mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
This is a new PR for #130386 , which got stale and was closed. Since I force-pushed to that branch in order to rebase it on top of main, the PR can no longer be reopened, according to https://github.com/isaacs/github/issues/361 I fixed the possibly-not-warmed-up problem described here: https://github.com/pytorch/pytorch/pull/130386/files#r1690856534 Since starting this, torch.cond and torch.while_loop now apparently have support for backward passes. I will look into what it might take to support that. Pull Request resolved: https://github.com/pytorch/pytorch/pull/140979 Approved by: https://github.com/eqy, https://github.com/eellison
156 lines
4.2 KiB
C++
156 lines
4.2 KiB
C++
#include <cuda.h>
|
|
#include <cuda_runtime.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
#if !defined(USE_ROCM)
|
|
#include <cuda_profiler_api.h>
|
|
#else
|
|
#include <hip/hip_runtime_api.h>
|
|
#endif
|
|
|
|
#include <c10/cuda/CUDAException.h>
|
|
#include <c10/cuda/CUDAGuard.h>
|
|
|
|
namespace torch::cuda::shared {
|
|
|
|
#ifdef USE_ROCM
|
|
namespace {
|
|
hipError_t hipReturnSuccess() {
|
|
return hipSuccess;
|
|
}
|
|
} // namespace
|
|
#endif
|
|
|
|
void initCudartBindings(PyObject* module) {
|
|
auto m = py::handle(module).cast<py::module>();
|
|
|
|
auto cudart = m.def_submodule("_cudart", "libcudart.so bindings");
|
|
|
|
// By splitting the names of these objects into two literals we prevent the
|
|
// HIP rewrite rules from changing these names when building with HIP.
|
|
|
|
#if !defined(USE_ROCM) && defined(CUDA_VERSION) && CUDA_VERSION < 12000
|
|
// cudaOutputMode_t is used in cudaProfilerInitialize only. The latter is gone
|
|
// in CUDA 12.
|
|
py::enum_<cudaOutputMode_t>(
|
|
cudart,
|
|
"cuda"
|
|
"OutputMode")
|
|
.value("KeyValuePair", cudaKeyValuePair)
|
|
.value("CSV", cudaCSV);
|
|
#endif
|
|
|
|
py::enum_<cudaError_t>(
|
|
cudart,
|
|
"cuda"
|
|
"Error")
|
|
.value("success", cudaSuccess);
|
|
|
|
cudart.def(
|
|
"cuda"
|
|
"GetErrorString",
|
|
cudaGetErrorString);
|
|
cudart.def(
|
|
"cuda"
|
|
"ProfilerStart",
|
|
#ifdef USE_ROCM
|
|
hipReturnSuccess
|
|
#else
|
|
cudaProfilerStart
|
|
#endif
|
|
);
|
|
cudart.def(
|
|
"cuda"
|
|
"ProfilerStop",
|
|
#ifdef USE_ROCM
|
|
hipReturnSuccess
|
|
#else
|
|
cudaProfilerStop
|
|
#endif
|
|
);
|
|
cudart.def(
|
|
"cuda"
|
|
"HostRegister",
|
|
[](uintptr_t ptr, size_t size, unsigned int flags) -> cudaError_t {
|
|
py::gil_scoped_release no_gil;
|
|
return C10_CUDA_ERROR_HANDLED(
|
|
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
|
cudaHostRegister((void*)ptr, size, flags));
|
|
});
|
|
cudart.def(
|
|
"cuda"
|
|
"HostUnregister",
|
|
[](uintptr_t ptr) -> cudaError_t {
|
|
py::gil_scoped_release no_gil;
|
|
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
|
return C10_CUDA_ERROR_HANDLED(cudaHostUnregister((void*)ptr));
|
|
});
|
|
cudart.def(
|
|
"cuda"
|
|
"StreamCreate",
|
|
[](uintptr_t ptr) -> cudaError_t {
|
|
py::gil_scoped_release no_gil;
|
|
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
|
return C10_CUDA_ERROR_HANDLED(cudaStreamCreate((cudaStream_t*)ptr));
|
|
});
|
|
cudart.attr(
|
|
"cuda"
|
|
"StreamDefault") = cudaStreamDefault;
|
|
cudart.attr(
|
|
"cuda"
|
|
"StreamNonBlocking") = cudaStreamNonBlocking;
|
|
cudart.def(
|
|
"cuda"
|
|
"StreamCreateWithFlags",
|
|
[](uintptr_t ptr, unsigned int flags) -> cudaError_t {
|
|
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
|
return C10_CUDA_ERROR_HANDLED(
|
|
cudaStreamCreateWithFlags((cudaStream_t*)ptr, flags));
|
|
});
|
|
cudart.def(
|
|
"cuda"
|
|
"StreamDestroy",
|
|
[](uintptr_t ptr) -> cudaError_t {
|
|
py::gil_scoped_release no_gil;
|
|
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
|
return C10_CUDA_ERROR_HANDLED(cudaStreamDestroy((cudaStream_t)ptr));
|
|
});
|
|
#if !defined(USE_ROCM) && defined(CUDA_VERSION) && CUDA_VERSION < 12000
|
|
// cudaProfilerInitialize is no longer needed after CUDA 12:
|
|
// https://forums.developer.nvidia.com/t/cudaprofilerinitialize-is-deprecated-alternative/200776/3
|
|
cudart.def(
|
|
"cuda"
|
|
"ProfilerInitialize",
|
|
cudaProfilerInitialize,
|
|
py::call_guard<py::gil_scoped_release>());
|
|
#endif
|
|
cudart.def(
|
|
"cuda"
|
|
"MemGetInfo",
|
|
[](c10::DeviceIndex device) -> std::pair<size_t, size_t> {
|
|
c10::cuda::CUDAGuard guard(device);
|
|
size_t device_free = 0;
|
|
size_t device_total = 0;
|
|
py::gil_scoped_release no_gil;
|
|
C10_CUDA_CHECK(cudaMemGetInfo(&device_free, &device_total));
|
|
return {device_free, device_total};
|
|
});
|
|
|
|
py::enum_<cudaStreamCaptureMode>(
|
|
cudart,
|
|
"cuda"
|
|
"StreamCaptureMode")
|
|
.value("Global", cudaStreamCaptureModeGlobal)
|
|
.value("ThreadLocal", cudaStreamCaptureModeThreadLocal)
|
|
.value("Relaxed", cudaStreamCaptureModeRelaxed);
|
|
|
|
cudart.def(
|
|
"cuda"
|
|
"ThreadExchangeStreamCaptureMode",
|
|
[](cudaStreamCaptureMode mode) -> cudaStreamCaptureMode {
|
|
C10_CUDA_CHECK(cudaThreadExchangeStreamCaptureMode(&mode));
|
|
return mode;
|
|
});
|
|
}
|
|
|
|
} // namespace torch::cuda::shared
|