mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: This PR implements the necessary hooks/stubs/enums/etc for complete ONNX Runtime (ORT) Eager Mode integration. The actual extension will live out of tree at https://github.com/pytorch/ort. We have been [working on this at Microsoft](https://github.com/microsoft/onnxruntime-pytorch/tree/eager-ort/torch_onnxruntime) for the last few months, and are finally ready to contribute the PyTorch core changes upstream (nothing major or exciting, just the usual boilerplate for adding new backends). The ORT backend will allow us to ferry [almost] all torch ops into granular ONNX kernels that ORT will eagerly execute against any devices it supports (therefore, we only need a single ORT backend from a PyTorch perspective). Pull Request resolved: https://github.com/pytorch/pytorch/pull/58248 Reviewed By: astaff Differential Revision: D30344992 Pulled By: albanD fbshipit-source-id: 69082b32121246340d686e16653626114b7714b2
525 lines
17 KiB
C++
525 lines
17 KiB
C++
#include <torch/csrc/python_headers.h>
|
|
|
|
#include <c10/core/DeviceType.h>
|
|
#include <c10/core/InferenceMode.h>
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
#include <torch/csrc/autograd/autograd.h>
|
|
#include <torch/csrc/autograd/grad_mode.h>
|
|
#include <ATen/autocast_mode.h>
|
|
#include <torch/csrc/autograd/profiler.h>
|
|
#include <torch/csrc/autograd/python_function.h>
|
|
#include <torch/csrc/autograd/function.h>
|
|
#include <torch/csrc/autograd/saved_variable.h>
|
|
#include <torch/csrc/autograd/python_saved_variable_hooks.h>
|
|
#include <torch/csrc/autograd/utils/wrap_outputs.h>
|
|
#include <torch/csrc/autograd/utils/python_arg_parsing.h>
|
|
#include <torch/csrc/utils/pycfunction_helpers.h>
|
|
#include <c10/core/ScalarType.h>
|
|
|
|
#include <set>
|
|
#include <unordered_set>
|
|
|
|
struct DisableTorchDispatch {
|
|
DisableTorchDispatch() : guard_(c10::DispatchKey::Python) {
|
|
}
|
|
c10::impl::ExcludeDispatchKeyGuard guard_;
|
|
};
|
|
|
|
PyObject* THPAutograd_initExtension(PyObject* _unused, PyObject *unused) {
|
|
using namespace torch::autograd::profiler;
|
|
auto tensor_module = THPObjectPtr(PyImport_ImportModule("torch._tensor"));
|
|
if (!tensor_module)
|
|
return nullptr;
|
|
|
|
// NOTE: "leaks" THPVariableClass
|
|
THPVariableClass = PyObject_GetAttrString(tensor_module, "Tensor");
|
|
if (!THPVariableClass)
|
|
return nullptr;
|
|
|
|
auto autograd_module = THPObjectPtr(PyImport_ImportModule("torch.autograd"));
|
|
if (!autograd_module)
|
|
return nullptr;
|
|
|
|
// NOTE: "leaks" Function
|
|
THPFunctionClass = PyObject_GetAttrString(autograd_module, "Function");
|
|
if (!THPFunctionClass)
|
|
return nullptr;
|
|
|
|
auto torch_C_module = THPObjectPtr(PyImport_ImportModule("torch._C"));
|
|
if (!torch_C_module)
|
|
return nullptr;
|
|
auto _C_m = py::handle(torch_C_module).cast<py::module>();
|
|
auto m = _C_m.def_submodule("_autograd", "autograd bindings");
|
|
|
|
auto parameter_module = THPObjectPtr(PyImport_ImportModule("torch.nn.parameter"));
|
|
if (!parameter_module)
|
|
return nullptr;
|
|
|
|
// NOTE: "leaks" ParameterClass
|
|
ParameterClass = PyObject_GetAttrString(parameter_module, "Parameter");
|
|
if (!ParameterClass)
|
|
return nullptr;
|
|
|
|
py::enum_<ProfilerState>(m, "ProfilerState")
|
|
