mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/48871 Test Plan: Imported from OSS Reviewed By: ansley Differential Revision: D25351588 Pulled By: jamesr66a fbshipit-source-id: 4c6fd341100594c204a35d6a3aab756e3e22297b
263 lines
11 KiB
Python
263 lines
11 KiB
Python
# Nodes represent a definition of a value in our graph of operators.
|
|
from typing import TYPE_CHECKING, Union, Callable, Any, Tuple, List, Optional, Dict
|
|
from .immutable_collections import immutable_dict, immutable_list
|
|
import torch
|
|
|
|
if TYPE_CHECKING:
|
|
from .graph import Graph
|
|
|
|
BaseArgumentTypes = Union[str, int, float, bool, torch.dtype, torch.Tensor]
|
|
base_types = BaseArgumentTypes.__args__ # type: ignore
|
|
|
|
Target = Union[Callable[..., Any], str]
|
|
|
|
Argument = Optional[Union[
|
|
Tuple[Any, ...], # actually Argument, but mypy can't represent recursive types
|
|
List[Any], # actually Argument
|
|
Dict[str, Any], # actually Argument
|
|
slice, # Slice[Argument, Argument, Argument], but slice is not a templated type in typing
|
|
'Node',
|
|
BaseArgumentTypes
|
|
]]
|
|
|
|
class Node:
|
|
"""
|
|
``Node`` is the data structure that represents individual operations within
|
|
a ``Graph``. For the most part, Nodes represent callsites to various entities,
|
|
such as operators, methods, and Modules (some exceptions include nodes that
|
|
specify function inputs and outputs). Each ``Node`` has a function specified
|
|
by its ``op`` property. The ``Node`` semantics for each value of ``op`` are as follows:
|
|
|
|
- ``placeholder`` represents a function input. The ``name`` attribute specifies the name this value will take on.
|
|
``target`` is similarly the name of the argument. ``args`` holds either: 1) nothing, or 2) a single argument
|
|
denoting the default parameter of the function input. ``kwargs`` is don't-care. Placeholders correspond to
|
|
the function parameters (e.g. ``x``) in the graph printout.
|
|
- ``get_attr`` retrieves a parameter from the module hierarchy. ``name`` is similarly the name the result of the
|
|
fetch is assigned to. ``target`` is the fully-qualified name of the parameter's position in the module hierarchy.
|
|
``args`` and ``kwargs`` are don't-care
|
|
- ``call_function`` applies a free function to some values. ``name`` is similarly the name of the value to assign
|
|
to. ``target`` is the function to be applied. ``args`` and ``kwargs`` represent the arguments to the function,
|
|
following the Python calling convention
|
|
- ``call_module`` applies a module in the module hierarchy's ``forward()`` method to given arguments. ``name`` is
|
|
as previous. ``target`` is the fully-qualified name of the module in the module hierarchy to call.
|
|
``args`` and ``kwargs`` represent the arguments to invoke the module on, *including the self argument*.
|
|
- ``call_method`` calls a method on a value. ``name`` is as similar. ``target`` is the string name of the method
|
|
to apply to the ``self`` argument. ``args`` and ``kwargs`` represent the arguments to invoke the module on,
|
|
*including the self argument*
|
|
- ``output`` contains the output of the traced function in its ``args[0]`` attribute. This corresponds to the "return" statement
|
|
in the Graph printout.
|
|
"""
|
|
def __init__(self, graph: 'Graph', name: str, op: str, target: 'Target',
|
|
args: Tuple['Argument', ...], kwargs: Dict[str, 'Argument'],
|
|
type : Optional[Any] = None) -> None:
|
|
self.graph = graph
|
|
self.name = name # unique name of value being created
|
|
assert op in ['placeholder', 'call_method', 'call_module', 'call_function', 'get_attr', 'output', 'root']
|
|
self.op = op # the kind of operation = placeholder|call_method|call_module|call_function|get_attr
|
|
if op in ['call_method', 'call_module']:
|
|
assert isinstance(target, str)
|
|
self.target = target # for method/module/function, the name of the method/module/function/attr
|
|
# being invoked, e.g add, layer1, or torch.add
|
|
|
|
self._uses : Dict[Node, None] = {}
|
|
self._update_args_kwargs(map_arg(args, lambda x: x), map_arg(kwargs, lambda x: x)) # type: ignore
