pytorch/torch/csrc/jit/passes/decompose_ops.cpp
cyy c764ef6d53 [9/N] Fix clang-tidy warnings in jit (#132010)
Follows  #131997

Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132010
Approved by: https://github.com/Skylion007
2024-07-29 18:38:35 +00:00

234 lines
9.5 KiB
C++

#include <torch/csrc/jit/passes/decompose_ops.h>
#include <torch/csrc/jit/frontend/ir_emitter.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/jit/runtime/custom_operator.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <ATen/core/symbol.h>
namespace torch::jit {
namespace {
c10::AliasAnalysisKind aliasAnalysisFromSchema() {
return c10::AliasAnalysisKind::FROM_SCHEMA;
}
} // namespace
// helper to determine if an optional tensor argument/value passed in is
// statically defined (neither a None constant nor a Optional[Tensor] type)
// return yes, no, or no value if we can't tell
static std::optional<bool> isDefined(Value* tensor) {
if (tensor->type()->isSubtypeOf(*TensorType::get())) {
return true;
}
if (tensor->node()->mustBeNone()) {
return false;
}
return {};
}
static bool isDecomposableNorm(Node* normalize_op) {
static const OperatorSet decomposable_normalization_ops = {
"aten::batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> Tensor",
"aten::layer_norm(Tensor input, int[] normalized_shape, Tensor? weight, Tensor? bias, float eps, bool cudnn_enable) -> Tensor",
};
Value* input = normalize_op->namedInput(attr::input);
if (!input->type()->isSubtypeOf(*TensorType::get())) {
return false;
}
auto device = input->type()->expectRef<TensorType>().device();
// As of now, we do the decomposition for batchnorm/layernorm on GPU device
// only
if (!device || !(*device).is_cuda()) {
return false;
}
if (normalize_op->isMemberOf(decomposable_normalization_ops)) {
// If we can't determine if weight and bias is defined statically there's
// really no point in decomposing normalization into simpler ops, since it
// won't get fused into a single kernel.
return isDefined(normalize_op->namedInput(attr::weight)).has_value() &&
isDefined(normalize_op->namedInput(attr::bias)).has_value();
}
return false;
}
RegisterOperators reg_ops(
{Operator(
"aten::_ncf_unsqueeze(Tensor(a) self, int ndim) -> Tensor(a)",
[](Stack& stack) {
const int64_t ndim = pop(stack).toInt();
auto self = pop(stack).toTensor();
c10::SmallVector<int64_t, 8> sizes(ndim, 1);
AT_ASSERT(self.dim() == 1);
sizes.at(1) = self.size(0);
push(stack, self.reshape(sizes));
},
aliasAnalysisFromSchema()),
Operator(
"aten::_ncf_view(Tensor(a) self, int[] input_shape, int normalized_ndim) -> Tensor(a)",
[](Stack& stack) {
const int64_t normalized_ndim = pop(stack).toInt();
auto input_shape = pop(stack).toIntList();
auto self = pop(stack).toTensor();
const int64_t input_ndim = input_shape.size();
c10::SmallVector<int64_t, 8> sizes(input_ndim, 1);
for (int i = 0; i < input_ndim - normalized_ndim; ++i) {
sizes.at(i) = input_shape.get(i);
}
push(stack, self.reshape(sizes));
},
aliasAnalysisFromSchema())});
static bool DecomposeOps(Block* block, CompilationUnit& decompose_funcs) {
bool decomposed = false;
for (auto it = block->nodes().begin(), end = block->nodes().end(); it != end;
++it) {
for (auto sub : it->blocks()) {
DecomposeOps(sub, decompose_funcs);
}
if (it->matches(
"aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta, Scalar alpha) -> Tensor",
/*const_inputs=*/{attr::beta, attr::alpha})) {
// For the case where we have an addmm where alpha and beta are Attributes
// and both of those scalars are equal to 1.0, decompose this into an mm
// followed by an add so that it can go through the existing optimization
// (batchmm)
if (it->get<at::Scalar>(attr::alpha)->toComplexDouble() != 1.0 ||
it->get<at::Scalar>(attr::beta)->toComplexDouble() != 1.0) {
continue;
}
decomposed = true;
WithInsertPoint guard(*it);
std::shared_ptr<Graph> d_graph =
toGraphFunction(decompose_funcs.get_function("addmm")).graph();
Value* new_output =
insertGraph(*it->owningGraph(), *d_graph, it->inputs()).at(0);
// Set the output of the decomposed graph to have the same output type as
// the original op otherwise the canonicalized graph will have TensorType
