pytorch/test/test_torch.py
Tongzhou Wang c681b03d37 Add determinant function on variable; Add backward on svd (#3816)
* determinant on variable

* svd bwd
2017-12-01 13:22:46 -05:00

5021 lines
189 KiB
Python

import sys
import os
import math
import random
import copy
import torch
import torch.cuda
import tempfile
import unittest
import warnings
import pickle
from torch.utils.dlpack import from_dlpack, to_dlpack
from itertools import product, combinations
from common import TestCase, iter_indices, TEST_NUMPY, run_tests, download_file, skipIfNoLapack, \
suppress_warnings
if TEST_NUMPY:
import numpy as np
SIZE = 100
class TestTorch(TestCase):
def test_dot(self):
types = {
'torch.DoubleTensor': 1e-8,
'torch.FloatTensor': 1e-4,
}
for tname, _prec in types.items():
v1 = torch.randn(100).type(tname)
v2 = torch.randn(100).type(tname)
res1 = torch.dot(v1, v2)
res2 = 0
for i, j in zip(v1, v2):
res2 += i * j
self.assertEqual(res1, res2)
# Test 0-strided
for tname, _prec in types.items():
v1 = torch.randn(1).type(tname).expand(100)
v2 = torch.randn(100).type(tname)
res1 = torch.dot(v1, v2)
res2 = 0
for i, j in zip(v1, v2):
res2 += i * j
self.assertEqual(res1, res2)
def test_ger(self):
types = {
'torch.DoubleTensor': 1e-8,
'torch.FloatTensor': 1e-4,
}
for tname, _prec in types.items():
v1 = torch.randn(100).type(tname)
v2 = torch.randn(100).type(tname)
res1 = torch.ger(v1, v2)
res2 = torch.zeros(100, 100).type(tname)
for i in range(100):
for j in range(100):
res2[i, j] = v1[i] * v2[j]
self.assertEqual(res1, res2)
# Test 0-strided
for tname, _prec in types.items():
v1 = torch.randn(1).type(tname).expand(100)
v2 = torch.randn(100).type(tname)
res1 = torch.ger(v1, v2)
res2 = torch.zeros(100, 100).type(tname)
for i in range(100):
for j in range(100):
res2[i, j] = v1[i] * v2[j]
self.assertEqual(res1, res2)
def test_addr(self):
types = {
'torch.DoubleTensor': 1e-8,
'torch.FloatTensor': 1e-4,
}
def run_test(m, v1, v2, m_transform=lambda x: x):
m = m_transform(m.clone())
ref = m.clone()
torch.addr(m, v1, v2, out=m)
for i in range(m.size(0)):
for j in range(m.size(1)):
ref[i, j] += v1[i] * v2[j]
self.assertEqual(m, ref)
for tname, _prec in types.items():
for h, w in [(100, 110), (1, 20), (200, 2)]:
m = torch.randn(h, w).type(tname)
v1 = torch.randn(h).type(tname)
v2 = torch.randn(w).type(tname)
run_test(m, v1, v2)
# test transpose
run_test(m, v2, v1, lambda x: x.transpose(0, 1))
# test 0 strided
v1 = torch.randn(1).type(tname).expand(h)
run_test(m, v1, v2)
run_test(m, v2, v1, lambda x: x.transpose(0, 1))
def test_addmv(self):
types = {
'torch.DoubleTensor': 1e-8,
'torch.FloatTensor': 1e-4,
}
for tname, _prec in types.items():
t = torch.randn(10).type(tname)
m = torch.randn(10, 100).type(tname)
v = torch.randn(100).type(tname)
res1 = torch.addmv(t, m, v)
res2 = torch.zeros(10).type(tname)
res2 += t
for i in range(10):
for j in range(100):
res2[i] += m[i, j] * v[j]
self.assertEqual(res1, res2)
# Test 0-strided
for tname, _prec in types.items():
t = torch.randn(1).type(tname).expand(10)
m = torch.randn(10, 1).type(tname).expand(10, 100)
v = torch.randn(100).type(tname)
res1 = torch.addmv(t, m, v)
res2 = torch.zeros(10).type(tname)
res2 += t
for i in range(10):
for j in range(100):
res2[i] += m[i, j] * v[j]
self.assertEqual(res1, res2)
def test_addmm(self):
types = {
'torch.DoubleTensor': 1e-8,
'torch.FloatTensor': 1e-4,
}
for tname, _prec in types.items():
M = torch.randn(10, 25).type(tname)
m1 = torch.randn(10, 50).type(tname)
m2 = torch.randn(50, 25).type(tname)
res1 = torch.addmm(M, m1, m2)
res2 = torch.zeros(10, 25).type(tname)
res2 += M
for i in range(10):
for j in range(25):
for k in range(50):
res2[i, j] += m1[i, k] * m2[k, j]
self.assertEqual(res1, res2)
# Test 0-strided
for tname, _prec in types.items():
M = torch.randn(10, 1).type(tname).expand(10, 25)
m1 = torch.randn(10, 1).type(tname).expand(10, 50)
m2 = torch.randn(50, 25).type(tname)
res1 = torch.addmm(M, m1, m2)
res2 = torch.zeros(10, 25).type(tname)
res2 += M
for i in range(10):
for j in range(25):
for k in range(50):
res2[i, j] += m1[i, k] * m2[k, j]
self.assertEqual(res1, res2)
def _testMath(self, torchfn, mathfn):
size = (10, 5)
# contiguous
m1 = torch.randn(*size)
res1 = torchfn(m1[4])
res2 = res1.clone().zero_()
for i, v in enumerate(m1[4]):
res2[i] = mathfn(v)
self.assertEqual(res1, res2)
# non-contiguous
m1 = torch.randn(*size)
res1 = torchfn(m1[:, 4])
res2 = res1.clone().zero_()
for i, v in enumerate(m1[:, 4]):
res2[i] = mathfn(v)
self.assertEqual(res1, res2)
def _testMathByName(self, function_name):
torchfn = getattr(torch, function_name)
mathfn = getattr(math, function_name)
self._testMath(torchfn, mathfn)
def test_sin(self):
self._testMathByName('sin')
def test_sinh(self):
self._testMathByName('sinh')
def test_lgamma(self):
self._testMathByName('lgamma')
def test_asin(self):
self._testMath(torch.asin, lambda x: math.asin(x) if abs(x) <= 1 else float('nan'))
def test_cos(self):
self._testMathByName('cos')
def test_cosh(self):
self._testMathByName('cosh')
def test_acos(self):
self._testMath(torch.acos, lambda x: math.acos(x) if abs(x) <= 1 else float('nan'))
def test_tan(self):
self._testMathByName('tan')
def test_tanh(self):
self._testMathByName('tanh')
def test_atan(self):
self._testMathByName('atan')
def test_log(self):
self._testMath(torch.log, lambda x: math.log(x) if x > 0 else float('nan'))
def test_sqrt(self):
self._testMath(torch.sqrt, lambda x: math.sqrt(x) if x > 0 else float('nan'))
def test_erf(self):
self._testMathByName('erf')
def test_erfinv(self):
def checkType(tensor):
inputValues = torch.randn(4, 4, out=tensor()).clamp(-2., 2.)
self.assertEqual(tensor(inputValues).erf().erfinv(), tensor(inputValues))
# test inf
self.assertTrue(torch.equal(tensor([-1, 1]).erfinv(), tensor([float('-inf'), float('inf')])))
# test nan
self.assertEqual(tensor([-2, 2]).erfinv(), tensor([float('nan'), float('nan')]))
checkType(torch.FloatTensor)
checkType(torch.DoubleTensor)
def test_exp(self):
self._testMathByName('exp')
def test_floor(self):
self._testMathByName('floor')
def test_ceil(self):
self._testMathByName('ceil')
def test_rsqrt(self):
self._testMath(torch.rsqrt, lambda x: 1 / math.sqrt(x) if x > 0 else float('nan'))
def test_sigmoid(self):