|
|
|
|
# All of the nodes that use the value produced by this Node
|
|
# Note one user may correspond to several uses, e.g. the node fo ``x + x``
|
|
# would appear once here, but represents two uses.
|
|
#
|
|
# Is a dict to act as an "ordered set". Keys are significant, value dont-care
|
|
self.users : Dict['Node', None] = {}
|
|
# Type expression representing the output value of this node.
|
|
# This should contain the same class of Type objects that would appear
|
|
# as type annotations for function inputs/outputs.
|
|
#
|
|
# For placeholder nodes, this value will be used to type-annotate the
|
|
# generated function parameters.
|
|
# For the return ndoe, this value will be used to type-annotate the
|
|
# generated function return type. (Note this is a special case. ``return``
|
|
# does not produce a value, it's more of a notation. Thus, this value
|
|
# describes the type of args[0] in the ``return`` node.
|
|
self.type : Optional[Any] = type
|
|
self._prev = self
|
|
self._next = self
|
|
self._erased = False
|
|
|
|
@property
|
|
def next(self) -> 'Node':
|
|
"""
|
|
Returns the next ``Node`` in the linked list of Nodes.
|
|
|
|
Returns:
|
|
|
|
The next ``Node`` in the linked list of Nodes.
|
|
"""
|
|
return self._next
|
|
|
|
@property
|
|
def prev(self) -> 'Node':
|
|
"""
|
|
Returns the previous ``Node`` in the linked list of Nodes.
|
|
|
|
Returns:
|
|
|
|
The previous ``Node`` in the linked list of Nodes.
|
|
"""
|
|
return self._prev
|
|
|
|
def prepend(self, x: 'Node') -> None:
|
|
"""
|
|
Insert x before this node in the list of nodes in the graph. Example::
|
|
|
|
Before: p -> self
|
|
bx -> x -> ax
|
|
After: p -> x -> self
|
|
bx -> ax
|
|
|
|
Args:
|
|
x (Node): The node to put before this node. Must be a member of the same graph.
|
|
"""
|
|
assert self.graph == x.graph, "Attempting to move a Node into a different Graph"
|
|
x._remove_from_list()
|
|
p = self._prev
|
|
p._next, x._prev = x, p
|
|
x._next, self._prev = self, x
|
|
|
|
def append(self, x: 'Node') -> None:
|
|
"""
|
|
Insert x after this node in the list of nodes in the graph.
|
|
Equvalent to ``self.next.prepend(x)``
|
|
|
|
Args:
|
|
x (Node): The node to put after this node. Must be a member of the same graph.
|
|
"""
|
|
self._next.prepend(x)
|
|
|
|
def _remove_from_list(self):
|
|
p, n = self._prev, self._next
|
|
p._next, n._prev = n, p
|
|
|
|
@property
|
|
def args(self) -> Tuple[Argument, ...]:
|
|
"""
|
|
The tuple of arguments to this ``Node``. The interpretation of arguments
|
|
depends on the node's opcode. See the :class:`Node` docstring for more
|
|
information.
|
|
|
|
Assignment to this property is allowed. All accounting of uses and users
|
|
is updated automatically on assignment.
|
|
"""
|
|
return self._args
|
|
|
|
@args.setter
|
|
def args(self, a : Tuple[Argument, ...]):
|
|
"""
|
|
Set the tuple of arguments to this Node. The interpretation of arguments
|
|
depends on the node's opcode. See the ``fx.Graph`` docstring for more
|
|
information.
|
|
"""
|
|
self._update_args_kwargs(map_arg(a, lambda x: x), self._kwargs) # type: ignore
|
|
|
|
@property
|
|
def kwargs(self) -> Dict[str, Argument]:
|
|
"""
|
|
The dict of keyword arguments to this ``Node``. The interpretation of arguments
|
|
depends on the node's opcode. See the :class:`Node` docstring for more
|
|
information.