.value("Disabled", ProfilerState::Disabled)
|
|
.value("CPU", ProfilerState::CPU)
|
|
.value("CUDA", ProfilerState::CUDA)
|
|
.value("NVTX", ProfilerState::NVTX)
|
|
.value("KINETO", ProfilerState::KINETO)
|
|
.value("KINETO_GPU_FALLBACK", ProfilerState::KINETO_GPU_FALLBACK);
|
|
|
|
py::enum_<ActivityType>(m, "ProfilerActivity")
|
|
.value("CPU", ActivityType::CPU)
|
|
.value("CUDA", ActivityType::CUDA);
|
|
|
|
py::class_<ProfilerConfig>(m, "ProfilerConfig")
|
|
.def(py::init<ProfilerState,
|
|
bool, /* record_input_shapes */
|
|
bool, /* profile_memory */
|
|
bool, /* with_stac k*/
|
|
bool, /* with_flops */
|
|
bool /* with_modules */
|
|
>());
|
|
|
|
py::class_<LegacyEvent>(m, "ProfilerEvent")
|
|
.def("kind", &LegacyEvent::kindStr)
|
|
.def("name", [](const LegacyEvent& e) { return e.name(); })
|
|
.def("thread_id", &LegacyEvent::threadId)
|
|
.def("fwd_thread_id", &LegacyEvent::fwdThreadId)
|
|
.def("device", &LegacyEvent::device)
|
|
.def("cpu_elapsed_us", &LegacyEvent::cpuElapsedUs)
|
|
.def("cuda_elapsed_us", &LegacyEvent::cudaElapsedUs)
|
|
.def("has_cuda", &LegacyEvent::hasCuda)
|
|
.def("shapes", &LegacyEvent::shapes)
|
|
.def("cpu_memory_usage", &LegacyEvent::cpuMemoryUsage)
|
|
.def("cuda_memory_usage", &LegacyEvent::cudaMemoryUsage)
|
|
.def("handle", &LegacyEvent::handle)
|
|
.def("node_id", &LegacyEvent::nodeId)
|
|
.def("is_remote", &LegacyEvent::isRemote)
|
|
.def("sequence_nr", &LegacyEvent::sequenceNr)
|
|
.def("stack", &LegacyEvent::stack)
|
|
.def("scope", &LegacyEvent::scope)
|
|
.def("correlation_id", &LegacyEvent::correlationId)
|
|
.def("start_us", &LegacyEvent::cpuUs)
|
|
.def("flops", &LegacyEvent::flops)
|
|
.def("is_async", &LegacyEvent::isAsync);
|
|
|
|
py::enum_<c10::DeviceType>(m, "DeviceType")
|
|
.value("CPU", c10::DeviceType::CPU)
|
|
.value("CUDA", c10::DeviceType::CUDA)
|
|
.value("MKLDNN", c10::DeviceType::MKLDNN)
|
|
.value("OPENGL", c10::DeviceType::OPENGL)
|
|
.value("OPENCL", c10::DeviceType::OPENCL)
|
|
.value("IDEEP", c10::DeviceType::IDEEP)
|
|
.value("HIP", c10::DeviceType::HIP)
|
|
.value("FPGA", c10::DeviceType::FPGA)
|
|
.value("ORT", c10::DeviceType::ORT)
|
|
.value("XLA", c10::DeviceType::XLA)
|
|
.value("Lazy", c10::DeviceType::Lazy)
|
|
.value("MLC", c10::DeviceType::MLC)
|
|
.value("HPU", c10::DeviceType::HPU)
|
|
.value("Meta", c10::DeviceType::Meta)
|
|
.value("Vulkan", c10::DeviceType::Vulkan)
|
|
.value("Metal", c10::DeviceType::Metal);
|
|
|
|
py::class_<KinetoEvent>(m, "_KinetoEvent")
|
|
// name of the event
|
|
.def("name", [](const KinetoEvent& e) {
|
|
return e.name();
|
|
})
|
|
// PyTorch thread id of the start callback
|
|
.def("start_thread_id", [](const KinetoEvent& e) {
|
|
return e.startThreadId();
|
|
})
|
|
// PyTorch thread id of the end callback
|
|
.def("end_thread_id", [](const KinetoEvent& e) {
|
|
return e.endThreadId();
|
|
})
|
|
// for events of scope BACKWARD_FUNCTION - PyTorch thread id
|
|
// of the corresponding forward op
|
|
.def("fwd_thread_id", [](const KinetoEvent& e) {
|
|
return e.fwdThreadId();
|
|
})
|
|
// together with fwd_thread_id, used to uniquely identify
|
|
// the forward op
|
|
.def("sequence_nr", [](const KinetoEvent& e) {
|
|
return e.sequenceNr();
|
|
})
|
|
// absolute start time (since unix epoch) in us
|
|
.def("start_us", [](const KinetoEvent& e) {
|
|
return e.startUs();