# TODO: why not simulate math.sigmoid like with rsqrt?
inputValues = [-1000, -1, 0, 0.5, 1, 2, 1000]
expectedOutput = [0.0000, 0.2689, 0.5, 0.6225, 0.7311, 0.8808, 1.000]
precision_4dps = 0.0002
def checkType(tensor):
self.assertEqual(tensor(inputValues).sigmoid(), tensor(expectedOutput), precision_4dps)
checkType(torch.FloatTensor)
checkType(torch.DoubleTensor)
def test_frac(self):
self._testMath(torch.frac, lambda x: math.fmod(x, 1))
def test_trunc(self):
self._testMath(torch.trunc, lambda x: x - math.fmod(x, 1))
def test_round(self):
self._testMath(torch.round, round)
def test_has_storage(self):
self.assertIsNotNone(torch.Tensor().storage())
self.assertIsNotNone(torch.Tensor(0).storage())
self.assertIsNotNone(torch.Tensor([]).storage())
self.assertIsNotNone(torch.Tensor().clone().storage())
self.assertIsNotNone(torch.Tensor([0, 0, 0]).nonzero().storage())
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_has_storage_numpy(self):
for dtype in [np.float32, np.float64, np.int64,
np.int32, np.int16, np.uint8]:
arr = np.array([1], dtype=dtype)
self.assertIsNotNone(torch.FloatTensor(arr).storage())
self.assertIsNotNone(torch.DoubleTensor(arr).storage())
self.assertIsNotNone(torch.IntTensor(arr).storage())
self.assertIsNotNone(torch.LongTensor(arr).storage())
self.assertIsNotNone(torch.ByteTensor(arr).storage())
if torch.cuda.is_available():
self.assertIsNotNone(torch.cuda.FloatTensor(arr).storage())
self.assertIsNotNone(torch.cuda.DoubleTensor(arr).storage())
self.assertIsNotNone(torch.cuda.IntTensor(arr).storage())
self.assertIsNotNone(torch.cuda.LongTensor(arr).storage())
self.assertIsNotNone(torch.cuda.ByteTensor(arr).storage())
def _testSelection(self, torchfn, mathfn):
# contiguous
m1 = torch.randn(100, 100)
res1 = torchfn(m1)
res2 = m1[0, 0]
for i, j in iter_indices(m1):
res2 = mathfn(res2, m1[i, j])
self.assertEqual(res1, res2)
# non-contiguous
m1 = torch.randn(10, 10, 10)
m2 = m1[:, 4]
res1 = torchfn(m2)
res2 = m2[0, 0]
for i, j in iter_indices(m2):
res2 = mathfn(res2, m2[i][j])
self.assertEqual(res1, res2)
# with indices
m1 = torch.randn(100, 100)
res1val, res1ind = torchfn(m1, 1, False)
res2val = m1[:, 0:1].clone().squeeze()
res2ind = res1ind.clone().fill_(0)
for i, j in iter_indices(m1):
if mathfn(res2val[i], m1[i, j]) != res2val[i]:
res2val[i] = m1[i, j]
res2ind[i] = j
maxerr = 0
for i in range(res1val.size(0)):
maxerr = max(maxerr, abs(res1val[i] - res2val[i]))
self.assertEqual(res1ind[i], res2ind[i])
self.assertLessEqual(abs(maxerr), 1e-5)
# NaNs
for index in (0, 4, 99):
m1 = torch.randn(100)
m1[index] = float('nan')
res1val, res1ind = torch.max(m1, 0)
self.assertNotEqual(res1val[0], res1val[0])
self.assertEqual(res1ind[0], index)
res1val = torchfn(m1)
self.assertNotEqual(res1val, res1val)
def test_max(self):
self._testSelection(torch.max, max)
def test_min(self):
self._testSelection(torch.min, min)
@staticmethod
def _test_dim_reduction(self, cast):
dim_red_fns = [
"mean", "median", "mode", "norm", "prod",
"std", "sum", "var", "max", "min"]
def normfn_attr(t, dim, keepdim=False):
attr = getattr(torch, "norm")
return attr(t, 2, dim, keepdim)
for fn_name in dim_red_fns:
fn_attr = getattr(torch, fn_name) if fn_name != "norm" else normfn_attr
def fn(x, dim, keepdim=False):
ans = fn_attr(x, dim, keepdim=keepdim)
return ans if not isinstance(ans, tuple) else ans[0]
def test_multidim(x, dim):
self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True))
self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension())
self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension())
# general case
x = cast(torch.randn(3, 4, 5))
dim = random.randint(0, 2)
test_multidim(x, dim)
# check 1-d behavior
x = cast(torch.randn(1))
dim = 0
self.assertEqual(fn(x, dim), fn(x, dim, keepdim=True))
self.assertEqual(x.ndimension(), fn(x, dim).ndimension())
self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension())
# check reducing of a singleton dimension
dims = [3, 4, 5]
singleton_dim = random.randint(0, 2)
dims[singleton_dim] = 1
x = cast(torch.randn(dims))
test_multidim(x, singleton_dim)
def test_dim_reduction(self):
self._test_dim_reduction(self, lambda t: t)
def _testCSelection(self, torchfn, mathfn):
# Two tensors
size = (100, 100)
a = torch.rand(*size)
b = torch.rand(*size)
c = torchfn(a, b)
expected_c = torch.zeros(*size)
expected_c.map2_(a, b, lambda _, a, b: mathfn(a, b))
self.assertEqual(expected_c, c, 0)
def test_max_elementwise(self):
self._testCSelection(torch.max, max)
def test_min_elementwise(self):
self._testCSelection(torch.min, min)
def test_lerp(self):
def TH_lerp(a, b, weight):
return a + weight * (b - a)
size = (100, 100)
a = torch.rand(*size)
b = torch.rand(*size)
w = random.random()
result = torch.lerp(a, b, w)
expected = a.clone()
expected.map2_(a, b, lambda _, a, b: TH_lerp(a, b, w))
self.assertEqual(result, expected)
def test_all_any(self):
def test(size):
x = torch.ones(*size).byte()
self.assertTrue(x.all())
self.assertTrue(x.any())
x[3] = 0
self.assertFalse(x.all())
self.assertTrue(x.any())
x.zero_()
self.assertFalse(x.all())
self.assertFalse(x.any())
x.fill_(2)
self.assertTrue(x.all())
self.assertTrue(x.any())
test((10,))
test((5, 5))
def test_all_any_empty(self):
x = torch.ByteTensor()
self.assertTrue(x.all())
self.assertFalse(x.any())
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
def test_all_any_empty_cuda(self):
x = torch.cuda.ByteTensor()
self.assertTrue(x.all())
self.assertFalse(x.any())
def test_mv(self):
m1 = torch.randn(100, 100)
v1 = torch.randn(100)
res1 = torch.mv(m1, v1)
res2 = res1.clone().zero_()
for i, j in iter_indices(m1):
res2[i] += m1[i][j] * v1[j]
self.assertEqual(res1, res2)
def test_add(self):
# [res] torch.add([res,] tensor1, tensor2)
m1 = torch.randn(100, 100)
v1 = torch.randn(100)
# contiguous
res1 = torch.add(m1[4], v1)
res2 = res1.clone().zero_()
for i in range(m1.size(1)):
res2[i] = m1[4, i] + v1[i]
self.assertEqual(res1, res2)
m1 = torch.randn(100, 100)
v1 = torch.randn(100)
# non-contiguous
res1 = torch.add(m1[:, 4], v1)
res2 = res1.clone().zero_()
for i in range(m1.size(0)):
res2[i] = m1[i, 4] + v1[i]
self.assertEqual(res1, res2)
# [res] torch.add([res,] tensor, value)
m1 = torch.randn(10, 10)
# contiguous
res1 = m1.clone()
res1[3].add_(2)
res2 = m1.clone()
for i in range(m1.size(1)):
res2[3, i] = res2[3, i] + 2
self.assertEqual(res1, res2)
# non-contiguous
m1 = torch.randn(10, 10)
res1 = m1.clone()
res1[:, 3].add_(2)
res2 = m1.clone()
for i in range(m1.size(0)):
res2[i, 3] = res2[i, 3] + 2
self.assertEqual(res1, res2)
# [res] torch.add([res,] tensor1, value, tensor2)
def test_csub(self):
# with a tensor
a = torch.randn(100, 90)
b = a.clone().normal_()
res_add = torch.add(a, -1, b)
res_csub = a.clone()
res_csub.sub_(b)
self.assertEqual(res_add, res_csub)
# with a scalar
a = torch.randn(100, 100)
scalar = 123.5
res_add = torch.add(a, -scalar)
res_csub = a.clone()
res_csub.sub_(scalar)
self.assertEqual(res_add, res_csub)
@staticmethod
def _test_neg(self, cast):
float_types = ['torch.DoubleTensor', 'torch.FloatTensor', 'torch.LongTensor']
int_types = ['torch.IntTensor', 'torch.ShortTensor']
for t in float_types + int_types:
if t in float_types:
a = cast(torch.randn(100, 90).type(t))
else:
a = cast(torch.Tensor(100, 90).type(t).random_())
zeros = cast(torch.Tensor().type(t)).resize_as_(a).zero_()
res_add = torch.add(zeros, -1, a)
res_neg = a.clone()
res_neg.neg_()
self.assertEqual(res_neg, res_add)
# test out of place as well
res_neg_out_place = a.clone().neg()
self.assertEqual(res_neg_out_place, res_add)
# test via __neg__ operator
res_neg_op = -a.clone()
self.assertEqual(res_neg_op, res_add)
def test_neg(self):
self._test_neg(self, lambda t: t)
def test_reciprocal(self):
a = torch.randn(100, 89)
zeros = torch.Tensor().resize_as_(a).zero_()
res_div = 1 / a
res_reciprocal = a.clone()
res_reciprocal.reciprocal_()
self.assertEqual(res_reciprocal, res_div)
def test_mul(self):
m1 = torch.randn(10, 10)
res1 = m1.clone()
res1[:, 3].mul_(2)
res2 = m1.clone()
for i in range(res1.size(0)):
res2[i, 3] = res2[i, 3] * 2
self.assertEqual(res1, res2)
def test_div(self):
m1 = torch.randn(10, 10)
res1 = m1.clone()
res1[:, 3].div_(2)
res2 = m1.clone()
for i in range(m1.size(0)):
res2[i, 3] = res2[i, 3] / 2
self.assertEqual(res1, res2)
def test_fmod(self):
m1 = torch.Tensor(10, 10).uniform_(-10., 10.)
res1 = m1.clone()
q = 2.1
res1[:, 3].fmod_(q)
res2 = m1.clone()
for i in range(m1.size(1)):
res2[i, 3] = math.fmod(res2[i, 3], q)
self.assertEqual(res1, res2)
def test_remainder(self):
# Check the Floating point case
m1 = torch.Tensor(10, 10).uniform_(-10., 10.)
