pytorch/caffe2/core/blob_serialization.cc
Dmytro Dzhulgakov c95fa4b904 fix dtype uninitialized tensor serialization
Summary:
See D10380678 for the discussion.

Caffe2 serialization code was able to handle dtype uninitalized tensor as long as their numel was 0 O_O.

For safety to unblock the push I'm preserving this behavior with critical. As we fix all occurrences of old API, we can delete this test.

Reviewed By: kennyhorror

Differential Revision: D10866562

fbshipit-source-id: e172bd045fdfca660ff05b426e001f5f2f03f408
2018-10-26 01:30:47 -07:00

583 lines
19 KiB
C++

#include "caffe2/core/blob_serialization.h"
#include <sstream>
#include <mutex>
#include "caffe2/core/blob.h"
#include "caffe2/utils/proto_utils.h"
C10_DEFINE_int(
caffe2_tensor_chunk_size,
1000000,
"Chunk size to split tensor data into");
C10_DEFINE_int(
caffe2_max_tensor_serializer_threads,
16,
"Maximal number of threads that can be used for tensor serialization");
C10_DEFINE_bool(
caffe2_serialize_fp16_as_bytes,
false,
"Serialize FLOAT16 tensors using byte_data field");
namespace caffe2 {
/**
* @brief StringSerializer is the serializer for String.
*
* StringSerializer takes in a blob that contains a String, and serializes it
* into a BlobProto protocol buffer.
*/
class StringSerializer : public BlobSerializerBase {
public:
StringSerializer() {}
~StringSerializer() {}
/**
* Serializes a Blob. Note that this blob has to contain Tensor,
* otherwise this function produces a fatal error.
*/
void Serialize(
const void* pointer,
TypeMeta typeMeta,
const string& name,
SerializationAcceptor acceptor) override {
CAFFE_ENFORCE(typeMeta.Match<std::string>());
BlobProto blob_proto;
blob_proto.set_name(name);
blob_proto.set_type("std::string");
blob_proto.set_content(*static_cast<const std::string*>(pointer));
acceptor(name, SerializeBlobProtoAsString_EnforceCheck(blob_proto));
}
};
/**
* @brief StringDeserializer is the deserializer for Strings.
*
*/
class StringDeserializer : public BlobDeserializerBase {
public:
void Deserialize(const BlobProto& proto, Blob* blob) override {
*blob->GetMutable<std::string>() = proto.content();
}
};
namespace {
void SerializeBlob(
const void* pointer,
TypeMeta typeMeta,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor,
int chunk_size) {
std::unique_ptr<BlobSerializerBase> serializer(
CreateSerializer(typeMeta.id()));
CAFFE_ENFORCE(serializer, "No known serializer for ", typeMeta.name());
serializer->SerializeWithChunkSize(
pointer, typeMeta, name, acceptor, chunk_size);
}
std::string
SerializeBlob(const void* pointer, TypeMeta typeMeta, const string& name) {
std::string data;
BlobSerializerBase::SerializationAcceptor acceptor =
[&data](const std::string&, const std::string& blob_str) {
DCHECK(data.empty()); // should be called once with kNoChunking
data = blob_str;
};
SerializeBlob(pointer, typeMeta, name, acceptor, kNoChunking);
return data;
}
} // namespace
void SerializeBlob(
const Blob& blob,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor,
int chunk_size) {
SerializeBlob(blob.GetRaw(), blob.meta(), name, acceptor, chunk_size);
}
std::string SerializeBlob(const Blob& blob, const string& name) {
return SerializeBlob(blob.GetRaw(), blob.meta(), name);
}
void TensorSerializer::Serialize(
const void* pointer,
TypeMeta typeMeta,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor) {
this->SerializeWithChunkSize(
pointer, typeMeta, name, acceptor, kDefaultChunkSize);
}
void TensorSerializer::SerializeWithChunkSize(
const void* pointer,
TypeMeta typeMeta,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor,
int chunk_size) {
CAFFE_ENFORCE(typeMeta.Match<Tensor>());
const auto& tensor = *static_cast<const Tensor*>(pointer);
if (chunk_size == kNoChunking) {
chunk_size = tensor.size() + 1; // to account for empty tensors
} else if (chunk_size == kDefaultChunkSize) {
chunk_size = FLAGS_caffe2_tensor_chunk_size;
}
auto processChunk = [&](int64_t chunkStart) {
BlobProto blob_proto;
blob_proto.set_name(name);
blob_proto.set_type(kTensorBlobType);
TensorProto& proto = *blob_proto.mutable_tensor();
proto.set_name(name);
this->Serialize(
tensor, name, blob_proto.mutable_tensor(), chunkStart, chunk_size);
