pytorch/caffe2/python/layers/sparse_lookup.py
Dmitrii Podoprikhin c7684e3b27 Rowwise quantization
Reviewed By: kennyhorror

Differential Revision: D5753626

fbshipit-source-id: 680c627a81658bcd653feab68e7040db0cb7a185
2017-09-06 10:19:38 -07:00

275 lines
10 KiB
Python

## @package sparse_lookup
# Module caffe2.python.layers.sparse_lookup
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python.helpers.arg_scope import get_current_scope
from caffe2.python import schema
from caffe2.python.layers.layers import (
get_categorical_limit,
IdList,
IdScoreList,
LayerPsParam,
ModelLayer,
)
import collections
import functools
import math
import numpy as np
import operator
def get_sparse_lookup_predictor_version(version):
assert version in ('fp16', 'uint8rowwise'),\
"Unexpected version of sparse_lookup layer {0}".format(version)
return version
class SparseLookup(ModelLayer):
_id_list_supported_reducers = ['PositionWeighted', 'LogMeanExp', 'LogSumExp',
'Max', 'Mean', 'Sum', 'Sqrt', 'None']
_id_score_list_supported_reducers = ['PositionWeighted', 'Mean', 'Sum',
'WeightedSum', 'WeightedMean', 'None']
def __init__(self, model, input_record, inner_shape, reducer,
weight_init=None, weight_optim=None,
name='sparse_lookup', **kwargs):
super(SparseLookup, self).__init__(model, name, input_record, **kwargs)
# TODO Add some asserts about input type
if isinstance(inner_shape, int):
inner_shape = [inner_shape]
assert isinstance(inner_shape, list) or isinstance(inner_shape, tuple),\
"Unexpected type for inner_shape, expected list or tuple, got {0}".\
format(type(inner_shape))
if reducer == "PositionWeighted":
self.external_weights = input_record.values()
self.reducer = reducer
input_dim = get_categorical_limit(input_record)
assert input_dim is not None, "Unbounded features are not supported"
scale = math.sqrt(1.0 / input_dim)
self.shape = [input_dim] + inner_shape
self.weight_init = weight_init if weight_init else (
'UniformFill', {'min': -scale, 'max': scale})
if schema.equal_schemas(self.input_record, IdList):
sparse_key = self.input_record.items()
elif schema.equal_schemas(
self.input_record,
IdScoreList,
check_field_types=False):
sparse_key = self.input_record.keys()
else:
raise NotImplementedError()
if self.input_record.lengths.metadata:
avg_length = self.input_record.lengths.metadata.expected_value
else:
avg_length = None
self.w = self.create_param(
param_name='w',
shape=self.shape,
initializer=self.weight_init,
optimizer=weight_optim,
ps_param=LayerPsParam(
sparse_key=sparse_key,
average_length=avg_length))
self.scale_bias_init = ('ConstantFill', {'value': 0.0})
self.scale_bias = self.create_param(
param_name='scale_bias',
shape=[],
initializer=self.scale_bias_init,
optimizer=model.NoOptim)
self.output_schema = schema.Scalar(
(np.float32, inner_shape),
self.get_next_blob_reference('output'),
)
def get_memory_usage(self):
return functools.reduce(operator.mul, self.shape) * 4
def get_fp16_compatible_parameters(self):
return [self.w]
def get_8bits_compatible_parameters(self):
RowwiseQuantized8BitsWeight =\
collections.namedtuple(
'RowwiseQuantized8BitsWeight',
['w', 'scale_bias'], verbose=True)
weight = RowwiseQuantized8BitsWeight(
self.w, self.scale_bias)
return [weight]
def _gather_wrapper(self, net, version, in_indices, out):
if version == 'fp16':
return net.Gather([self.w, in_indices], out, engine='fp16')
elif version == 'uint8rowwise':
gathered_w = net.Gather([self.w, in_indices],
engine='fp16')
gathered_scale_bias = net.Gather(
[self.scale_bias, in_indices],
engine='fp16')
return net.Rowwise8BitQuantizedToFloat(
[gathered_w, gathered_scale_bias], out)
else:
raise "Unsupported version of operators in SparseLookup " +\
"layer: {0}".format(version)
def _sparse_lengths_weighted_reducer(
self, in_indices, weights, reducer,
net, version, grad_on_weights=0):
op_input = [self.w,
weights,
in_indices,
self.input_record.lengths()]