res1 = m1.clone()
res2 = m1.clone()
qs = torch.arange(-5.1, 4.1)
# Check the case where the divisor is a simple float
for col_idx, q in enumerate(qs):
# Reference
for i in range(m1.size(0)):
res2[i, col_idx] = res2[i, col_idx] % q
# To test
res1[:, col_idx].remainder_(q)
self.assertEqual(res1, res2)
# Check the case where the divisor is a tensor
res1 = m1.clone()
res1.remainder_(qs.unsqueeze(0).expand_as(res1))
self.assertEqual(res1, res2)
# Check the LongTensor case
long_m1 = torch.LongTensor(10, 10).random_(-10, 10)
long_res1 = long_m1.clone()
long_res2 = long_m1.clone()
long_qs = torch.arange(-5, 5).long()
long_qs[5] = 5 # Can't handle the divisor=0 case
for col_idx, long_q in enumerate(long_qs):
# Reference
for i in range(long_m1.size(0)):
long_res2[i, col_idx] = long_res2[i, col_idx] % long_q
# To test
long_res1[:, col_idx].remainder_(long_q)
self.assertEqual(long_res1, long_res2)
# Divisor is a tensor case
long_res1 = long_m1.clone()
long_res1.remainder_(long_qs.unsqueeze(0).expand_as(long_res1))
def test_mm(self):
# helper function
def matrixmultiply(mat1, mat2):
n = mat1.size(0)
m = mat1.size(1)
p = mat2.size(1)
res = torch.zeros(n, p)
for i, j in iter_indices(res):
res[i, j] = sum(mat1[i, k] * mat2[k, j] for k in range(m))
return res
# contiguous case
n, m, p = 10, 10, 5
mat1 = torch.randn(n, m)
mat2 = torch.randn(m, p)
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# non contiguous case 1
n, m, p = 10, 10, 5
mat1 = torch.randn(n, m)
mat2 = torch.randn(p, m).t()
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# non contiguous case 2
n, m, p = 10, 10, 5
mat1 = torch.randn(m, n).t()
mat2 = torch.randn(m, p)
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# non contiguous case 3
n, m, p = 10, 10, 5
mat1 = torch.randn(m, n).t()
mat2 = torch.randn(p, m).t()
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# test with zero stride
n, m, p = 10, 10, 5
mat1 = torch.randn(n, m)
mat2 = torch.randn(m, 1).expand(m, p)
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
@staticmethod
def _test_btrifact(self, cast):
a = torch.FloatTensor((((1.3722, -0.9020),
(1.8849, 1.9169)),
((0.7187, -1.1695),
(-0.0139, 1.3572)),
((-1.6181, 0.7148),
(1.3728, 0.1319))))
a = cast(a)
info = cast(torch.IntTensor())
a_LU = a.btrifact(info=info)
self.assertEqual(info.abs().sum(), 0)
P, a_L, a_U = torch.btriunpack(*a_LU)
a_ = torch.bmm(P, torch.bmm(a_L, a_U))
self.assertEqual(a_, a)
@skipIfNoLapack
def test_btrifact(self):
self._test_btrifact(self, lambda t: t)
@staticmethod
def _test_btrisolve(self, cast):
a = torch.FloatTensor((((1.3722, -0.9020),
(1.8849, 1.9169)),
((0.7187, -1.1695),
(-0.0139, 1.3572)),
((-1.6181, 0.7148),
(1.3728, 0.1319))))
b = torch.FloatTensor(((4.02, 6.19),
(-1.56, 4.00),
(9.81, -4.09)))
a, b = cast(a), cast(b)
info = cast(torch.IntTensor())
LU_data, pivots = a.btrifact(info=info)
self.assertEqual(info.abs().sum(), 0)
x = torch.btrisolve(b, LU_data, pivots)
b_ = torch.bmm(a, x.unsqueeze(2)).squeeze()
self.assertEqual(b_, b)
@skipIfNoLapack
def test_btrisolve(self):
self._test_btrisolve(self, lambda t: t)
def test_bmm(self):
num_batches = 10
M, N, O = 23, 8, 12
b1 = torch.randn(num_batches, M, N)
b2 = torch.randn(num_batches, N, O)
res = torch.bmm(b1, b2)
for i in range(num_batches):
r = torch.mm(b1[i], b2[i])
self.assertEqual(r, res[i])
def test_addbmm(self):
# num_batches = 10
# M, N, O = 12, 8, 5
num_batches = 2
M, N, O = 2, 3, 4
b1 = torch.randn(num_batches, M, N)
b2 = torch.randn(num_batches, N, O)
res = torch.bmm(b1, b2)
res2 = torch.Tensor().resize_as_(res[0]).zero_()
res2.addbmm_(b1, b2)
self.assertEqual(res2, res.sum(0, False))
res2.addbmm_(1, b1, b2)
self.assertEqual(res2, res.sum(0, False) * 2)
res2.addbmm_(1., .5, b1, b2)
self.assertEqual(res2, res.sum(0, False) * 2.5)
res3 = torch.addbmm(1, res2, 0, b1, b2)
self.assertEqual(res3, res2)
res4 = torch.addbmm(1, res2, .5, b1, b2)
self.assertEqual(res4, res.sum(0, False) * 3)
res5 = torch.addbmm(0, res2, 1, b1, b2)
self.assertEqual(res5, res.sum(0, False))
res6 = torch.addbmm(.1, res2, .5, b1, b2)
self.assertEqual(res6, res2 * .1 + (res.sum(0) * .5))
def test_baddbmm(self):
num_batches = 10
M, N, O = 12, 8, 5
b1 = torch.randn(num_batches, M, N)
b2 = torch.randn(num_batches, N, O)
res = torch.bmm(b1, b2)
res2 = torch.Tensor().resize_as_(res).zero_()
res2.baddbmm_(b1, b2)
self.assertEqual(res2, res)
res2.baddbmm_(1, b1, b2)
self.assertEqual(res2, res * 2)
res2.baddbmm_(1, .5, b1, b2)
self.assertEqual(res2, res * 2.5)
res3 = torch.baddbmm(1, res2, 0, b1, b2)
self.assertEqual(res3, res2)
res4 = torch.baddbmm(1, res2, .5, b1, b2)
self.assertEqual(res4, res * 3)
res5 = torch.baddbmm(0, res2, 1, b1, b2)
self.assertEqual(res5, res)
res6 = torch.baddbmm(.1, res2, .5, b1, b2)
self.assertEqual(res6, res2 * .1 + res * .5)
def test_clamp(self):
m1 = torch.rand(100).mul(5).add(-2.5) # uniform in [-2.5, 2.5]
# just in case we're extremely lucky.
min_val = -1
max_val = 1
m1[1] = min_val
m1[2] = max_val
res1 = m1.clone()
res1.clamp_(min_val, max_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = max(min_val, min(max_val, res2[i]))
self.assertEqual(res1, res2)
res1 = torch.clamp(m1, min=min_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = max(min_val, res2[i])
self.assertEqual(res1, res2)
res1 = torch.clamp(m1, max=max_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = min(max_val, res2[i])
self.assertEqual(res1, res2)
def test_pow(self):
# [res] torch.pow([res,] x)
# pow has dedicated implementation for different exponents
for exponent in [-2, -1, -0.5, 0.5, 1, 2, 3, 4]:
# base - tensor, exponent - number
# contiguous
m1 = torch.rand(100, 100) + 0.5
res1 = torch.pow(m1[4], exponent)
res2 = res1.clone().zero_()
for i in range(res2.size(0)):
res2[i] = math.pow(m1[4][i], exponent)
self.assertEqual(res1, res2)
# non-contiguous
m1 = torch.rand(100, 100) + 0.5
res1 = torch.pow(m1[:, 4], exponent)
res2 = res1.clone().zero_()
for i in range(res2.size(0)):
res2[i] = math.pow(m1[i, 4], exponent)
self.assertEqual(res1, res2)
# base - number, exponent - tensor
# contiguous
m1 = torch.randn(100, 100)
res1 = torch.pow(3, m1[4])
res2 = res1.clone().zero_()
for i in range(res2.size(0)):
res2[i] = math.pow(3, m1[4, i])
self.assertEqual(res1, res2)
# non-contiguous
m1 = torch.randn(100, 100)
res1 = torch.pow(3, m1[:, 4])
res2 = res1.clone().zero_()
for i in range(res2.size(0)):
res2[i] = math.pow(3, m1[i][4])
self.assertEqual(res1, res2)
def test_rpow(self):
m = torch.randn(10, 10)
self.assertEqual(torch.pow(2, m), 2**m)
def _test_cop(self, torchfn, mathfn):
def reference_implementation(res2):
for i, j in iter_indices(sm1):
idx1d = i * sm1.size(0) + j
res2[i, j] = mathfn(sm1[i, j], sm2[idx1d])
return res2
# contiguous
m1 = torch.randn(10, 10, 10)
m2 = torch.randn(10, 10 * 10)
sm1 = m1[4]
sm2 = m2[4]
res1 = torchfn(sm1, sm2.view(10, 10))
res2 = reference_implementation(res1.clone())
self.assertEqual(res1, res2)
# non-contiguous
m1 = torch.randn(10, 10, 10)
m2 = torch.randn(10 * 10, 10 * 10)
sm1 = m1[:, 4]
sm2 = m2[:, 4]
# view as sm1.size()
sm2.set_(sm2.storage(), sm2.storage_offset(), sm1.size(), (sm2.stride()[0] * 10, sm2.stride()[0]))
res1 = torchfn(sm1, sm2)
# reference_implementation assumes 1-d sm2
sm2.set_(sm2.storage(), sm2.storage_offset(), m2[:, 4].size(), m2[:, 4].stride())
res2 = reference_implementation(res1.clone())
self.assertEqual(res1, res2)
def test_cdiv(self):
self._test_cop(torch.div, lambda x, y: x / y)
def test_cfmod(self):
self._test_cop(torch.fmod, math.fmod)
def test_cremainder(self):
self._test_cop(torch.remainder, lambda x, y: x % y)
def test_cmul(self):
self._test_cop(torch.mul, lambda x, y: x * y)
def test_cpow(self):
self._test_cop(torch.pow, lambda x, y: float('nan') if x < 0 else math.pow(x, y))
# TODO: these tests only check if it's possible to pass a return value
# it'd be good to expand them
def test_sum(self):
x = torch.rand(100, 100)
res1 = torch.sum(x, 1)
res2 = torch.Tensor()
torch.sum(x, 1, out=res2)
self.assertEqual(res1, res2)
def test_prod(self):
x = torch.rand(100, 100)
res1 = torch.prod(x, 1)
res2 = torch.Tensor()
torch.prod(x, 1, out=res2)
self.assertEqual(res1, res2)
def test_cumsum(self):
x = torch.rand(100, 100)
res1 = torch.cumsum(x, 1)
res2 = torch.Tensor()
torch.cumsum(x, 1, out=res2)
self.assertEqual(res1, res2)
def test_cumprod(self):
x = torch.rand(100, 100)
res1 = torch.cumprod(x, 1)
res2 = torch.Tensor()
torch.cumprod(x, 1, out=res2)
self.assertEqual(res1, res2)
def test_cross(self):
x = torch.rand(100, 3, 100)
y = torch.rand(100, 3, 100)
res1 = torch.cross(x, y)
res2 = torch.Tensor()
torch.cross(x, y, out=res2)
self.assertEqual(res1, res2)
def test_zeros(self):
res1 = torch.zeros(100, 100)
res2 = torch.Tensor()
torch.zeros(100, 100, out=res2)
self.assertEqual(res1, res2)
def test_zeros_like(self):
expected = torch.zeros(100, 100)
res1 = torch.zeros_like(expected)
self.assertEqual(res1, expected)
res2 = torch.Tensor()
torch.zeros_like(expected, out=res2)
self.assertEqual(res2, expected)
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
def test_zeros_like_cuda(self):
expected = torch.zeros(100, 100).cuda()
res1 = torch.zeros_like(expected)
self.assertEqual(res1, expected)
res2 = torch.Tensor().cuda()
torch.zeros_like(expected, out=res2)
self.assertEqual(res2, expected)
@unittest.skipIf(torch.cuda.device_count() < 2, 'only one GPU detected')
def test_zeros_like_multiple_device(self):
expected = torch.zeros(100, 100).cuda()
x = torch.cuda.FloatTensor(100, 100, device=1)
output = torch.zeros_like(x)
self.assertEqual(output, expected)
def test_histc(self):
x = torch.Tensor((2, 4, 2, 2, 5, 4))
y = torch.histc(x, 5, 1, 5) # nbins, min, max
z = torch.Tensor((0, 3, 0, 2, 1))
self.assertEqual(y, z)
def test_ones(self):
res1 = torch.ones(100, 100)
res2 = torch.Tensor()
torch.ones(100, 100, out=res2)
self.assertEqual(res1, res2)
def test_ones_like(self):
expected = torch.ones(100, 100)
res1 = torch.ones_like(expected)
self.assertEqual(res1, expected)
res2 = torch.Tensor()
torch.ones_like(expected, out=res2)
self.assertEqual(res2, expected)
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
def test_ones_like_cuda(self):
expected = torch.ones(100, 100).cuda()
res1 = torch.ones_like(expected)
self.assertEqual(res1, expected)
res2 = torch.Tensor().cuda()
torch.ones_like(expected, out=res2)
self.assertEqual(res2, expected)
@unittest.skipIf(torch.cuda.device_count() < 2, 'only one GPU detected')
def test_ones_like_multiple_device(self):
expected = torch.ones(100, 100).cuda()
x = torch.cuda.FloatTensor(100, 100, device=1)
output = torch.ones_like(x)
self.assertEqual(output, expected)
def test_diag(self):
x = torch.rand(100, 100)
res1 = torch.diag(x)
res2 = torch.Tensor()
torch.diag(x, out=res2)
self.assertEqual(res1, res2)
def test_eye(self):
res1 = torch.eye(100, 100)
res2 = torch.Tensor()
torch.eye(100, 100, out=res2)
self.assertEqual(res1, res2)
def test_renorm(self):
m1 = torch.randn(10, 5)
res1 = torch.Tensor()
def renorm(matrix, value, dim, max_norm):
m1 = matrix.transpose(dim, 0).contiguous()