acceptor(
c10::str(name, kChunkIdSeparator, chunkStart / chunk_size),
SerializeBlobProtoAsString_EnforceCheck(blob_proto));
};
#ifndef __ANDROID__
std::vector<std::future<void>> futures;
// Poorman's IOBound ThreadPool
SimpleQueue<size_t> chunkQueue;
auto task = [&]() {
size_t chunkStart;
while (chunkQueue.Pop(&chunkStart)) {
processChunk(chunkStart);
}
};
if (tensor.size() > chunk_size) {
for (int i = 0; i < FLAGS_caffe2_max_tensor_serializer_threads; ++i) {
futures.emplace_back(std::async(std::launch::async, task));
}
}
#endif
VLOG(1) << "Serializing blob " << name;
// Serialize whole vector. If vector is empty, it's shape still needs to be
// serialized in empty proto
for (size_t chunkBegin = 0;
chunkBegin < std::max(tensor.size(), static_cast<int64_t>(1));
chunkBegin += chunk_size) {
VLOG(2) << "Starting a chunk at " << chunkBegin;
#ifndef __ANDROID__
if (tensor.size() > chunk_size) {
chunkQueue.Push(chunkBegin);
} else {
// Sync mode for small tensors
processChunk(chunkBegin);
}
#else
// Since Android does not have std::future, we will always do sync mode
processChunk(chunkBegin);
#endif
}
#ifndef __ANDROID__
chunkQueue.NoMoreJobs();
for (auto& fut : futures) {
fut.get();
}
#endif
}
void TensorSerializer::Serialize(
const Tensor& input,
const string& name,
TensorProto* proto_ptr,
size_t chunkBegin,
int32_t chunkSize) {
CAFFE_ENFORCE(
chunkBegin <= input.size(),
"Chunk begin is out of tensor: ",
chunkBegin,
' ',
input.size());
if (chunkBegin + chunkSize > input.size()) {
chunkSize = input.size() - chunkBegin;
}
if (chunkSize != 0) {
CAFFE_ENFORCE(
input.raw_data(),
"The input does not have data input yet. This is probably because you "
"created a tensor of non-zero shape but never filled its data via "
"mutable_data() calls. This means that it makes no sense to serialize "
"the tensor content.");
} else {
LOG(ERROR)
<< "You're trying to serialize tensor with zero numel and no dtype. "
<< "This is a legacy behavior and it WILL BREAK. Contact PyTorch team "
<< "for details or see D10380678. Offending blob name: " << name;
}
TensorProto& proto = *proto_ptr;
proto.mutable_segment()->set_begin(chunkBegin);
proto.mutable_segment()->set_end(chunkBegin + chunkSize);
for (int i = 0; i < input.ndim(); ++i) {
proto.add_dims(input.dim(i));
}
const TensorProto::DataType data_type = TypeMetaToDataType(input.meta());
proto.set_data_type(data_type);
StoreDeviceDetail(input, &proto);
auto uniq_ptr = CreateContext(input.GetDevice());
// A lot of copypaste is error prone. Should we create a macro for this?
switch (data_type) {
case TensorProto_DataType_FLOAT:
detail::CopyToProtoAsIs(
chunkSize,
input.template data<float>() + chunkBegin,
proto.mutable_float_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_INT32:
detail::CopyToProtoAsIs(
chunkSize,
input.template data<int>() + chunkBegin,
proto.mutable_int32_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_BYTE:
LOG(FATAL) << "This should not happen. When serializing, "
"BYTE is deprecated and moved to UINT8.";
break;
case TensorProto_DataType_STRING: {
proto.mutable_string_data()->Reserve(chunkSize);
const string* content = input.template data<string>();
for (int i = chunkBegin; i < chunkBegin + chunkSize; ++i) {
proto.add_string_data(content[i]);
}
break;
}
case TensorProto_DataType_BOOL:
detail::CopyToProtoWithCast(
chunkSize,
input.template data<bool>() + chunkBegin,
proto.mutable_int32_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_UINT8:
detail::CopyToProtoWithCast(
chunkSize,
input.template data<uint8_t>() + chunkBegin,
proto.mutable_int32_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_INT8:
detail::CopyToProtoWithCast(
chunkSize,
input.template data<int8_t>() + chunkBegin,
proto.mutable_int32_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_UINT16:
detail::CopyToProtoWithCast(
chunkSize,
input.template data<uint16_t>() + chunkBegin,
proto.mutable_int32_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_INT16:
detail::CopyToProtoWithCast(
chunkSize,
input.template data<int16_t>() + chunkBegin,
proto.mutable_int32_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_INT64:
detail::CopyToProtoAsIs(
chunkSize,
input.template data<int64_t>() + chunkBegin,
proto.mutable_int64_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_FLOAT16: {
if (FLAGS_caffe2_serialize_fp16_as_bytes) {
const int kValue = 1;
CAFFE_ENFORCE_EQ(
reinterpret_cast<const char*>(&kValue)[0],
1,
"Serialization of FLOAT16 on big endian platform "
"is not written yet.");
unique_ptr<char[]> buffer(new char[2 * chunkSize]);
this->context_->template CopyToCPU<char>(
2 * chunkSize,
reinterpret_cast<const char*>(
input.template data<at::Half>() + chunkBegin),
buffer.get());
this->context_->FinishDeviceComputation();
proto.set_byte_data(buffer.release(), 2 * chunkSize);
} else {
detail::CopyToProtoWithCast(
chunkSize,
reinterpret_cast<const uint16_t*>(input.template data<at::Half>()) +
chunkBegin,
proto.mutable_int32_data(),
uniq_ptr.get());
}
} break;
case TensorProto_DataType_DOUBLE:
detail::CopyToProtoAsIs(
chunkSize,
input.template data<double>() + chunkBegin,
proto.mutable_double_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_UNDEFINED: {
proto.mutable_string_data()->Reserve(chunkSize);
if (chunkSize > 0) {
const char* raw_data = static_cast<const char*>(input.raw_data());
for (int i = chunkBegin; i < chunkBegin + chunkSize; ++i) {
proto.add_string_data(
SerializeBlob(raw_data + i * input.itemsize(), input.meta(), ""));
}
}
} break;
// Note: we intentially do not provide "default:" so if any new data types
// are added, the compiler should warn the user to add the case here.
}
}
int GetGPUIDForPointer(const void* ptr);
void TensorSerializer::StoreDeviceDetail(
const Tensor& input,
TensorProto* proto) {
ExtractDeviceOption(proto->mutable_device_detail(), input.GetDevice());
}
// The actual serialization registry objects.
C10_DEFINE_TYPED_REGISTRY(
BlobSerializerRegistry,
TypeIdentifier,
BlobSerializerBase,
std::unique_ptr);
C10_DEFINE_REGISTRY(BlobDeserializerRegistry, BlobDeserializerBase);
void DeserializeBlob(const string& content, Blob* result) {
BlobProto blob_proto;
CAFFE_ENFORCE(
blob_proto.ParseFromString(content),
"Cannot parse content into a BlobProto.");
DeserializeBlob(blob_proto, result);
}
void DeserializeBlob(const BlobProto& blob_proto, Blob* result) {
if (blob_proto.type() == kTensorBlobType) {
// This is a tensor object. Depending on the device type, we will
// use the corresponding TensorDeserializer.
auto deserializer = CreateDeserializer(
"Tensor" +
DeviceTypeName(blob_proto.tensor().device_detail().device_type()));
// Tensor's deserializer should always be registered, but we will double
// check if it is not null anyway.
CAFFE_ENFORCE(deserializer.get());
deserializer->Deserialize(blob_proto, result);
} else {
auto deserializer = CreateDeserializer(blob_proto.type());
CAFFE_ENFORCE(
deserializer.get(),
"No registered deserializer for type ",
blob_proto.type());
deserializer->Deserialize(blob_proto, result);
}
}
void TensorDeserializer::Deserialize(const BlobProto& blob_proto, Blob* blob) {
auto tensor_proto = blob_proto.tensor();
Deserialize(
tensor_proto,
BlobGetMutableTensor(
blob,
static_cast<DeviceType>(tensor_proto.device_detail().device_type())));
}
void TensorDeserializer::Deserialize(const TensorProto& proto, Tensor* tensor) {
// We create a local context for deserializing. Since Caffe2 contexts are
// usually lightweight, this should not involve too much overhead.
auto uniq_ptr = CreateContext(OptionToDevice(proto.device_detail()));
auto context = uniq_ptr.get();
context->SwitchToDevice(0);
vector<int64_t> dims;
for (const int64_t d : proto.dims()) {
dims.push_back(d);
}
tensor->Resize(dims);
int64_t chunkBegin = 0;
auto chunkEnd = tensor->size();
if (proto.has_segment()) {
chunkBegin = proto.segment().begin();
chunkEnd = proto.segment().end();
}
CAFFE_ENFORCE(
0 <= chunkBegin && chunkBegin <= chunkEnd && chunkEnd <= tensor->size(),
"Invalid chunk ",
chunkBegin,
' ',
chunkEnd,
" with total tensor size ",
tensor->size());
auto chunkSize = chunkEnd - chunkBegin;
switch (proto.data_type()) {
case TensorProto_DataType_FLOAT:
detail::CopyFromProtoAsIs(
chunkSize,
proto.float_data(),
tensor->template mutable_data<float>() + chunkBegin,
context);
break;