|
|
})
|
|
// duration in us
|
|
.def("duration_us", [](const KinetoEvent& e) {
|
|
return e.durationUs();
|
|
})
|
|
// used for correlation between high-level PyTorch events
|
|
// and low-level device events
|
|
.def("correlation_id", [](const KinetoEvent& e) {
|
|
return e.correlationId();
|
|
})
|
|
// shapes of input tensors
|
|
.def("shapes", [](const KinetoEvent& e) {
|
|
if (e.hasShapes()) {
|
|
return e.shapes();
|
|
} else {
|
|
return std::vector<std::vector<int64_t>>();
|
|
}
|
|
})
|
|
.def("dtypes", [](const KinetoEvent& e) {
|
|
if (e.hasTypes()) {
|
|
return e.dtypes();
|
|
} else {
|
|
return std::vector<std::string>();
|
|
}
|
|
})
|
|
// stack traces of the PyTorch CPU events
|
|
.def("stack", [](const KinetoEvent& e) {
|
|
if (e.hasStack()) {
|
|
return e.stack();
|
|
} else {
|
|
return std::vector<std::string>();
|
|
}
|
|
})
|
|
// type of the RecordFunction that generated a PyTorch CPU event
|
|
// (op, torchscript function, user label, etc)
|
|
.def("scope", [](const KinetoEvent& e) {
|
|
return e.scope();
|
|
})
|
|
// device number, for CPU - process id
|
|
.def("device_index", [](const KinetoEvent& e) {
|
|
return e.deviceIndex();
|
|
})
|
|
// for CUDA - stream id, for CPU - start thread id
|
|
.def("device_resource_id", [](const KinetoEvent& e) {
|
|
return e.deviceResourceId();
|
|
})
|
|
// device type
|
|
.def("device_type", [](const KinetoEvent& e) {
|
|
return e.deviceType();
|
|
})
|
|
// correlation id of a linked event
|
|
.def("linked_correlation_id", [](const KinetoEvent& e) {
|
|
return e.linkedCorrelationId();
|
|
})
|
|
// compute flops
|
|
.def("flops", [](const KinetoEvent& e) {
|
|
return e.flops();
|
|
})
|
|
// Whether this is async event or not
|
|
.def("is_async", [](const KinetoEvent& e) {
|
|
return e.isAsync();
|
|
})
|
|
.def("cuda_elapsed_us", &KinetoEvent::cudaElapsedUs)
|
|
.def("nbytes", [](const KinetoEvent& e) {
|
|
return e.nBytes();
|
|
});
|
|
|
|
py::class_<ProfilerResult>(m, "_ProfilerResult")
|
|
.def("trace_start_us", &ProfilerResult::trace_start_us)
|
|
.def("events", &ProfilerResult::events)
|
|
#ifdef USE_KINETO
|
|
.def("save", &ProfilerResult::save)
|
|
#endif // USE_KINETO
|
|
;
|
|
|
|
m.def("_enable_profiler",
|
|
&enableProfiler,
|
|
py::arg("config"),
|
|
py::arg("activities"),
|
|
py::arg("scopes") = std::unordered_set<at::RecordScope>());
|
|
m.def("_disable_profiler", disableProfiler);
|
|
m.def("_prepare_profiler", prepareProfiler);
|
|
|
|
m.def("_add_metadata_json", [](const std::string& key, const std::string& value) {
|
|
#ifdef USE_KINETO
|
|
addMetadataJson(key, value);
|
|
#else
|
|
LOG(WARNING) << "Adding profiling metadata requires using "
|
|
<< "torch.profiler with Kineto support (USE_KINETO=1)";
|
|
#endif // USE_KINETO
|
|
});
|
|
|
|
m.def("kineto_available", []() {
|
|
#ifdef USE_KINETO
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
});
|
|
|
|
m.def("_supported_activities", []() {
|
|
std::set<ActivityType> activities {ActivityType::CPU};
|
|
#if defined(USE_KINETO) && !defined(LIBKINETO_NOCUPTI)
|
|
if (at::getNumGPUs() > 0 && !at::hasHIP()) {
|
|
activities.insert(ActivityType::CUDA);
|
|
}
|
|
#endif
|
|
return activities;
|
|
});
|
|
|
|
m.def("_enable_profiler_legacy", enableProfilerLegacy);
|
|
py::class_<ProfilerDisableOptions>(m, "_ProfilerDisableOptions")