layer_name = 'SparseLengths' + reducer
if version == 'fp16':
net.__getattr__(layer_name)(
op_input,
self.output_schema.field_blobs(),
grad_on_weights=grad_on_weights,
engine='fp16',
)
elif version == 'uint8rowwise':
op_input.insert(len(op_input), self.scale_bias)
net.__getattr__(layer_name + '8BitsRowwise')(
op_input, self.output_schema.field_blobs())
else:
raise "Unsupported version of operator in SparseLookUp " +\
"layer: {0}".format(version)
# deal with sparse features of id_list type
def _add_ops_id_list(self, net, version='fp16'):
assert self.reducer in self._id_list_supported_reducers, (
"Unsupported reducer: {} for ID_LIST".format(self.reducer)
)
if self.reducer in ['Sum', 'Mean']:
op_input = [self.w,
self.input_record.items(),
self.input_record.lengths()]
layer_name = 'SparseLengths' + self.reducer
if version == 'fp16':
net.__getattr__(layer_name)(
op_input,
self.output_schema.field_blobs(),
engine='fp16',
)
elif version == 'uint8rowwise':
op_input.insert(len(op_input), self.scale_bias)
net.__getattr__(layer_name + '8BitsRowwise')(
op_input, self.output_schema.field_blobs())
else:
raise "Unsupported version of operator in SparseLookUp " +\
"layer: {0}".format(version)
elif self.reducer == 'Sqrt':
sqrt_weight = net.LengthsToWeights(
[self.input_record.lengths()],
[self.input_record.lengths() + '_sqrt'],
power=0.5,
)
self._sparse_lengths_weighted_reducer(
self.input_record.items(),
sqrt_weight,
'WeightedSum', net, version)
elif self.reducer == 'None':
# Gather operator will gather the embedding for each id of
# each IdList.
self._gather_wrapper(net, version, self.input_record.items(),
self.output_schema.field_blobs())
else:
table_rows = self._gather_wrapper(
net, version, self.input_record.items(), 1)
segment_ids = net.LengthsToSegmentIds(
self.input_record.lengths(),
self.input_record.lengths() + '_sid'),
net.__getattr__('SortedSegmentRange' + self.reducer)(
[table_rows, segment_ids],
self.output_schema.field_blobs(),
engine='fp16',
)
# deal with sparse features of id_score_list type
def _add_ops_id_score_list(self, net, version='fp16'):
assert self.reducer in self._id_score_list_supported_reducers, (
"Unsupported reducer: {} for ID_SCORE_LIST".format(self.reducer)
)
if self.reducer in ['WeightedSum', 'WeightedMean']:
self._sparse_lengths_weighted_reducer(
self.input_record.keys(),
self.input_record.values(),
self.reducer, net, version)
elif self.reducer in ['Sum', 'Mean']:
op_input = [self.w,
self.input_record.keys(),
self.input_record.lengths()]
layer_name = 'SparseLengths' + self.reducer
if version == 'fp16':
net.__getattr__(layer_name)(
op_input,
self.output_schema.field_blobs(),
engine='fp16',
)
elif version == 'uint8rowwise':
net.__getattr__(layer_name + '8BitsRowwise')(
op_input, self.output_schema.field_blobs())
else:
raise "Unsupported version of operator in SparseLookUp " +\
"layer: {0}".format(version)
elif self.reducer == 'PositionWeighted':
self._sparse_lengths_weighted_reducer(
self.input_record.keys(),
self.external_weights,
'WeightedSum', net, version, grad_on_weights=1)
elif self.reducer == 'None':
# Gather operator will gather the embedding for each id of
# each IdList.
self._gather_wrapper(net, version, self.input_record.keys(),
self.output_schema.field_blobs())
else:
raise "Only Sum, Mean, None are supported for IdScoreList input." +\
"Trying to create with {}".format(self.reducer)
def add_ops(self, net):
cur_scope = get_current_scope()
version = get_sparse_lookup_predictor_version(
**cur_scope.get(get_sparse_lookup_predictor_version.__name__,
{'version': 'fp16'}))
if schema.equal_schemas(self.input_record, IdList):
self._add_ops_id_list(net, version=version)
elif schema.equal_schemas(self.input_record,
IdScoreList,
check_field_types=False):
self._add_ops_id_score_list(net, version=version)
else:
raise "Unsupported input type {0}".format(self.input_record)