mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
* Update comments and size logic * Record stack traces during JIT tracing * Use string helper functions and AutoGIL * Use SourceLocation object instead of storing in debugName * Address zdevito comments * Address comments
293 lines
8.6 KiB
C++
293 lines
8.6 KiB
C++
#include <Python.h>
|
|
|
|
#include "torch/csrc/jit/export.h"
|
|
#include "torch/csrc/onnx/onnx.h"
|
|
#include "torch/csrc/autograd/symbolic.h"
|
|
#include "torch/csrc/utils/python_numbers.h"
|
|
#include "torch/csrc/utils/python_strings.h"
|
|
#include "torch/csrc/Exceptions.h"
|
|
|
|
#include "torch/csrc/autograd/functions/convolution.h"
|
|
#include "torch/csrc/utils/functional.h"
|
|
#include <ATen/ATen.h>
|
|
|
|
#include <fstream>
|
|
#include <pybind11/pybind11.h>
|
|
#include <pybind11/stl.h>
|
|
|
|
namespace py = pybind11;
|
|
|
|
namespace torch { namespace jit {
|
|
|
|
namespace {
|
|
|
|
std::string node_name(Node* n) {
|
|
return n->uniqueName();
|
|
}
|
|
|
|
|
|
void encodeGraph(onnx::GraphProto * p_g, const std::shared_ptr<Graph> & g, const std::vector<at::Tensor> & initializers);
|
|
|
|
void encodeTensor(onnx::TensorProto * p, const at::Tensor & tensor) {
|
|
for(auto d : tensor.sizes()) {
|
|
p->add_dims(d);
|
|
}
|
|
at::ScalarType at_type;
|
|
onnx::DataType onnx_type;
|
|
switch(tensor.type().scalarType()) {
|
|
case at::kDouble:
|
|
onnx_type = onnx::kDOUBLE;
|
|
at_type = at::kDouble;
|
|
break;
|
|
case at::kFloat:
|
|
onnx_type = onnx::kFLOAT;
|
|
at_type = at::kFloat;
|
|
break;
|
|
case at::kHalf:
|
|
onnx_type = onnx::kFLOAT16;
|
|
at_type = at::kHalf;
|
|
break;
|
|
case at::kByte:
|
|
case at::kChar:
|
|
onnx_type = onnx::kINT8;
|
|
at_type = at::kByte;
|
|
break;
|
|
case at::kShort:
|
|
onnx_type = onnx::kINT16;
|
|
at_type = at::kShort;
|
|
break;
|
|
case at::kInt:
|
|
onnx_type = onnx::kINT32;
|
|
at_type = at::kInt;
|
|
break;
|
|
case at::kLong:
|
|
onnx_type = onnx::kINT64;
|
|
at_type = at::kLong;
|
|
break;
|
|
default:
|
|
torch::barf("unexpected tensor scalar type");
|
|
break;
|
|
}
|
|
p->set_data_type(onnx_type);
|
|
at::Tensor cont = tensor.toType(at::CPU(at_type)).contiguous();
|
|
p->set_raw_data(cont);
|
|
}
|
|
|
|
void addAttribute(onnx::NodeProto * n_p, jit::Node * n, jit::Symbol name) {
|
|
auto attr = n_p->add_attribute();
|
|
attr->set_name(jit::symbolToString(name));
|
|
switch(n->kindOf(name)) {
|
|
case AttributeKind::f:
|
|
attr->set_f(n->f(name));
|
|
attr->set_type(onnx::aFLOAT);
|
|
break;
|
|
case AttributeKind::fs:
|
|
attr->set_type(onnx::aFLOATS);
|
|
for(auto & v : n->fs(name))
|
|
attr->add_floats(v);
|
|
break;
|
|
case AttributeKind::i:
|
|
attr->set_type(onnx::aINT);
|
|
attr->set_i(n->i(name));
|
|
break;
|
|
case AttributeKind::is:
|
|
attr->set_type(onnx::aINTS);
|
|
for(auto & v : n->is(name))
|
|
attr->add_ints(v);
|
|
break;
|
|
case AttributeKind::s:
|
|
attr->set_type(onnx::aSTRING);
|