|
|
.def(py::init<bool, bool>());
|
|
m.def(
|
|
"_disable_profiler_legacy",
|
|
disableProfilerLegacy,
|
|
py::arg("profiler_disable_options") = ProfilerDisableOptions());
|
|
m.def("_profiler_enabled", profilerEnabled);
|
|
m.def("_enable_record_function", [](bool enable) {
|
|
at::enableRecordFunction(enable);
|
|
});
|
|
m.def("_set_empty_test_observer", [](bool is_global, double sampling_prob) {
|
|
auto cb = at::RecordFunctionCallback(nullptr)
|
|
.needsInputs(true)
|
|
.samplingProb(sampling_prob);
|
|
if (is_global) {
|
|
at::addGlobalCallback(cb);
|
|
} else {
|
|
at::addThreadLocalCallback(cb);
|
|
}
|
|
});
|
|
m.def("_clear_callbacks", []() {
|
|
at::clearCallbacks();
|
|
});
|
|
m.def("_register_saved_tensors_default_hooks", [](py::function &pack_hook, py::function &unpack_hook) {
|
|
torch::autograd::PyDefaultSavedVariableHooks::set_hooks(pack_hook, unpack_hook);
|
|
});
|
|
m.def("_reset_saved_tensors_default_hooks", []() {
|
|
torch::autograd::PyDefaultSavedVariableHooks::reset_hooks();
|
|
});
|
|
|
|
py::class_<c10::InferenceMode>(_C_m, "_InferenceMode")
|
|
.def(py::init<bool>());
|
|
|
|
py::class_<DisableTorchDispatch>(_C_m, "_DisableTorchDispatch")
|
|
.def(py::init<>());
|
|
|
|
py::class_<torch::autograd::SavedVariable>(m, "SavedTensor")
|
|
.def(py::init([]()->torch::autograd::SavedVariable {
|
|
TORCH_CHECK(false, "Trying to create a SavedTensor object from Python is forbidden.");
|
|
}))
|
|
.def("register_hooks", [](torch::autograd::SavedVariable &s, py::function &pack_hook, py::function &unpack_hook) {
|
|
// Because we use a py::object, pybind will increment the refcount of the hook functions for us
|
|
s.register_hooks(std::make_unique<torch::autograd::PySavedVariableHooks>(pack_hook, unpack_hook));
|
|
});
|
|
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
namespace torch { namespace autograd {
|
|
|
|
static PyObject * set_autocast_enabled(PyObject* _unused, PyObject *arg) {
|
|
HANDLE_TH_ERRORS
|
|
if (!PyBool_Check(arg)) {
|
|
throw TypeError("enabled must be a bool (got %s)", Py_TYPE(arg)->tp_name);
|
|
}
|
|
at::autocast::set_enabled(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * is_autocast_enabled(PyObject* _unused, PyObject *arg) {
|
|
HANDLE_TH_ERRORS
|
|
if (at::autocast::is_enabled()) {
|
|
Py_RETURN_TRUE;
|
|
} else {
|
|
Py_RETURN_FALSE;
|
|
}
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * set_autocast_cpu_enabled(PyObject* _unused, PyObject *arg) {
|
|
HANDLE_TH_ERRORS
|
|
if (!PyBool_Check(arg)) {
|
|
throw TypeError("enabled must be a bool (got %s)", Py_TYPE(arg)->tp_name);
|
|
}
|
|
at::autocast::set_cpu_enabled(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * is_autocast_cpu_enabled(PyObject* _unused, PyObject *arg) {
|
|
HANDLE_TH_ERRORS
|
|
if (at::autocast::is_cpu_enabled()) {
|
|
Py_RETURN_TRUE;
|
|
} else {
|
|
Py_RETURN_FALSE;
|
|
}
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * set_autocast_gpu_dtype(PyObject* _unused, PyObject *arg) {
|
|
HANDLE_TH_ERRORS
|
|
if (!THPDtype_Check(arg)) {
|
|
throw TypeError(
|
|
"dtype must be a torch.dtype (got %s)", Py_TYPE(arg)->tp_name);
|
|
}
|
|
at::ScalarType targetType = reinterpret_cast<THPDtype*>(arg)->scalar_type;
|
|
at::autocast::set_autocast_gpu_dtype(targetType);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * set_autocast_cpu_dtype(PyObject* _unused, PyObject *arg) {