# collapse non-dim dimensions.
m2 = m1.clone().resize_(m1.size(0), int(math.floor(m1.nelement() / m1.size(0))))
norms = m2.norm(value, 1, True)
# clip
new_norms = norms.clone()
new_norms[torch.gt(norms, max_norm)] = max_norm
new_norms.div_(norms.add_(1e-7))
# renormalize
m1.mul_(new_norms.expand_as(m1))
return m1.transpose(dim, 0)
# note that the axis fed to torch.renorm is different (2~=1)
maxnorm = m1.norm(2, 1).mean()
m2 = renorm(m1, 2, 1, maxnorm)
m1.renorm_(2, 1, maxnorm)
self.assertEqual(m1, m2, 1e-5)
self.assertEqual(m1.norm(2, 0), m2.norm(2, 0), 1e-5)
m1 = torch.randn(3, 4, 5)
m2 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
maxnorm = m2.norm(2, 0).mean()
m2 = renorm(m2, 2, 1, maxnorm)
m1.renorm_(2, 1, maxnorm)
m3 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
self.assertEqual(m3, m2)
self.assertEqual(m3.norm(2, 0), m2.norm(2, 0))
def test_multinomial(self):
# with replacement
n_row = 3
for n_col in range(4, 5 + 1):
prob_dist = torch.rand(n_row, n_col)
prob_dist.select(1, n_col - 1).fill_(0) # index n_col shouldn't be sampled
n_sample = n_col
sample_indices = torch.multinomial(prob_dist, n_sample, True)
self.assertEqual(prob_dist.dim(), 2)
self.assertEqual(sample_indices.size(1), n_sample)
for index in product(range(n_row), range(n_sample)):
self.assertNotEqual(sample_indices[index], n_col, "sampled an index with zero probability")
# without replacement
n_row = 3
for n_col in range(4, 5 + 1):
prob_dist = torch.rand(n_row, n_col)
prob_dist.select(1, n_col - 1).fill_(0) # index n_col shouldn't be sampled
n_sample = 3
sample_indices = torch.multinomial(prob_dist, n_sample, False)
self.assertEqual(prob_dist.dim(), 2)
self.assertEqual(sample_indices.size(1), n_sample)
for i in range(n_row):
row_samples = {}
for j in range(n_sample):
sample_idx = sample_indices[i, j]
self.assertNotEqual(sample_idx, n_col - 1,
"sampled an index with zero probability")
self.assertNotIn(sample_idx, row_samples, "sampled an index twice")
row_samples[sample_idx] = True
# vector
n_col = 4
prob_dist = torch.rand(n_col)
n_sample = n_col
sample_indices = torch.multinomial(prob_dist, n_sample, True)
s_dim = sample_indices.dim()
self.assertEqual(sample_indices.dim(), 1, "wrong number of dimensions")
self.assertEqual(prob_dist.dim(), 1, "wrong number of prob_dist dimensions")
self.assertEqual(sample_indices.size(0), n_sample, "wrong number of samples")
@suppress_warnings
def test_range(self):
res1 = torch.range(0, 1)
res2 = torch.Tensor()
torch.range(0, 1, out=res2)
self.assertEqual(res1, res2, 0)
# Check range for non-contiguous tensors.
x = torch.zeros(2, 3)
torch.range(0, 3, out=x.narrow(1, 1, 2))
res2 = torch.Tensor(((0, 0, 1), (0, 2, 3)))
self.assertEqual(x, res2, 1e-16)
# Check negative
res1 = torch.Tensor((1, 0))
res2 = torch.Tensor()
torch.range(1, 0, -1, out=res2)
self.assertEqual(res1, res2, 0)
# Equal bounds
res1 = torch.ones(1)
res2 = torch.Tensor()
torch.range(1, 1, -1, out=res2)
self.assertEqual(res1, res2, 0)
torch.range(1, 1, 1, out=res2)
self.assertEqual(res1, res2, 0)
# FloatTensor
res1 = torch.range(0.6, 0.9, 0.1, out=torch.FloatTensor())
self.assertEqual(res1.size(0), 4)
res1 = torch.range(1, 10, 0.3, out=torch.FloatTensor())
self.assertEqual(res1.size(0), 31)
# DoubleTensor
res1 = torch.range(0.6, 0.9, 0.1, out=torch.DoubleTensor())
self.assertEqual(res1.size(0), 4)
res1 = torch.range(1, 10, 0.3, out=torch.DoubleTensor())
self.assertEqual(res1.size(0), 31)
def test_arange(self):
res1 = torch.arange(0, 1)
res2 = torch.Tensor()
torch.arange(0, 1, out=res2)
self.assertEqual(res1, res2, 0)
# Check arange with only one argument
res1 = torch.arange(10)
res2 = torch.arange(0, 10)
self.assertEqual(res1, res2, 0)
# Check arange for non-contiguous tensors.
x = torch.zeros(2, 3)
torch.arange(0, 4, out=x.narrow(1, 1, 2))
res2 = torch.Tensor(((0, 0, 1), (0, 2, 3)))
self.assertEqual(x, res2, 1e-16)
# Check negative
res1 = torch.Tensor((1, 0))
res2 = torch.Tensor()
torch.arange(1, -1, -1, out=res2)
self.assertEqual(res1, res2, 0)
# Equal bounds
res1 = torch.ones(1)
res2 = torch.Tensor()
torch.arange(1, 0, -1, out=res2)
self.assertEqual(res1, res2, 0)
torch.arange(1, 2, 1, out=res2)
self.assertEqual(res1, res2, 0)
# FloatTensor
res1 = torch.arange(0.6, 0.89, 0.1, out=torch.FloatTensor())
self.assertEqual(res1.size(0), 3)
res1 = torch.arange(1, 10, 0.3, out=torch.FloatTensor())
self.assertEqual(res1.size(0), 31)
# DoubleTensor
res1 = torch.arange(0.6, 0.89, 0.1, out=torch.DoubleTensor())
self.assertEqual(res1.size(0), 3)
res1 = torch.arange(1, 10, 0.3, out=torch.DoubleTensor())
self.assertEqual(res1.size(0), 31)
# Check that it's exclusive
r = torch.arange(0, 5)
self.assertEqual(r.min(), 0)
self.assertEqual(r.max(), 4)
self.assertEqual(r.numel(), 5)
r = torch.arange(0, 5, 2)
self.assertEqual(r.min(), 0)
self.assertEqual(r.max(), 4)
self.assertEqual(r.numel(), 3)
r1 = torch.arange(0, 5 + 1e-6)
r2 = torch.arange(0, 5)
r3 = torch.arange(0, 5 - 1e-6)
self.assertEqual(r1[:-1], r2, 0)
self.assertEqual(r2, r3, 0)
r1 = torch.arange(10, -1 + 1e-6, -1)
r2 = torch.arange(10, -1, -1)
r3 = torch.arange(10, -1 - 1e-6, -1)
self.assertEqual(r1, r2, 0)
self.assertEqual(r2, r3[:-1], 0)
@staticmethod
def _select_broadcastable_dims(dims_full=None):
# select full dimensionality
if dims_full is None:
dims_full = []
ndims = random.randint(1, 4)
dims_full = [random.randint(1, 8) for _ in range(ndims)]
else:
ndims = len(dims_full)
# select actual dimensions for ops:
# larger: full ndims, individual sizes may be reduced
# smaller: possibly reduced ndims, sizes may be reduced
smaller_ndims = random.randint(1, ndims)
dims_small = []
dims_large = []
for i in range(ndims - 1, -1, -1):
j = random.randint(1, 3)
if j == 1: # no reduced singleton dimension
ds = dims_full[i]
dl = dims_full[i]
elif j == 2: # larger may have reduced singleton dimension
ds = dims_full[i]
dl = 1 if len(dims_small) < smaller_ndims else dims_full[i]
elif j == 3: # smaller may have reduced singleton dimension
ds = 1
dl = dims_full[i]
dims_large = [dl] + dims_large
if len(dims_small) < smaller_ndims:
dims_small = [ds] + dims_small
return (dims_small, dims_large, dims_full)
@staticmethod
def _test_broadcast(self, cast):
# all functions
fns = {
"dist", "atan2", "pow", "lerp", "add",
"sub", "mul", "div", "fmod", "remainder",
"eq", "ge", "gt", "le", "lt", "max", "min", "ne",
"addcdiv", "addcmul", "masked_scatter", "masked_select", "masked_fill",
"map", "map2", "copy"
}
# functions with three tensor arguments
fns_3_args = {"addcdiv", "addcmul", "map2"}
for fn in fns:
(dims_small, dims_large, dims_full) = self._select_broadcastable_dims()
small = cast(torch.randn(*dims_small).float())
large = cast(torch.randn(*dims_large).float())
small_expanded = small.expand(*dims_full)
large_expanded = large.expand(*dims_full)
small2 = None
small2_expanded = None
if fn in fns_3_args:
# create another smaller tensor
(dims_small2, _, _) = self._select_broadcastable_dims(dims_full)
small2 = cast(torch.randn(*dims_small2).float())
small2_expanded = small2.expand(*dims_full)
if hasattr(large_expanded, fn):
# run through tensor versions of functions
# and verify fully expanded inputs give same results
expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded}
def tensorfn(myfn, t1, t2):
if fn == "lerp":
return myfn(t1, 0.5)
elif fn == "masked_select":
return myfn(t1 < 0)
elif fn in fns_3_args:
return myfn(1, t1, t2)
else:
return myfn(t1)
# test various orders
for first, second, third in [(large, small, small2), (small, large, small2),
(small2, small, large), (small2, large, small)]:
if first is None:
break # ignore last iter when small2 is None
method_expanded = getattr(expanded[first], fn)
method = getattr(first, fn)
r1 = tensorfn(method_expanded, expanded[second], expanded[third])
r2 = tensorfn(method, second, third)
self.assertEqual(r1, r2)
# now for torch. versions of functions
if hasattr(torch, fn):
fntorch = getattr(torch, fn)
expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded}
def torchfn(t1, t2, t3):
if fn == "lerp":
return fntorch(t1, t2, 0.5)
elif fn == "masked_select":
return fntorch(t1, t2 < 0)
elif fn in fns_3_args:
return fntorch(t1, 1.0, t2, t3)
else:
return fntorch(t1, t2)
# test various orders
for first, second, third in [(large, small, small2), (small, large, small2),
(small2, small, large), (small2, large, small)]:
if first is None:
break # ignore last iter when small2 is None