case TensorProto_DataType_INT32:
detail::CopyFromProtoAsIs(
chunkSize,
proto.int32_data(),
tensor->template mutable_data<int>() + chunkBegin,
context);
break;
case TensorProto_DataType_BYTE:
// Since BYTE stores the data in a string field instead of a repreated
// field we will have it special cased.
CAFFE_ENFORCE_EQ(
chunkSize, proto.byte_data().size(), "Incorrect proto field size.");
context->template CopyToCPU<uint8_t>(
chunkSize,
reinterpret_cast<const uint8_t*>(proto.byte_data().data()),
tensor->template mutable_data<uint8_t>() + chunkBegin);
break;
case TensorProto_DataType_STRING:
// Special handing of string because it is a non-fundamental type.
{
string* content = tensor->template mutable_data<string>();
for (int i = 0; i < chunkSize; ++i) {
content[i + chunkBegin] = proto.string_data(i);
}
}
break;
case TensorProto_DataType_BOOL:
detail::CopyFromProtoWithCast(
chunkSize,
proto.int32_data(),
tensor->template mutable_data<bool>() + chunkBegin,
context);
break;
case TensorProto_DataType_UINT8:
detail::CopyFromProtoWithCast(
chunkSize,
proto.int32_data(),
tensor->template mutable_data<uint8_t>() + chunkBegin,
context);
break;
case TensorProto_DataType_INT8:
detail::CopyFromProtoWithCast(
chunkSize,
proto.int32_data(),
tensor->template mutable_data<int8_t>() + chunkBegin,
context);
break;
case TensorProto_DataType_UINT16:
detail::CopyFromProtoWithCast(
chunkSize,
proto.int32_data(),
tensor->template mutable_data<uint16_t>() + chunkBegin,
context);
break;
case TensorProto_DataType_INT16:
detail::CopyFromProtoWithCast(
chunkSize,
proto.int32_data(),
tensor->template mutable_data<int16_t>() + chunkBegin,
context);
break;
case TensorProto_DataType_INT64:
detail::CopyFromProtoAsIs(
chunkSize,
proto.int64_data(),
tensor->template mutable_data<int64_t>() + chunkBegin,
context);
break;
case TensorProto_DataType_FLOAT16:
if (proto.has_byte_data()) {
const int kValue = 1;
CAFFE_ENFORCE_EQ(
reinterpret_cast<const char*>(&kValue)[0],
1,
"Serialization of FLOAT16 on big endian platform "
"is not written yet.");
CAFFE_ENFORCE_EQ(
2 * chunkSize,
proto.byte_data().size(),
"Incorrect proto field size.");
context->template CopyToCPU<at::Half>(
chunkSize,
reinterpret_cast<const at::Half*>(proto.byte_data().data()),
tensor->template mutable_data<at::Half>() + chunkBegin);
} else {
// Backward compatibility with models which used int32_data field
detail::CopyFromProtoWithCast(
chunkSize,
proto.int32_data(),
reinterpret_cast<uint16_t*>(
tensor->template mutable_data<at::Half>()) +
chunkBegin,
context);
}
break;
case TensorProto_DataType_DOUBLE:
detail::CopyFromProtoAsIs(
chunkSize,
proto.double_data(),
tensor->template mutable_data<double>() + chunkBegin,
context);
break;
case TensorProto_DataType_UNDEFINED: {
Blob temp_blob;
void* raw_ptr = nullptr;
for (int i = 0; i < chunkSize; ++i) {
DeserializeBlob(proto.string_data(i), &temp_blob);
if (i == 0) {
raw_ptr = tensor->raw_mutable_data(temp_blob.meta());
}
temp_blob.meta().copy()(
temp_blob.GetRaw(),
static_cast<char*>(raw_ptr) +
(i + chunkBegin) * temp_blob.meta().itemsize(),
1);
}
} break;
// Note: we intentially do not provide "default:" so if any new data types
}
context->FinishDeviceComputation();
}
////////////////////////////////////////////////////////////////////////////////
// Serialization Helpers
////////////////////////////////////////////////////////////////////////////////
std::string SerializeAsString_EnforceCheck(
const google::protobuf::MessageLite& msg,
const char* error_location) {
std::string serialize_output;
bool result = msg.SerializeToString(&serialize_output);
if (!error_location) {
CAFFE_ENFORCE(result, "protobuf::SerializeToString failed");
} else {
CAFFE_ENFORCE(result,
"protobuf::SerializeToString failed for ", error_location);
}
return serialize_output;
}
namespace {
// Serialize Tensor
REGISTER_BLOB_SERIALIZER((TypeMeta::Id<Tensor>()), TensorSerializer);
REGISTER_BLOB_DESERIALIZER(TensorCPU, TensorDeserializer);
// Serialize std::string
REGISTER_BLOB_SERIALIZER((TypeMeta::Id<std::string>()), StringSerializer);
REGISTER_BLOB_DESERIALIZER(std::string, StringDeserializer);
} // namespace
} // namespace caffe2