mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
See #145101 for details. Pull Request resolved: https://github.com/pytorch/pytorch/pull/145141 Approved by: https://github.com/bobrenjc93
130 lines
5.9 KiB
Python
130 lines
5.9 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates
|
|
import warnings
|
|
from fnmatch import fnmatch
|
|
from typing import Optional, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh
|
|
from torch.distributed.tensor.parallel._utils import _validate_tp_mesh_dim
|
|
from torch.distributed.tensor.parallel.style import ParallelStyle
|
|
|
|
|
|
__all__ = ["parallelize_module"]
|
|
|
|
|
|
def parallelize_module( # type: ignore[return]
|
|
module: nn.Module,
|
|
device_mesh: Optional[DeviceMesh] = None,
|
|
parallelize_plan: Optional[Union[ParallelStyle, dict[str, ParallelStyle]]] = None,
|
|
*,
|
|
src_data_rank: Optional[int] = 0,
|
|
) -> nn.Module:
|
|
"""
|
|
Apply Tensor Parallelism in PyTorch by parallelizing modules or sub-modules based on a user-specified plan.
|
|
|
|
We parallelize module or sub_modules based on a parallelize_plan. The parallelize_plan contains
|
|
:class:`ParallelStyle`, which indicates how user wants the module or sub_module
|
|
to be parallelized.
|
|
|
|
User can also specify different parallel style per module fully qualified name (FQN).
|
|
|
|
Note that ``parallelize_module`` only accepts a 1-D :class:`DeviceMesh`, if you have a 2-D or N-D :class:`DeviceMesh`,
|
|
slice the DeviceMesh to a 1-D sub DeviceMesh first then pass to this API(i.e. ``device_mesh[\"tp\"]``)
|
|
|
|
Args:
|
|
module (:class:`nn.Module`):
|
|
Module to be parallelized.
|
|
device_mesh (:class:`DeviceMesh`, optional):
|
|
Object which describes the mesh topology of devices for the DTensor.
|
|
If not specified, the call must be under a DeviceMesh context.
|
|
parallelize_plan (Union[:class:`ParallelStyle`, Dict[str, :class:`ParallelStyle`]], optional):
|
|
The plan used to parallelize the module. It can be either a
|
|
:class:`ParallelStyle` object which contains how we prepare
|
|
input/output for Tensor Parallelism or it can be a dict of module
|
|
FQN and its corresponding :class:`ParallelStyle` object. If not
|
|
specified, the call will do nothing at the moment.
|
|
Keyword args:
|
|
src_data_rank (int, optional): the rank of the source data for the logical/global tensor, it is used by
|
|
:meth:`distribute_tensor` to scatter/broadcast the shards/replicas to other ranks. By default,
|
|
we use ``group_rank=0`` on each DeviceMesh dimension as the source data to preserve the single-device
|
|
semantic. If passing ``None`` explicitly, :meth:`parallelize_module` simply uses its local data instead
|
|
of trying to preserve the single-device semantic via scatter/broadcast. Default: 0
|
|
Return:
|
|
A :class:`nn.Module` object parallelized.
|
|
|
|
Example::
|
|
>>> # xdoctest: +SKIP("distributed")
|
|
>>> from torch.distributed.tensor.parallel import parallelize_module, ColwiseParallel
|
|
>>> from torch.distributed.device_mesh import init_device_mesh
|
|
>>>
|
|
>>> # Define the module.
|
|
>>> m = Model(...)
|
|
>>> tp_mesh = init_device_mesh("cuda", (8,))
|
|
>>> m = parallelize_module(m, tp_mesh, {"w1": ColwiseParallel(), "w2": RowwiseParallel()})
|
|
>>>
|
|
|
|
.. note:: For complex module architecture like Attention, MLP layers, we recommend composing
|
|
different ParallelStyles together (i.e. ``ColwiseParallel`` and ``RowwiseParallel``) and pass
|
|
as a parallelize_plan, to achieves the desired sharding computation.
|
|
"""
|
|
torch._C._log_api_usage_once("torch.distributed.tensor.parallel.parallelize_module")
|
|
|
|
device_mesh = device_mesh or _mesh_resources.get_current_mesh()
|
|
_validate_tp_mesh_dim(device_mesh)
|
|
|
|
if parallelize_plan is None:
|
|
warnings.warn(
|
|
"No parallelize_plan is provided and auto-parallel is not supported "
|
|
"at the moment, so this parallelize_module call will do nothing."
|
|
)
|
|
return module
|
|
|
|
# note: The RNG tracker will be initialized in distribute_tensor() call if it hasn't
|
|
# been initialized.
|
|
|
|
if isinstance(parallelize_plan, ParallelStyle):
|
|
parallelize_plan.src_data_rank = src_data_rank
|
|
return parallelize_plan._apply(module, device_mesh)
|
|
elif isinstance(parallelize_plan, dict):
|
|
for module_path, parallelize_style in parallelize_plan.items():
|
|
path_splits = module_path.split(".")
|
|
if len(path_splits) == 0:
|
|
raise ValueError(
|
|
"Expect module path to be non-empty, but got empty string!"
|
|
)
|
|
while path_splits:
|
|
atom = path_splits.pop(0)
|
|
matched_children = filter(
|
|
# `t[0]` is child name
|
|
lambda t: fnmatch(t[0], atom),
|
|
module.named_children(),
|
|
)
|
|
# apply the plan to all matched submodules
|
|
for _, submodule in matched_children:
|
|
if path_splits:
|
|
# we haven't reached the leaf, apply in dict style
|
|
leaf_path = ".".join(
|
|
path_splits
|
|
) # rest of the path after `atom`
|
|
parallelize_module(
|
|
submodule,
|
|
device_mesh,
|
|
{leaf_path: parallelize_style},
|
|
src_data_rank=src_data_rank,
|
|
)
|
|
else:
|
|
# otherwise, directly apply style to this submodule
|
|
parallelize_module(
|
|
submodule,
|
|
device_mesh,
|
|
parallelize_style,
|
|
src_data_rank=src_data_rank,
|
|
)
|
|
return module
|
|
else:
|
|
raise TypeError( # pyre-ignore[7]
|
|
"Expect Union[ParallelStyle, Dict[str, ParallelStyle]] for"
|
|
f" parallelize_plan, {type(parallelize_plan)} found!"
|
|
)
|