mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
This reverts commit b576a8c318.
Reverted https://github.com/pytorch/pytorch/pull/139184 on behalf of https://github.com/clee2000 due to Failing internally when trying to pickle distributed test files D67098795 ([comment](https://github.com/pytorch/pytorch/pull/139184#issuecomment-2539610187))
67 lines
2.0 KiB
Python
67 lines
2.0 KiB
Python
# Owner(s): ["oncall: distributed"]
|
|
|
|
import sys
|
|
|
|
import torch
|
|
from torch import distributed as dist
|
|
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
|
from torch.nn import Linear, Module, Sequential
|
|
from torch.optim import SGD
|
|
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
|
|
from torch.testing._internal.common_fsdp import FSDPTest
|
|
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
|
|
|
|
|
|
if not dist.is_available():
|
|
print("Distributed not available, skipping tests", file=sys.stderr)
|
|
sys.exit(0)
|
|
|
|
if TEST_WITH_DEV_DBG_ASAN:
|
|
print(
|
|
"Skip dev-asan as torch + multiprocessing spawn have known issues",
|
|
file=sys.stderr,
|
|
)
|
|
sys.exit(0)
|
|
|
|
|
|
class InnerModel(Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.layers = Sequential(FSDP(Linear(5, 5)))
|
|
|
|
def forward(self, x):
|
|
return self.layers(x)
|
|
|
|
|
|
class TestMultipleWrapping(FSDPTest):
|
|
@skip_if_lt_x_gpu(2)
|
|
def test_multiple_wrapping(self):
|
|
"""
|
|
This test simulates wrapping the module after training to run inference.
|
|
This is required in cases where later in a session, the model is wrapped again in FSDP but
|
|
contains nested FSDP wrappers within the module.
|
|
"""
|
|
inner_model = InnerModel()
|
|
model = FSDP(inner_model).cuda()
|
|
optim = SGD(model.parameters(), lr=0.1)
|
|
|
|
for i in range(3):
|
|
input = torch.rand((1, 5), dtype=torch.float).cuda()
|
|
input.requires_grad = True
|
|
output = model(input)
|
|
output.sum().backward()
|
|
optim.step()
|
|
optim.zero_grad()
|
|
input = torch.rand((1, 5), dtype=torch.float).cuda()
|
|
output = model(input)
|
|
|
|
# second time to rewrap the inner model
|
|
rewrapped_model = FSDP(inner_model).cuda()
|
|
rewrapped_output = rewrapped_model(input)
|
|
|
|
self.assertEqual(output, rewrapped_output)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|