|
|
HANDLE_TH_ERRORS
|
|
if (!THPDtype_Check(arg)) {
|
|
throw TypeError(
|
|
"dtype must be a torch.dtype (got %s)", Py_TYPE(arg)->tp_name);
|
|
}
|
|
at::ScalarType targetType = reinterpret_cast<THPDtype*>(arg)->scalar_type;
|
|
at::autocast::set_autocast_cpu_dtype(targetType);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static const char* scalarTypeName(const at::ScalarType type) {
|
|
switch (type) {
|
|
#define DEFINE_CASE(ctype, name) \
|
|
case at::ScalarType::name: \
|
|
return #ctype;
|
|
AT_FORAUTOCAST_SCALAR_TYPES(DEFINE_CASE)
|
|
#undef DEFINE_CASE
|
|
default:
|
|
throw std::runtime_error("unknown scalar type for autocast");
|
|
}
|
|
}
|
|
|
|
static PyObject * get_autocast_gpu_dtype(PyObject* _unused, PyObject *arg){
|
|
HANDLE_TH_ERRORS
|
|
at::ScalarType current_dtype = at::autocast::get_autocast_gpu_dtype();
|
|
return THPDtype_New(current_dtype, scalarTypeName(current_dtype));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * get_autocast_cpu_dtype(PyObject* _unused, PyObject *arg){
|
|
HANDLE_TH_ERRORS
|
|
at::ScalarType current_dtype = at::autocast::get_autocast_cpu_dtype();
|
|
return THPDtype_New(current_dtype, scalarTypeName(current_dtype));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * clear_autocast_cache(PyObject* _unused, PyObject *arg) {
|
|
HANDLE_TH_ERRORS
|
|
at::autocast::clear_cache();
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * autocast_increment_nesting(PyObject* _unused, PyObject *arg) {
|
|
HANDLE_TH_ERRORS
|
|
return THPUtils_packInt64(at::autocast::increment_nesting());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * autocast_decrement_nesting(PyObject* _unused, PyObject *arg) {
|
|
HANDLE_TH_ERRORS
|
|
return THPUtils_packInt64(at::autocast::decrement_nesting());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * set_grad_enabled(PyObject* _unused, PyObject *arg) {
|
|
HANDLE_TH_ERRORS
|
|
if (!PyBool_Check(arg)) {
|
|
throw TypeError("enabled must be a bool (got %s)", Py_TYPE(arg)->tp_name);
|
|
}
|
|
GradMode::set_enabled(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * is_grad_enabled(PyObject* _unused, PyObject *arg) {
|
|
HANDLE_TH_ERRORS
|
|
if (GradMode::is_enabled()) {
|
|
Py_RETURN_TRUE;
|
|
} else {
|
|
Py_RETURN_FALSE;
|
|
}
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * is_inference_mode_enabled(PyObject* _unused, PyObject *arg) {
|
|
HANDLE_TH_ERRORS
|
|
if (c10::InferenceMode::is_enabled()) {
|
|
Py_RETURN_TRUE;
|
|
} else {
|
|
Py_RETURN_FALSE;
|
|
}
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * set_anomaly_mode_enabled(PyObject* _unused, PyObject *arg) {
|
|
HANDLE_TH_ERRORS
|
|
if (!PyBool_Check(arg)) {
|
|
throw TypeError("enabled must be a bool (got %s)", Py_TYPE(arg)->tp_name);
|
|
}
|
|
AnomalyMode::set_enabled(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * is_anomaly_mode_enabled(PyObject* _unused, PyObject *arg) {
|
|
HANDLE_TH_ERRORS
|
|
if (AnomalyMode::is_enabled()) {
|
|
Py_RETURN_TRUE;
|
|
} else {
|
|
Py_RETURN_FALSE;
|
|
}
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * python_enter_dual_level(PyObject* _unused, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
// It is unlikely that the depth of forward nesting will overflow int64_t so we
|
|
// just static cast here.