// as the output of this node which is incorrect
new_output->setType(it->output()->type());
it->output()->replaceAllUsesWith(new_output);
it.destroyCurrent();
} else if (
it->matches(
"aten::batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> Tensor")) {
if (!isDecomposableNorm(*it)) {
continue;
}
decomposed = true;
WithInsertPoint insert_guard{*it};
Graph* graph = it->owningGraph();
Value* input = it->namedInput(attr::input);
Value* input_dim = graph->insert(aten::dim, {input});
std::vector<Value*> inputs{
input,
it->namedInput(attr::running_mean),
it->namedInput(attr::running_var),
it->namedInput(attr::training),
it->namedInput(attr::momentum),
it->namedInput(attr::eps)};
// inline the compiled decomposed batchnorm
std::shared_ptr<Graph> d_graph =
toGraphFunction(decompose_funcs.get_function("batch_norm")).graph();
Value* new_output = insertGraph(*graph, *d_graph, inputs).at(0);
// post processing the graph
Value* weight = it->namedInput(attr::weight);
Value* bias = it->namedInput(attr::bias);
if (isDefined(weight).value()) {
Value* expanded_weight =
graph->insert(aten::_ncf_unsqueeze, {weight, input_dim});
new_output = graph->insert(aten::mul, {new_output, expanded_weight});
}
if (isDefined(bias).value()) {
Value* expanded_bias =
graph->insert(aten::_ncf_unsqueeze, {bias, input_dim});
new_output = graph->insert(aten::add, {new_output, expanded_bias});
}
it->output()->replaceAllUsesWith(new_output);
it.destroyCurrent();
} else if (
it->matches(
"aten::layer_norm(Tensor input, int[] normalized_shape, Tensor? weight, Tensor? bias, float eps, bool cudnn_enable) -> Tensor")) {
if (!isDecomposableNorm(*it)) {
continue;
}
decomposed = true;
WithInsertPoint insert_guard{*it};
Graph* graph = it->owningGraph();
std::vector<Value*> inputs{
it->namedInput(attr::input),
it->namedInput(attr::normalized_shape),
it->namedInput(attr::eps),
it->namedInput(attr::cudnn_enable)};
// inline the compiled decomposed layernorm
std::shared_ptr<Graph> d_graph =
toGraphFunction(decompose_funcs.get_function("layer_norm")).graph();
Value* new_output = insertGraph(*graph, *d_graph, inputs).at(0);
// post processing the graph
Value* weight = it->namedInput(attr::weight);
Value* bias = it->namedInput(attr::bias);
if (isDefined(weight).value()) {
new_output = graph->insert(aten::mul, {new_output, weight});
}
if (isDefined(bias).value()) {
new_output = graph->insert(aten::add, {new_output, bias});
}
it->output()->replaceAllUsesWith(new_output);
it.destroyCurrent();
}
}
return decomposed;
}
void DecomposeOps(std::shared_ptr<Graph>& graph) {
static CompilationUnit decompose_funcs(R"SCRIPT(
def addmm(self: Tensor, mat1: Tensor, mat2: Tensor, beta: number = 1.0, alpha: number = 1.0):
return self + mat1.mm(mat2)
def batch_norm(input : Tensor, running_mean : Optional[Tensor], running_var : Optional[Tensor], training : bool, momentum : float, eps : float) -> Tensor:
if training:
norm_mean, norm_var = torch.batch_norm_update_stats(input, running_mean, running_var, momentum)
else:
norm_mean = torch._unwrap_optional(running_mean)
norm_var = torch._unwrap_optional(running_var)
norm_mean = torch._ncf_unsqueeze(norm_mean, input.dim())
norm_var = torch._ncf_unsqueeze(norm_var, input.dim())
norm_invstd = 1 / (torch.sqrt(norm_var + eps))
return ((input - norm_mean) * norm_invstd)
def layer_norm(input : Tensor, normalized_shape : List[int], eps : float, cudnn_enable : bool) -> Tensor:
input_ndim = input.dim()
normalized_ndim = len(normalized_shape)
n = 1
for i in range(input_ndim - normalized_ndim):
n *= input.size(i)
input_reshape = input.contiguous().view(1, n, -1)
mean, invstd = torch.batch_norm_stats(input_reshape, eps)
input_shape = input.size()
mean = torch._ncf_view(mean, input_shape, normalized_ndim)
invstd = torch._ncf_view(invstd, input_shape, normalized_ndim)
return (input - mean) * invstd
)SCRIPT");
bool is_decomposed = DecomposeOps(graph->block(), decompose_funcs);
if (is_decomposed) {
// we only re-run those passes when the graph get decomposed
PropagateInputShapes(graph);
ConstantPropagation(graph);
EliminateDeadCode(graph);
}
}
} // namespace torch::jit