = torch._C._jit_get_schemas_for_operator(builtin)
|
|
for schema in schemas:
|
|
functions.append(_emit_schema(mod.__name__, fn.__name__, schema))
|
|
pass
|
|
|
|
return "TorchScript Builtin Functions", functions
|
|
|
|
|
|
def _get_math_builtins():
|
|
functions = []
|
|
builtins = filter(lambda fn: _is_math_fn(fn[0]), _get_builtins_helper())
|
|
builtins = list(builtins)
|
|
# Iterate over the specially added builtins
|
|
for fn, _builtin_name in builtins:
|
|
mod = inspect.getmodule(fn)
|
|
builtin = _find_builtin(fn)
|
|
if builtin is not None:
|
|
schemas = torch._C._jit_get_schemas_for_operator(builtin)
|
|
for schema in schemas:
|
|
schema = _emit_schema(mod.__name__, fn.__name__, schema)
|
|
if 'Tensor' in schema:
|
|
# Skip Tensor ops that have the same name as math functions
|
|
# (they will show up in the tensor methods section)
|
|
continue
|
|
functions.append(schema)
|
|
pass
|
|
|
|
return "``math`` Module", functions
|
|
|
|
|
|
def _get_global_builtins():
|
|
# Taken from the 'globals' map in torch/csrc/jit/frontend/ir_emitter.cpp
|
|
supported_builtins = [
|
|
'print',
|
|
'tuple',
|
|
'float',
|
|
'int',
|
|
'bool',
|
|
'str',
|
|
'getattr',
|
|
'hasattr',
|
|
'isinstance',
|
|
'len',
|
|
'hex',
|
|
'oct',
|
|
'round',
|
|
'hash',
|
|
'min',
|
|
'max',
|
|
'abs',
|
|
'all',
|
|
'divmod',
|
|
'list',
|
|
'ord',
|
|
'chr',
|
|
'bin',
|
|
'range',
|
|
'zip',
|
|
'enumerate',
|
|
'sorted',
|
|
]
|
|
|
|
op_renames = {
|
|
'bool': 'aten::Bool',
|
|
'int': 'aten::Int',
|
|
'float': 'aten::Float',
|
|
'abs': 'prim::abs',
|
|
'max': 'prim::max',
|
|
'min': 'prim::min',
|
|
'range': 'fake::does_not_exist',
|
|
}
|
|
|
|
schemaless_op_explanations = {
|
|
'print': 'Print any value',
|
|
'tuple': 'Lists cannot be converted to tuples with this method since their size is not statically known',
|
|
'getattr': 'Attribute name must be a literal string',
|
|
'hasattr': 'Attribute name must be a literal string',
|
|
'isinstance': 'Result is static',
|
|
'zip': 'Arguments must be iterable. See :ref:`Iterables <jit_iterables>` for details.',
|
|
'enumerate': 'Arguments must be iterable. See :ref:`Iterables <jit_iterables>` for details.',
|
|
'range': 'Can only be used as an iterator in a for loop',
|
|
}
|
|
|
|
magic_methods = [
|
|
('float', '__float__'),
|
|
('int', '__int__'),
|
|
('bool', '__bool__'),
|
|
('str', '__str__'),
|
|
('len', '__len__'),
|
|
('hex', '__hex__'),
|
|
('oct', '__oct__'),
|
|
]
|
|
|
|
magic_methods_rows = []
|
|
for fn, magic_method in magic_methods:
|
|
magic_methods_rows.append('"{}", "``{}``"'.format(fn, magic_method))
|
|
|
|
schematized_ops = []
|
|
schemaless_ops = []
|
|
|
|
for fn in supported_builtins:
|
|
op_name = 'aten::{}'.format(fn)
|
|
if fn in op_renames:
|
|
op_name = op_renames[fn]
|
|
schemas = torch._C._jit_get_schemas_for_operator(op_name)
|
|
for s in schemas:
|
|
schematized_ops.append(_emit_schema(None, fn, s, padding=0))
|
|
if len(schemas) > 0:
|
|
schematized_ops.append('')
|
|
else:
|
|
table_row = '":any:`{}`", "{}"'.format(fn, schemaless_op_explanations[fn])
|
|
schemaless_ops.append(table_row)
|
|
|
|
schematized_ops = '\n'.join(schematized_ops)
|
|
schemaless_ops = '\n'.join(schemaless_ops)
|
|
magic_methods_rows = '\n'.join(magic_methods_rows)
|
|
schematized_ops = textwrap.indent(schematized_ops, '\t')
|
|
schemaless_ops = textwrap.indent(schemaless_ops, '\t')
|
|
magic_methods_rows = textwrap.indent(magic_methods_rows, '\t')
|
|
section = """
|
|
The functions in the following table are supported but do not have a static schema
|
|
|
|
.. csv-table::
|
|
:header: "Function", "Note"
|
|
|
|
{}
|
|
|
|
The following functions will use the corresponding magic method on :any:`TorchScript classes`
|
|
|
|
.. csv-table::
|
|
:header: "Function", "Magic Method"
|
|
|
|
{}
|
|
|
|
These built-in functions use the schema
|
|
|
|
.. rst-class:: codeblock-height-limiter
|
|
|
|
::
|
|
|
|
{}
|
|
""".format(schemaless_ops, magic_methods_rows, schematized_ops)
|
|
|
|
return "Python Built-in Functions", section
|
|
|
|
|
|
def _list_supported_ops():
|
|
def emit_block(decls):
|
|
return '\n.. rst-class:: codeblock-height-limiter\n\n::\n\n{}\n'.format(''.join(' {}\n\n'.format(d) for d in decls))
|
|
|
|
body = ''
|
|
op_gathering_fns = (
|
|
_get_tensor_ops,
|
|
_get_nn_functional_ops,
|
|
_get_torchscript_builtins,
|
|
_get_global_builtins,
|
|
_get_math_builtins,
|
|
)
|
|
for fn in op_gathering_fns:
|
|
header, items = fn()
|
|
link_target = header.replace('`', '').replace('-', '').lower().replace(' ', '-')
|
|
if isinstance(items, str):
|
|
section = "{}\n{}\n{}\n".format(header, '~' * len(header), items)
|
|
else:
|
|
section = "{}\n{}\n{}".format(header, '~' * len(header), emit_block(items))
|
|
section = '.. _{}:'.format(link_target) + '\n\n' + section
|
|
body += section
|
|
|
|
return body
|
|
|
|
__doc__ = _list_supported_ops()
|