r1 = torchfn(expanded[first], expanded[second], expanded[third])
r2 = torchfn(first, second, third)
self.assertEqual(r1, r2)
# now for in place functions
# in-place tensor is not broadcastable; test only guaranteed
# to work by broadcasting other argument(s)
if not hasattr(large_expanded, fn + "_"):
continue
# need to clone largeExpanded so we can reuse, since functions are in-place
large_expanded_clone = large_expanded.clone()
def tensorfn_inplace(t0, t1, t2=None):
t0_fn = getattr(t0, fn + "_")
if fn == "lerp":
return t0_fn(t1, 0.5)
elif fn == "masked_scatter":
return t0_fn(t1 < 0.5, cast(torch.arange(1, t0.nelement() + 1).float()))
elif fn == "masked_fill":
return t0_fn(t1 < 0.5, 1.0)
elif fn == "map":
return t0_fn(t1, lambda x, y: x + y)
elif fn == "map2":
return t0_fn(t1, t2, lambda x, y, z: x + y + z)
elif fn in fns_3_args:
return t0_fn(1.0, t1, t2)
else:
return t0_fn(t1)
r1 = tensorfn_inplace(large_expanded, small_expanded, small2_expanded)
r2 = tensorfn_inplace(large_expanded_clone, small, small2)
# in-place pointwise operations don't actually work if the in-place
# tensor is 0-strided (numpy has the same issue)
if (0 not in large_expanded.stride() and 0 not in large_expanded_clone.stride()):
self.assertEqual(r1, r2)
def broadcastable(t0, t1, t2=None):
try:
t1.expand_as(t0)
if t2 is not None:
t2.expand_as(t0)
except RuntimeError:
return False
return True
def _test_in_place_broadcastable(t0, t1, t2=None):
if not broadcastable(t0, t1, t2):
same_size = t0.numel() == t1.numel() and (t0.numel() == t2.numel() if t2 is not None else True)
if not same_size:
self.assertRaises(RuntimeError, lambda: tensorfn_inplace(t0, t1, t2))
else:
tensorfn_inplace(t0, t1, t2)
if fn not in fns_3_args:
_test_in_place_broadcastable(small, large_expanded)
_test_in_place_broadcastable(small, large)
else:
_test_in_place_broadcastable(small2, small_expanded, large_expanded)
_test_in_place_broadcastable(small2, small, large)
def test_broadcast(self):
self._test_broadcast(self, lambda t: t)
@staticmethod
def _test_contiguous(self, cast):
x = cast(torch.randn(1, 16, 5, 5))
self.assertTrue(x.is_contiguous())
stride = list(x.stride())
stride[0] = 20
# change the stride in dimension 0. the tensor is still contiguous because size[0] is 1
x.set_(x.storage(), 0, x.size(), stride)
self.assertTrue(x.is_contiguous())
def test_contiguous(self):
return self._test_contiguous(self, lambda t: t)
@staticmethod
def _test_broadcast_fallback(self, cast):
# functions that should fallback to pointwise behavior
fns_fallback = {"add", "sub", "div", "mul", "pow", "fmod", "remainder",
"eq", "ge", "gt", "le", "lt", "max", "min", "ne",
"addcdiv", "addcmul", "masked_scatter", "masked_select", "masked_fill",
"map", "map2", "copy", "dist", "atan2", "lerp"}
# functions with three tensor arguments
fns_3_args = {"addcdiv", "addcmul", "map2"}
# functions that don't broadcast result size_ -- don't check result shape but
# still run functions to verify that broadcastable arguments don't error out
fns_no_result_broadcast = {"masked_select"}
for fn in fns_fallback:
# case 1: both broadcastable and nElems equal -- verify that we broadcast
t0 = cast(torch.randn(1, 4).float())
t1 = cast(torch.randn(4, 1).float())
t2 = cast(torch.randn(4).float())
broadcast_size = torch.Size([4, 4])
if not hasattr(t0, fn):
continue
t0_fn = getattr(t0, fn)
t1_fn = getattr(t1, fn)
def tensorfn(myfn, t1, t2):
if fn == "lerp":
return myfn(t1, 0.5)
elif fn == "masked_scatter":
return myfn(t1 < 0.5, cast(torch.randn(4 * 4).float()))
elif fn == "masked_fill":
return myfn(t1 < 0.5, 1.0)
elif fn == "masked_select":
return myfn(t1 < 0.5)
elif fn == "map":
return myfn(t1, lambda x, y: x + y)
elif fn == "map2":
return myfn(t1, t2, lambda x, y, z: x + y + z)
elif fn in fns_3_args:
return myfn(1.0, t1, t2)
else:
return myfn(t1)
r0 = tensorfn(t0_fn, t1, t2)
r1 = tensorfn(t1_fn, t0, t2)
if torch.is_tensor(r0) and fn not in fns_no_result_broadcast:
self.assertEqual(broadcast_size, r0.size())
self.assertEqual(broadcast_size, r1.size())
# case 2: broadcastable and not nElemes equal -- tested by test_fallback
# case 3: not broadcastable nElems equal -- verify we fallback
for inplace in False, True:
t0 = cast(torch.randn(1, 6).float())
t1 = cast(torch.randn(2, 3).float())
t2 = cast(torch.randn(3, 2).float())
if not hasattr(t0, fn if not inplace else fn + "_"):
continue
t0_fn = getattr(t0, fn if not inplace else fn + "_")
t1_fn = getattr(t1, fn if not inplace else fn + "_")
t2_fn = getattr(t2, fn if not inplace else fn + "_")
def verify_fallback_warnings(w):
self.assertEqual(len(w), 1)
self.assertTrue(issubclass(w[0].category, UserWarning))
self.assertTrue("Falling back" in str(w[0].message))
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always', UserWarning)
r0 = tensorfn(t0_fn, t1, t2)
verify_fallback_warnings(w)
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always', UserWarning)
r1 = tensorfn(t1_fn, t0, t2)
verify_fallback_warnings(w)
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always', UserWarning)
r2 = tensorfn(t2_fn, t0, t1)
verify_fallback_warnings(w)
if torch.is_tensor(r0) and fn not in fns_no_result_broadcast:
self.assertEqual(t0.size(), r0.size())
self.assertEqual(t1.size(), r1.size())
self.assertEqual(t2.size(), r2.size())
# case 4: not broadcastable and not nEleme equal -- tested by test_fallback
def test_broadcast_fallback(self):
self._test_broadcast_fallback(self, lambda t: t)
@staticmethod
def _test_broadcast_fused_matmul(self, cast):
fns = ["baddbmm", "addbmm", "addmm", "addmv", "addr"]
for fn in fns:
batch_dim = random.randint(1, 8)
n_dim = random.randint(1, 8)
m_dim = random.randint(1, 8)
p_dim = random.randint(1, 8)
def dims_full_for_fn():
if fn == "baddbmm":
return ([batch_dim, n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim])
elif fn == "addbmm":
return ([n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim])
elif fn == "addmm":
return ([n_dim, p_dim], [n_dim, m_dim], [m_dim, p_dim])
elif fn == "addmv":
return ([n_dim], [n_dim, m_dim], [m_dim])
elif fn == "addr":
return ([n_dim, m_dim], [n_dim], [m_dim])
else:
raise AssertionError("unknown function")
(t0_dims_full, t1_dims, t2_dims) = dims_full_for_fn()
(t0_dims_small, _, _) = self._select_broadcastable_dims(t0_dims_full)
t0_small = cast(torch.randn(*t0_dims_small).float())
t1 = cast(torch.randn(*t1_dims).float())
t2 = cast(torch.randn(*t2_dims).float())
t0_full = cast(t0_small.expand(*t0_dims_full))
fntorch = getattr(torch, fn)
r0 = fntorch(t0_small, t1, t2)
r1 = fntorch(t0_full, t1, t2)
self.assertEqual(r0, r1)
def test_broadcast_fused_matmul(self):
self._test_broadcast_fused_matmul(self, lambda t: t)
@staticmethod
def _test_broadcast_batched_matmul(self, cast):
n_dim = random.randint(1, 8)
m_dim = random.randint(1, 8)
p_dim = random.randint(1, 8)
full_batch_dims = [random.randint(1, 3) for i in range(random.randint(1, 3))]
(batch_dims_small, _, _) = self._select_broadcastable_dims(full_batch_dims)
def verify_batched_matmul(full_lhs, one_dimensional):
if not one_dimensional:
lhs_dims = [n_dim, m_dim]
rhs_dims = [m_dim, p_dim]
result_dims = [n_dim, p_dim]
else:
lhs_dims = [n_dim, m_dim] if full_lhs else [m_dim]
rhs_dims = [m_dim, p_dim] if not full_lhs else [m_dim]
result_dims = [n_dim] if full_lhs else [p_dim]
lhs_mat_dims = lhs_dims if len(lhs_dims) != 1 else [1, m_dim]
rhs_mat_dims = rhs_dims if len(rhs_dims) != 1 else [m_dim, 1]
full_mat_dims = lhs_mat_dims if full_lhs else rhs_mat_dims
dim0_dims = rhs_dims if full_lhs else lhs_dims
small_dims = batch_dims_small + (rhs_mat_dims if full_lhs else lhs_mat_dims)
small = cast(torch.randn(*(small_dims)).float())
dim0 = cast(torch.randn(*(dim0_dims)).float())
full = cast(torch.randn(*(full_batch_dims + full_mat_dims)).float())
if not one_dimensional:
(lhsTensors, rhsTensors) = ((full,), (small, dim0)) if full_lhs else ((small, dim0), (full,))
else:
(lhsTensors, rhsTensors) = ((full,), (dim0,)) if full_lhs else ((dim0,), (full,))
def maybe_squeeze_result(l, r, result):
if len(lhs_dims) == 1 and l.dim() != 1:
return result.squeeze(-2)
elif len(rhs_dims) == 1 and r.dim() != 1:
return result.squeeze(-1)
else:
return result
for lhs in lhsTensors:
lhs_expanded = lhs.expand(*(torch.Size(full_batch_dims) + torch.Size(lhs_mat_dims)))
lhs_expanded_matmul_fn = getattr(lhs_expanded, "matmul")
for rhs in rhsTensors:
rhs_expanded = ((rhs if len(rhs_dims) != 1 else rhs.unsqueeze(-1)).