|
attr->set_s(n->s(name));
|
|
break;
|
|
case AttributeKind::ss:
|
|
attr->set_type(onnx::aSTRINGS);
|
|
for(auto & v : n->ss(name))
|
|
attr->add_strings(v);
|
|
break;
|
|
case AttributeKind::t: {
|
|
attr->set_type(onnx::aTENSOR);
|
|
auto t = attr->mutable_t();
|
|
encodeTensor(t, n->t(name));
|
|
} break;
|
|
case AttributeKind::ts:
|
|
attr->set_type(onnx::aTENSORS);
|
|
for(auto & v : n->ts(name)) {
|
|
auto t = attr->add_tensors();
|
|
encodeTensor(t, v);
|
|
}
|
|
break;
|
|
case AttributeKind::g: {
|
|
attr->set_type(onnx::aGRAPH);
|
|
auto g = attr->mutable_g();
|
|
encodeGraph(g, n->g(name), {});
|
|
} break;
|
|
case AttributeKind::gs:
|
|
attr->set_type(onnx::aGRAPHS);
|
|
for(auto & v : n->gs(name)) {
|
|
auto g = attr->add_graphs();
|
|
encodeGraph(g, v, {});
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void encodeTypeProtoTensorType(onnx::TypeProtoTensorTypeProto* tensor_type, Node* n) {
|
|
onnx::TypeProtoTensorShapeProto* shape = tensor_type->mutable_shape();
|
|
JIT_ASSERT(n->hasType());
|
|
TensorType* node_type = n->type()->expect<TensorType>();
|
|
const std::vector<std::int64_t>& sizes = node_type->sizes();
|
|
for (std::int64_t s : sizes) {
|
|
shape->add_dim(s);
|
|
}
|
|
onnx::DataType onnx_type;
|
|
switch(node_type->scalarType()) {
|
|
case at::kDouble:
|
|
onnx_type = onnx::kDOUBLE;
|
|
break;
|
|
case at::kFloat:
|
|
onnx_type = onnx::kFLOAT;
|
|
break;
|
|
case at::kHalf:
|
|
onnx_type = onnx::kFLOAT16;
|
|
break;
|
|
case at::kByte:
|
|
case at::kChar:
|
|
onnx_type = onnx::kINT8;
|
|
break;
|
|
case at::kShort:
|
|
onnx_type = onnx::kINT16;
|
|
break;
|
|
case at::kInt:
|
|
onnx_type = onnx::kINT32;
|
|
break;
|
|
case at::kLong:
|
|
onnx_type = onnx::kINT64;
|
|
break;
|
|
default:
|
|
torch::barf("unexpected tensor scalar type");
|
|
break;
|
|
}
|
|
tensor_type->set_data_type(onnx_type);
|
|
}
|
|
|
|
void encodeValueInfo(onnx::ValueInfoProto* v, Node* n) {
|
|
v->set_name(node_name(n));
|
|
onnx::TypeProto* t = v->mutable_type();
|
|
onnx::TypeProtoTensorTypeProto* tensor_type = t->mutable_tensor_type();
|
|
encodeTypeProtoTensorType(tensor_type, n);
|
|
}
|
|
|
|
void encodeGraph(onnx::GraphProto * p_g, const std::shared_ptr<Graph> & g, const std::vector<at::Tensor> & initializers) {
|
|
JIT_ASSERT(p_g != nullptr);
|
|
p_g->set_name("torch-jit-export");
|
|
|
|
for (auto input : g->inputs()) {
|
|
onnx::ValueInfoProto* v = p_g->add_input();
|
|
encodeValueInfo(v, input);
|
|
}
|
|
for (auto output : g->outputs()) {
|
|
onnx::ValueInfoProto* v = p_g->add_output();
|
|
encodeValueInfo(v, output);
|
|
}
|
|
for (auto node : g->nodes()) {
|
|
if (node->kind() == kSelect) {
|
|
// No select nodes in ONNX: instead we make use
|
|
// of the select invariant
|
|
continue;
|
|
}
|
|
if (node->kind() == kUndefined && node->uses().empty()) {
|
|
// Undefined nodes never show up in ONNX; they're just a tool
|
|
// to help symbolics do the right thing.