|
|
return utils::wrap(static_cast<int64_t>(forward_ad::enter_dual_level()));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * python_exit_dual_level(PyObject* _unused, PyObject* args, PyObject* kwargs) {
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({
|
|
"exit_dual_level(int64_t level)"
|
|
});
|
|
|
|
ParsedArgs<1> parsed_args;
|
|
auto _r = parser.parse(args, kwargs, parsed_args);
|
|
|
|
auto idx = _r.toInt64(0);
|
|
// Make sure the given index is valid before casting it
|
|
TORCH_CHECK(idx >= 0, "Dual level must be a positive number.");
|
|
forward_ad::exit_dual_level(static_cast<uint64_t>(idx));
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// autograd methods on torch._C
|
|
static PyMethodDef methods[] = { // NOLINT
|
|
{"_set_grad_enabled", set_grad_enabled, METH_O, nullptr},
|
|
{"is_grad_enabled", is_grad_enabled, METH_NOARGS, nullptr},
|
|
{"is_inference_mode_enabled", is_inference_mode_enabled, METH_NOARGS, nullptr},
|
|
{"set_autocast_enabled", set_autocast_enabled, METH_O, nullptr},
|
|
{"is_autocast_enabled", is_autocast_enabled, METH_NOARGS, nullptr},
|
|
{"clear_autocast_cache", clear_autocast_cache, METH_NOARGS, nullptr},
|
|
{"set_autocast_cpu_enabled", set_autocast_cpu_enabled, METH_O, nullptr},
|
|
{"is_autocast_cpu_enabled", is_autocast_cpu_enabled, METH_NOARGS, nullptr},
|
|
{"set_autocast_cpu_dtype", set_autocast_cpu_dtype, METH_O, nullptr},
|
|
{"get_autocast_cpu_dtype", get_autocast_cpu_dtype, METH_NOARGS, nullptr},
|
|
{"set_autocast_gpu_dtype", set_autocast_gpu_dtype, METH_O, nullptr},
|
|
{"get_autocast_gpu_dtype", get_autocast_gpu_dtype, METH_NOARGS, nullptr},
|
|
{"autocast_increment_nesting", autocast_increment_nesting, METH_NOARGS, nullptr},
|
|
{"autocast_decrement_nesting", autocast_decrement_nesting, METH_NOARGS, nullptr},
|
|
{"set_anomaly_enabled", set_anomaly_mode_enabled, METH_O, nullptr},
|
|
{"is_anomaly_enabled", is_anomaly_mode_enabled, METH_NOARGS, nullptr},
|
|
{"_enter_dual_level", python_enter_dual_level, METH_NOARGS, nullptr},
|
|
{"_exit_dual_level", castPyCFunctionWithKeywords(python_exit_dual_level), METH_VARARGS | METH_KEYWORDS, nullptr},
|
|
{nullptr, nullptr, 0, nullptr}
|
|
};
|
|
|
|
PyMethodDef* python_functions() {
|
|
return methods;
|
|
}
|
|
|
|
}} // namespace torch::autograd
|