expand(*(torch.Size(full_batch_dims) + torch.Size(rhs_mat_dims))))
truth = maybe_squeeze_result(lhs_expanded, rhs_expanded, lhs_expanded_matmul_fn(rhs_expanded))
for l in (lhs, lhs_expanded):
for r in (rhs, rhs_expanded):
l_matmul_fn = getattr(l, "matmul")
result = maybe_squeeze_result(l, r, l_matmul_fn(r))
self.assertEqual(truth, result)
# test torch.matmul function as well
torch_result = maybe_squeeze_result(l, r, torch.matmul(l, r))
self.assertEqual(truth, torch_result)
# compare to bmm
bmm_result = (torch.bmm(lhs_expanded.contiguous().view(-1, *lhs_mat_dims),
rhs_expanded.contiguous().view(-1, *rhs_mat_dims)))
self.assertEqual(truth.view(-1, *result_dims), bmm_result.view(-1, *result_dims))
for indices in product((True, False), repeat=2):
verify_batched_matmul(*indices)
def test_broadcast_batched_matmul(self):
self._test_broadcast_batched_matmul(self, lambda t: t)
def test_matmul_out(self):
def check_matmul(size1, size2):
a = torch.randn(size1)
b = torch.randn(size2)
expected = torch.matmul(a, b)
out = torch.Tensor(expected.size()).zero_()
# make output non-contiguous
out = out.transpose(-1, -2).contiguous().transpose(-1, -2)
self.assertFalse(out.is_contiguous())
torch.matmul(a, b, out=out)
self.assertEqual(expected, out)
check_matmul((2, 3, 4), (2, 4, 5))
check_matmul((2, 3, 4), (4, 5))
def test_broadcast_copy_fn(self):
torch.zeros(5, 6).copy_(torch.zeros(6))
def verify_fallback_warnings(w):
self.assertEqual(len(w), 1)
self.assertTrue(issubclass(w[0].category, UserWarning))
self.assertTrue("Falling back" in str(w[0].message))
# suppress broadcastable warning
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always', UserWarning)
torch.zeros(5, 6).copy_(torch.zeros(30), broadcast=True)
verify_fallback_warnings(w)
def test_randperm(self):
_RNGState = torch.get_rng_state()
res1 = torch.randperm(100)
res2 = torch.LongTensor()
torch.set_rng_state(_RNGState)
torch.randperm(100, out=res2)
self.assertEqual(res1, res2, 0)
def test_random(self):
# This test is flaky with p<=(2/(ub-lb))^200=6e-36
t = torch.FloatTensor(200)
lb = 1
ub = 4
t.fill_(-1)
t.random_(lb, ub)
self.assertEqual(t.min(), lb)
self.assertEqual(t.max(), ub - 1)
t.fill_(-1)
t.random_(ub)
self.assertEqual(t.min(), 0)
self.assertEqual(t.max(), ub - 1)
def assertIsOrdered(self, order, x, mxx, ixx, task):
SIZE = 4
if order == 'descending':
def check_order(a, b):
return a >= b
elif order == 'ascending':
def check_order(a, b):
return a <= b
else:
error('unknown order "{}", must be "ascending" or "descending"'.format(order))
are_ordered = True
for j, k in product(range(SIZE), range(1, SIZE)):
self.assertTrue(check_order(mxx[j][k - 1], mxx[j][k]),
'torch.sort ({}) values unordered for {}'.format(order, task))
seen = set()
indicesCorrect = True
size = x.size(x.dim() - 1)
for k in range(size):
seen.clear()
for j in range(size):
self.assertEqual(x[k][ixx[k][j]], mxx[k][j],
'torch.sort ({}) indices wrong for {}'.format(order, task))
seen.add(ixx[k][j])
self.assertEqual(len(seen), size)
def test_sort(self):
SIZE = 4
x = torch.rand(SIZE, SIZE)
res1val, res1ind = torch.sort(x)
# Test use of result tensor
res2val = torch.Tensor()
res2ind = torch.LongTensor()
torch.sort(x, out=(res2val, res2ind))
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# Test sorting of random numbers
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random')
# Test simple sort
self.assertEqual(
torch.sort(torch.Tensor((50, 40, 30, 20, 10)))[0],
torch.Tensor((10, 20, 30, 40, 50)),
0
)
# Test that we still have proper sorting with duplicate keys
x = torch.floor(torch.rand(SIZE, SIZE) * 10)
torch.sort(x, out=(res2val, res2ind))
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random with duplicate keys')
# DESCENDING SORT
x = torch.rand(SIZE, SIZE)
res1val, res1ind = torch.sort(x, x.dim() - 1, True)
# Test use of result tensor
res2val = torch.Tensor()
res2ind = torch.LongTensor()
torch.sort(x, x.dim() - 1, True, out=(res2val, res2ind))
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# Test sorting of random numbers
self.assertIsOrdered('descending', x, res2val, res2ind, 'random')
# Test simple sort task
self.assertEqual(
torch.sort(torch.Tensor((10, 20, 30, 40, 50)), 0, True)[0],
torch.Tensor((50, 40, 30, 20, 10)),
0
)
# Test that we still have proper sorting with duplicate keys
self.assertIsOrdered('descending', x, res2val, res2ind, 'random with duplicate keys')
def test_topk(self):
def topKViaSort(t, k, dim, dir):
sorted, indices = t.sort(dim, dir)
return sorted.narrow(dim, 0, k), indices.narrow(dim, 0, k)
def compareTensors(t, res1, ind1, res2, ind2, dim):
# Values should be exactly equivalent
self.assertEqual(res1, res2, 0)
# Indices might differ based on the implementation, since there is
# no guarantee of the relative order of selection
if not ind1.eq(ind2).all():
# To verify that the indices represent equivalent elements,
# gather from the input using the topk indices and compare against
# the sort indices
vals = t.gather(dim, ind2)
self.assertEqual(res1, vals, 0)
def compare(t, k, dim, dir):
topKVal, topKInd = t.topk(k, dim, dir, True)
sortKVal, sortKInd = topKViaSort(t, k, dim, dir)
compareTensors(t, sortKVal, sortKInd, topKVal, topKInd, dim)
t = torch.rand(random.randint(1, SIZE),
random.randint(1, SIZE),
random.randint(1, SIZE))
for _kTries in range(3):
for _dimTries in range(3):
for transpose in (True, False):
for dir in (True, False):
testTensor = t
if transpose:
dim1 = random.randrange(t.ndimension())
dim2 = dim1
while dim1 == dim2:
dim2 = random.randrange(t.ndimension())
testTensor = t.transpose(dim1, dim2)
dim = random.randrange(testTensor.ndimension())
k = random.randint(1, testTensor.size(dim))
compare(testTensor, k, dim, dir)
def test_topk_arguments(self):
q = torch.randn(10, 2, 10)
# Make sure True isn't mistakenly taken as the 2nd dimension (interpreted as 1)
self.assertRaises(TypeError, lambda: q.topk(4, True))
def test_kthvalue(self):
SIZE = 50
x = torch.rand(SIZE, SIZE, SIZE)
x0 = x.clone()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, False)
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0)
# test use of result tensors
k = random.randint(1, SIZE)
res1val = torch.Tensor()
res1ind = torch.LongTensor()
torch.kthvalue(x, k, False, out=(res1val, res1ind))
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0)
# test non-default dim
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, 0, False)
res2val, res2ind = torch.sort(x, 0)
self.assertEqual(res1val, res2val[k - 1], 0)
self.assertEqual(res1ind, res2ind[k - 1], 0)
# non-contiguous
y = x.narrow(1, 0, 1)
y0 = y.contiguous()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(y, k)
res2val, res2ind = torch.kthvalue(y0, k)
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# check that the input wasn't modified
self.assertEqual(x, x0, 0)
# simple test case (with repetitions)
y = torch.Tensor((3, 5, 4, 1, 1, 5))
self.assertEqual(torch.kthvalue(y, 3)[0], torch.Tensor((3,)), 0)
self.assertEqual(torch.kthvalue(y, 2)[0], torch.Tensor((1,)), 0)
def test_median(self):
for size in (155, 156):
x = torch.rand(size, size)
x0 = x.clone()
nelem = x.nelement()
res1val = torch.median(x)
res2val, _ = torch.sort(x.view(nelem))
ind = int(math.floor((nelem + 1) / 2) - 1)
self.assertEqual(res2val[ind], res1val, 0)
res1val, res1ind = torch.median(x, dim=1, keepdim=False)
res2val, res2ind = torch.sort(x)
ind = int(math.floor((size + 1) / 2) - 1)
self.assertEqual(res2val.select(1, ind), res1val, 0)
self.assertEqual(res2val.select(1, ind), res1val, 0)
# Test use of result tensor
res2val = torch.Tensor()
res2ind = torch.LongTensor()
torch.median(x, keepdim=False, out=(res2val, res2ind))
self.assertEqual(res2val, res1val, 0)
self.assertEqual(res2ind, res1ind, 0)
# Test non-default dim
res1val, res1ind = torch.median(x, 0, keepdim=False)
res2val, res2ind = torch.sort(x, 0)
self.assertEqual(res1val, res2val[ind], 0)
self.assertEqual(res1ind, res2ind[ind], 0)
# input unchanged
self.assertEqual(x, x0, 0)
def test_mode(self):
x = torch.arange(1, SIZE * SIZE + 1).clone().resize_(SIZE, SIZE)
x[:2] = 1
x[:, :2] = 1
x0 = x.clone()