|
|
|
|
Assignment to this property is allowed. All accounting of uses and users
|
|
is updated automatically on assignment.
|
|
"""
|
|
return self._kwargs
|
|
|
|
@kwargs.setter
|
|
def kwargs(self, k : Dict[str, Argument]):
|
|
"""
|
|
Set the dict of kwargs to this Node. The interpretation of arguments
|
|
depends on the node's opcode. See the ``fx.Graph`` docstring for more
|
|
information.
|
|
"""
|
|
self._update_args_kwargs(self._args, map_arg(k, lambda x: x)) # type: ignore
|
|
|
|
@property
|
|
def all_input_nodes(self) -> List['Node']:
|
|
"""
|
|
Return all Nodes that are inputs to this Node. This is equivalent to
|
|
iterating over ``args`` and ``kwargs`` and only collecting the values that
|
|
are Nodes.
|
|
|
|
Returns:
|
|
|
|
List of ``Nodes`` that appear in the ``args`` and ``kwargs`` of this
|
|
``Node``, in that order.
|
|
"""
|
|
all_nodes : List['Node'] = []
|
|
map_arg(self.args, lambda n: all_nodes.append(n))
|
|
map_arg(self.kwargs, lambda n: all_nodes.append(n))
|
|
return all_nodes
|
|
|
|
def _update_args_kwargs(self, new_args : Tuple[Argument, ...], new_kwargs : Dict[str, Argument]):
|
|
"""
|
|
This API is internal. Do *not* call it directly.
|
|
"""
|
|
self._args = new_args
|
|
self._kwargs = new_kwargs
|
|
|
|
for old_use in self._uses.keys():
|
|
old_use.users.pop(self)
|
|
|
|
self._uses = {}
|
|
map_arg(self._args, lambda n: self._uses.setdefault(n))
|
|
map_arg(self._kwargs, lambda n: self._uses.setdefault(n))
|
|
|
|
for new_use in self._uses.keys():
|
|
new_use.users.setdefault(self)
|
|
|
|
def __repr__(self) -> str:
|
|
return self.name
|
|
|
|
def replace_all_uses_with(self, replace_with : 'Node') -> List['Node']:
|
|
"""
|
|
Replace all uses of ``self`` in the Graph with the Node ``replace_with``.
|
|
|
|
Args:
|
|
|
|
replace_with (Node): The node to replace all uses of ``self`` with.
|
|
|
|
Returns:
|
|
|
|
The list of Nodes on which this change was made.
|
|
"""
|
|
to_process = list(self.users)
|
|
for use_node in to_process:
|
|
def maybe_replace_node(n : Node) -> Node:
|
|
if n == self:
|
|
return replace_with
|
|
else:
|
|
return n
|
|
|
|
new_args = map_arg(use_node.args, maybe_replace_node)
|
|
new_kwargs = map_arg(use_node.kwargs, maybe_replace_node)
|
|
assert isinstance(new_args, tuple)
|
|
assert isinstance(new_kwargs, dict)
|
|
use_node._update_args_kwargs(new_args, new_kwargs)
|
|
|
|
assert len(self.users) == 0
|
|
return to_process
|
|
|
|
|
|
def map_arg(a: Argument, fn: Callable[[Node], Argument]) -> Argument:
|
|
""" Apply fn to each Node appearing arg. arg may be a list, tuple, slice, or dict with string keys. """
|
|
if isinstance(a, tuple):
|
|
return tuple(map_arg(elem, fn) for elem in a)
|
|
if isinstance(a, list):
|
|
return immutable_list(map_arg(elem, fn) for elem in a)
|
|
elif isinstance(a, dict):
|
|
return immutable_dict((k, map_arg(v, fn)) for k, v in a.items())
|
|
elif isinstance(a, slice):
|
|
return slice(map_arg(a.start, fn), map_arg(a.stop, fn), map_arg(a.step, fn))
|
|
elif isinstance(a, Node):
|
|
return fn(a)
|
|
else:
|
|
return a
|