|
|
continue;
|
|
}
|
|
auto p_n = p_g->add_node();
|
|
if (node->getSourceLocation()) {
|
|
p_n->set_doc_string(node->getSourceLocation()->python_traceback);
|
|
}
|
|
for(auto input : node->inputs()) {
|
|
p_n->add_input(node_name(input));
|
|
}
|
|
for(auto output : node->outputs()) {
|
|
p_n->add_output(node_name(output));
|
|
}
|
|
p_n->set_op_type(symbolToString(node->kind()));
|
|
for(auto attr_name : node->attributeNames()) {
|
|
addAttribute(p_n, node, attr_name);
|
|
}
|
|
}
|
|
auto num_initializers = initializers.size();
|
|
int inputs_count = g->inputs().size() - num_initializers;
|
|
for (auto & tensor : initializers) {
|
|
// TODO: stop using positions to determine which initializers
|
|
// match to which inputs
|
|
std::string name = p_g->get_input_name(inputs_count++);
|
|
auto p = p_g->add_initializer();
|
|
p->set_name(name);
|
|
encodeTensor(p, tensor);
|
|
}
|
|
}
|
|
|
|
void encodeModel(onnx::ModelProto* p_m, const std::shared_ptr<Graph>& g,
|
|
const std::vector<at::Tensor>& initializers) {
|
|
onnx::GraphProto* p_g = p_m->mutable_graph();
|
|
encodeGraph(p_g, g, initializers);
|
|
}
|
|
|
|
void validateGraph(const std::shared_ptr<Graph>& graph) {
|
|
for (auto it = graph->begin(); it != graph->end(); ++it) {
|
|
// Macro'ed so we get a marginally better line number on failed export
|
|
#define FAIL_EXPORT(name) \
|
|
throw std::runtime_error(std::string("ONNX export failed: ") + name + "\n\nGraph we tried to export:\n" + graph->toString());
|
|
IR_IF(*it, CppOp)
|
|
auto cpp_node = static_cast<torch::jit::CppOp*>(value);
|
|
FAIL_EXPORT("Couldn't export C++ operator " + cpp_node->name())
|
|
IR_ELSEIF(PythonOp)
|
|
auto py_node = static_cast<torch::jit::PythonOp*>(value);
|
|
FAIL_EXPORT("Couldn't export Python operator " + py_node->name())
|
|
IR_ELSE()
|
|
// Expand is not a real ONNX operator yet, reject it
|
|
if (it->kind() == kExpand) {
|
|
FAIL_EXPORT("Couldn't export operator expand; this usually means you used a form of broadcasting that ONNX does not currently support");
|
|
}
|
|
if (it->kind() == kUndefined) {
|
|
FAIL_EXPORT("Couldn't export undefined constant tensor (please file an issue)")
|
|
}
|
|
std::string n = symbolToString(it->kind());
|
|
if (n.size() == 0) {
|
|
FAIL_EXPORT("Operator to export had empty name (please file an issue)")
|
|
}
|
|
// NB: Upper-case is ONNX, lower-case is ATen. If we want to be more
|
|
// robust, need to explicitly flag operators as ONNX or ATen
|
|
if (!isupper(n[0])) {
|
|
FAIL_EXPORT("Couldn't export operator " + n);
|
|
}
|
|
IR_END()
|
|
#undef FAIL_EXPORT
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
std::string ExportGraph(const std::shared_ptr<Graph>& graph,
|
|
const std::vector<at::Tensor> & initializers) {
|
|
|
|
validateGraph(graph);
|
|
|
|
onnx::ModelProto model_proto;
|
|
// Set up nanopb callbacks and compute the amount of space needed to store
|
|
// the resulting protobuf
|
|
encodeModel(&model_proto, graph, initializers);
|
|
|
|
size_t out_size;
|
|
pb_get_encoded_size(&out_size, onnx_ModelProto_fields, &model_proto.proto);
|
|
|
|
// Allocate storage and export the graph
|
|
std::string out(out_size, '\0');
|
|
pb_ostream_t ostream = pb_ostream_from_buffer(reinterpret_cast<pb_byte_t *>(&out[0]), out_size);
|
|
pb_encode(&ostream, onnx_ModelProto_fields, &model_proto.proto);
|
|
|
|
return out;
|
|
}
|
|
|
|
}}
|