# Pre-calculated results.
res1val = torch.Tensor(SIZE).fill_(1)
# The indices are the position of the last appearance of the mode element.
res1ind = torch.LongTensor(SIZE).fill_(1)
res1ind[0] = SIZE - 1
res1ind[1] = SIZE - 1
res2val, res2ind = torch.mode(x, keepdim=False)
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# Test use of result tensor
res2val = torch.Tensor()
res2ind = torch.LongTensor()
torch.mode(x, keepdim=False, out=(res2val, res2ind))
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# Test non-default dim
res2val, res2ind = torch.mode(x, 0, False)
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# input unchanged
self.assertEqual(x, x0, 0)
def test_tril(self):
x = torch.rand(SIZE, SIZE)
res1 = torch.tril(x)
res2 = torch.Tensor()
torch.tril(x, out=res2)
self.assertEqual(res1, res2, 0)
def test_triu(self):
x = torch.rand(SIZE, SIZE)
res1 = torch.triu(x)
res2 = torch.Tensor()
torch.triu(x, out=res2)
self.assertEqual(res1, res2, 0)
def test_cat(self):
SIZE = 10
for dim in range(-3, 3):
pos_dim = dim if dim >= 0 else 3 + dim
x = torch.rand(13, SIZE, SIZE).transpose(0, pos_dim)
y = torch.rand(17, SIZE, SIZE).transpose(0, pos_dim)
z = torch.rand(19, SIZE, SIZE).transpose(0, pos_dim)
res1 = torch.cat((x, y, z), dim)
self.assertEqual(res1.narrow(pos_dim, 0, 13), x, 0)
self.assertEqual(res1.narrow(pos_dim, 13, 17), y, 0)
self.assertEqual(res1.narrow(pos_dim, 30, 19), z, 0)
x = torch.randn(20, SIZE, SIZE)
self.assertEqual(torch.cat(torch.split(x, 7)), x)
self.assertEqual(torch.cat(torch.chunk(x, 7)), x)
y = torch.randn(1, SIZE, SIZE)
z = torch.cat([x, y])
self.assertEqual(z.size(), (21, SIZE, SIZE))
self.assertRaises(RuntimeError, lambda: torch.cat([]))
def test_stack(self):
x = torch.rand(2, 3, 4)
y = torch.rand(2, 3, 4)
z = torch.rand(2, 3, 4)
for dim in range(4):
res = torch.stack((x, y, z), dim)
res_neg = torch.stack((x, y, z), dim - 4)
expected_size = x.size()[:dim] + (3,) + x.size()[dim:]
self.assertEqual(res, res_neg)
self.assertEqual(res.size(), expected_size)
self.assertEqual(res.select(dim, 0), x, 0)
self.assertEqual(res.select(dim, 1), y, 0)
self.assertEqual(res.select(dim, 2), z, 0)
def test_unbind(self):
x = torch.rand(2, 3, 4, 5)
for dim in range(4):
res = torch.unbind(x, dim)
self.assertEqual(x.size(dim), len(res))
for i in range(dim):
self.assertEqual(x.select(dim, i), res[i])
def test_linspace(self):
_from = random.random()
to = _from + random.random()
res1 = torch.linspace(_from, to, 137)
res2 = torch.Tensor()
torch.linspace(_from, to, 137, out=res2)
self.assertEqual(res1, res2, 0)
self.assertRaises(RuntimeError, lambda: torch.linspace(0, 1, 1))
self.assertEqual(torch.linspace(0, 0, 1), torch.zeros(1), 0)
# Check linspace for generating with start > end.
self.assertEqual(torch.linspace(2, 0, 3), torch.Tensor((2, 1, 0)), 0)
# Check linspace for non-contiguous tensors.
x = torch.zeros(2, 3)
y = torch.linspace(0, 3, 4, out=x.narrow(1, 1, 2))
self.assertEqual(x, torch.Tensor(((0, 0, 1), (0, 2, 3))), 0)
def test_logspace(self):
_from = random.random()
to = _from + random.random()
res1 = torch.logspace(_from, to, 137)
res2 = torch.Tensor()
torch.logspace(_from, to, 137, out=res2)
self.assertEqual(res1, res2, 0)
self.assertRaises(RuntimeError, lambda: torch.logspace(0, 1, 1))
self.assertEqual(torch.logspace(0, 0, 1), torch.ones(1), 0)
# Check logspace_ for generating with start > end.
self.assertEqual(torch.logspace(1, 0, 2), torch.Tensor((10, 1)), 0)
# Check logspace_ for non-contiguous tensors.
x = torch.zeros(2, 3)
y = torch.logspace(0, 3, 4, out=x.narrow(1, 1, 2))
self.assertEqual(x, torch.Tensor(((0, 1, 10), (0, 100, 1000))), 0)
def test_rand(self):
torch.manual_seed(123456)
res1 = torch.rand(SIZE, SIZE)
res2 = torch.Tensor()
torch.manual_seed(123456)
torch.rand(SIZE, SIZE, out=res2)
self.assertEqual(res1, res2)
def test_randn(self):
torch.manual_seed(123456)
res1 = torch.randn(SIZE, SIZE)
res2 = torch.Tensor()
torch.manual_seed(123456)
torch.randn(SIZE, SIZE, out=res2)
self.assertEqual(res1, res2)
def test_slice(self):
# TODO: remove the Variable wrapper once we merge Variable and Tensor
from torch.autograd import Variable
empty = Variable(torch.Tensor())
x = Variable(torch.arange(0, 16).view(4, 4))
self.assertEqual(x.slice(), x)
self.assertEqual(x.slice(0, 4), x)
# start and stop are clamped to the size of dim
self.assertEqual(x.slice(0, 5), x)
# if start >= stop then the result is empty
self.assertEqual(x.slice(2, 1), empty)
self.assertEqual(x.slice(2, 2), empty)
# out of bounds is also empty
self.assertEqual(x.slice(10, 12), empty)
# additional correctness checks
self.assertEqual(x.slice(0, 1).data.tolist(), [[0, 1, 2, 3]])
self.assertEqual(x.slice(0, -3).data.tolist(), [[0, 1, 2, 3]])
self.assertEqual(x.slice(-2, 3, dim=1).data.tolist(), [[2], [6], [10], [14]])
self.assertEqual(x.slice(0, -1, 2).data.tolist(), [[0, 1, 2, 3], [8, 9, 10, 11]])
@skipIfNoLapack
def test_gesv(self):
a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23),
(-6.05, -3.30, 5.36, -4.44, 1.08),
(-0.45, 2.58, -2.70, 0.27, 9.04),
(8.32, 2.71, 4.35, -7.17, 2.14),
(-9.67, -5.14, -7.26, 6.08, -6.87))).t()
b = torch.Tensor(((4.02, 6.19, -8.22, -7.57, -3.03),
(-1.56, 4.00, -8.67, 1.75, 2.86),
(9.81, -4.09, -4.57, -8.61, 8.99))).t()
res1 = torch.gesv(b, a)[0]
self.assertLessEqual(b.dist(torch.mm(a, res1)), 1e-12)
ta = torch.Tensor()
tb = torch.Tensor()
res2 = torch.gesv(b, a, out=(tb, ta))[0]
res3 = torch.gesv(b, a, out=(b, a))[0]
self.assertEqual(res1, tb)
self.assertEqual(res1, b)
self.assertEqual(res1, res2)
self.assertEqual(res1, res3)
# test reuse
res1 = torch.gesv(b, a)[0]
ta = torch.Tensor()
tb = torch.Tensor()
torch.gesv(b, a, out=(tb, ta))[0]
self.assertEqual(res1, tb)
torch.gesv(b, a, out=(tb, ta))[0]
self.assertEqual(res1, tb)
@skipIfNoLapack
def test_qr(self):
# Since the QR decomposition is unique only up to the signs of the rows of
# R, we must ensure these are positive before doing the comparison.
def canonicalize(q, r):
d = r.diag().sign().diag()
return torch.mm(q, d), torch.mm(d, r)
def canon_and_check(q, r, expected_q, expected_r):
q_canon, r_canon = canonicalize(q, r)
expected_q_canon, expected_r_canon = canonicalize(expected_q, expected_r)
self.assertEqual(q_canon, expected_q_canon)
self.assertEqual(r_canon, expected_r_canon)
def check_qr(a, expected_q, expected_r):
# standard invocation
q, r = torch.qr(a)
canon_and_check(q, r, expected_q, expected_r)
# in-place
q, r = torch.Tensor(), torch.Tensor()
torch.qr(a, out=(q, r))
canon_and_check(q, r, expected_q, expected_r)
# manually calculate qr using geqrf and orgqr
m = a.size(0)
n = a.size(1)
k = min(m, n)
result, tau = torch.geqrf(a)
self.assertEqual(result.size(0), m)
self.assertEqual(result.size(1), n)
self.assertEqual(tau.size(0), k)
r = torch.triu(result.narrow(0, 0, k))
q, _ = torch.orgqr(result, tau)
q, r = q.narrow(1, 0, k), r
canon_and_check(q, r, expected_q, expected_r)
# check square case
a = torch.Tensor(((1, 2, 3), (4, 5, 6), (7, 8, 10)))
expected_q = torch.Tensor((
(-1.230914909793328e-01, 9.045340337332914e-01, 4.082482904638621e-01),
(-4.923659639173310e-01, 3.015113445777629e-01, -8.164965809277264e-01),
(-8.616404368553292e-01, -3.015113445777631e-01, 4.082482904638634e-01)))
expected_r = torch.Tensor((
(-8.124038404635959e+00, -9.601136296387955e+00, -1.193987e+01),
(0.000000000000000e+00, 9.045340337332926e-01, 1.507557e+00),
(0.000000000000000e+00, 0.000000000000000e+00, 4.082483e-01)))
check_qr(a, expected_q, expected_r)
# check rectangular thin
a = torch.Tensor((
(1, 2, 3),
(4, 5, 6),
(7, 8, 9),
(10, 11, 13),
))
expected_q = torch.Tensor((
(-0.0776150525706334, -0.833052161400748, 0.3651483716701106),
(-0.3104602102825332, -0.4512365874254053, -0.1825741858350556),
(-0.5433053679944331, -0.0694210134500621, -0.7302967433402217),
(-0.7761505257063329, 0.3123945605252804, 0.5477225575051663)
))
expected_r = torch.Tensor((
(-12.8840987267251261, -14.5916298832790581, -17.0753115655393231),
(0, -1.0413152017509357, -1.770235842976589),
(0, 0, 0.5477225575051664)
))
check_qr(a, expected_q, expected_r)
# check rectangular fat
a = torch.Tensor((
(1, 2, 3, 4),
(5, 6, 7, 8),
(9, 10, 11, 13)
))
expected_q = torch.Tensor((
(-0.0966736489045663, 0.907737593658436, 0.4082482904638653),
(-0.4833682445228317, 0.3157348151855452, -0.8164965809277254),
(-0.870062840141097, -0.2762679632873518, 0.4082482904638621)
))
expected_r = torch.Tensor((
(-1.0344080432788603e+01, -1.1794185166357092e+01,
-1.3244289899925587e+01, -1.5564457473635180e+01),
(0.0000000000000000e+00, 9.4720444555662542e-01,
1.8944088911132546e+00, 2.5653453733825331e+00),
(0.0000000000000000e+00, 0.0000000000000000e+00,
1.5543122344752192e-15, 4.0824829046386757e-01)
))
check_qr(a, expected_q, expected_r)
# check big matrix
a = torch.randn(1000, 1000)
q, r = torch.qr(a)
a_qr = torch.mm(q, r)
self.assertEqual(a, a_qr, prec=1e-3)
@skipIfNoLapack
def test_ormqr(self):
mat1 = torch.randn(10, 10)
mat2 = torch.randn(10, 10)
q, r = torch.qr(mat1)
m, tau = torch.geqrf(mat1)
res1 = torch.mm(q, mat2)
res2, _ = torch.ormqr(m, tau, mat2)
self.assertEqual(res1, res2)
res1 = torch.mm(mat2, q)
res2, _ = torch.ormqr(m, tau, mat2, False)
self.assertEqual(res1, res2)
res1 = torch.mm(q.t(), mat2)
res2, _ = torch.ormqr(m, tau, mat2, True, True)
self.assertEqual(res1, res2)
res1 = torch.mm(mat2, q.t())
res2, _ = torch.ormqr(m, tau, mat2, False, True)
self.assertEqual(res1, res2)
@skipIfNoLapack
def test_trtrs(self):
a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23),
(-6.05, -3.30, 5.36, -4.44, 1.08),
(-0.45, 2.58, -2.70, 0.27, 9.04),
(8.32, 2.71, 4.35, -7.17, 2.14),
(-9.67, -5.14, -7.26, 6.08, -6.87))).t()
b = torch.Tensor(((4.02, 6.19, -8.22, -7.57, -3.03),
(-1.56, 4.00, -8.67, 1.75, 2.86),
(9.81, -4.09, -4.57, -8.61, 8.99))).t()
U = torch.triu(a)
L = torch.tril(a)
# solve Ux = b
x = torch.trtrs(b, U)[0]
self.assertLessEqual(b.dist(torch.mm(U, x)), 1e-12)
x = torch.trtrs(b, U, True, False, False)[0]
self.assertLessEqual(b.dist(torch.mm(U, x)), 1e-12)
# solve Lx = b
x = torch.trtrs(b, L, False)[0]
self.assertLessEqual(b.dist(torch.mm(L, x)), 1e-12)
x = torch.trtrs(b, L, False, False, False)[0]
self.assertLessEqual(b.dist(torch.mm(L, x)), 1e-12)
# solve U'x = b
x = torch.trtrs(b, U, True, True)[0]
self.assertLessEqual(b.dist(torch.mm(U.t(), x)), 1e-12)
x = torch.trtrs(b, U, True, True, False)[0]
self.assertLessEqual(b.dist(torch.mm(U.t(), x)), 1e-12)
# solve U'x = b by manual transposition
y = torch.trtrs(b, U.t(), False, False)[0]
self.assertLessEqual(x.dist(y), 1e-12)
# solve L'x = b
x = torch.trtrs(b, L, False, True)[0]
self.assertLessEqual(b.dist(torch.mm(L.t(), x)), 1e-12)
x = torch.trtrs(b, L, False, True, False)[0]
self.assertLessEqual(b.dist(torch.mm(L.t(), x)), 1e-12)
# solve L'x = b by manual transposition
y = torch.trtrs(b, L.t(), True, False)[0]
self.assertLessEqual(x.dist(y), 1e-12)
# test reuse
res1 = torch.trtrs(b, a)[0]
ta = torch.Tensor()
tb = torch.Tensor()
torch.trtrs(b, a, out=(tb, ta))
self.assertEqual(res1, tb, 0)
tb.zero_()
torch.trtrs(b, a, out=(tb, ta))
self.assertEqual(res1, tb, 0)
@skipIfNoLapack
def test_gels(self):
def _test_underdetermined(a, b, expectedNorm):
m = a.size()[0]
n = a.size()[1]
assert(m <= n)
a_copy = a.clone()
b_copy = b.clone()
res1 = torch.gels(b, a)[0]
self.assertEqual(a, a_copy, 0)
self.assertEqual(b, b_copy, 0)
self.assertEqual((torch.mm(a, res1) - b).norm(), expectedNorm, 1e-8)
ta = torch.Tensor()
tb = torch.Tensor()
res2 = torch.gels(b, a, out=(tb, ta))[0]
self.assertEqual(a, a_copy, 0)
self.assertEqual(b, b_copy, 0)
self.assertEqual((torch.mm(a, res1) - b).norm(), expectedNorm, 1e-8)
res3 = torch.gels(b, a, out=(b, a))[0]
self.assertEqual((torch.mm(a_copy, b) - b_copy).norm(), expectedNorm, 1e-8)
self.assertEqual(res1, tb, 0)
self.assertEqual(res1, b, 0)
self.assertEqual(res1, res2, 0)
self.assertEqual(res1, res3, 0)
def _test_overdetermined(a, b, expectedNorm):
m = a.size()[0]
n = a.size()[1]
assert(m > n)
def check_norm(a, b, expected_norm, gels_result):
# Checks |ax - b| and the residual info from the result
n = a.size()[1]
# The first n rows is the least square solution.
# Rows n to m-1 contain residual information.
x = gels_result[:n]
resid_info = gels_result[n:]
resid_norm = (torch.mm(a, x) - b).norm()
self.assertEqual(resid_norm, expectedNorm, 1e-8)
self.assertEqual(resid_info.norm(), resid_norm, 1e-8)
a_copy = a.clone()
b_copy = b.clone()
res1 = torch.gels(b, a)[0]
self.assertEqual(a, a_copy, 0)
self.assertEqual(b, b_copy, 0)
check_norm(a, b, expectedNorm, res1)
ta = torch.Tensor()
tb = torch.Tensor()
res2 = torch.gels(b, a, out=(tb, ta))[0]
self.assertEqual(a, a_copy, 0)
self.assertEqual(b, b_copy, 0)
check_norm(a, b, expectedNorm, res2)
res3 = torch.gels(b, a, out=(b, a))[0]
check_norm(a_copy, b_copy, expectedNorm, res3)
self.assertEqual(res1, tb, 0)
self.assertEqual(res1, b, 0)
self.assertEqual(res1, res2, 0)
self.assertEqual(res1, res3, 0)
# basic test
expectedNorm = 0
a = torch.Tensor(((1.44, -9.96, -7.55, 8.34),
(-7.84, -0.28, 3.24, 8.09),
(-4.39, -3.24, 6.27, 5.28),
(4.53, 3.83, -6.64, 2.06))).t()
b = torch.Tensor(((8.58, 8.26, 8.48, -5.28),
(9.35, -4.43, -0.70, -0.26))).t()
_test_underdetermined(a, b, expectedNorm)
# test overderemined
expectedNorm = 17.390200628863
a = torch.Tensor(((1.44, -9.96, -7.55, 8.34, 7.08, -5.45),
(-7.84, -0.28, 3.24, 8.09, 2.52, -5.70),
(-4.39, -3.24, 6.27, 5.28, 0.74, -1.19),
(4.53, 3.83, -6.64, 2.06, -2.47, 4.70))).t()
b = torch.Tensor(((8.58, 8.26, 8.48, -5.28, 5.72, 8.93),
(9.35, -4.43, -0.70, -0.26, -7.36, -2.52))).t()
_test_overdetermined(a, b, expectedNorm)
# test underdetermined
expectedNorm = 0
a = torch.Tensor(((1.44, -9.96, -7.55),
(-7.84, -0.28, 3.24),
(-4.39, -3.24, 6.27),
(4.53, 3.83, -6.64))).t()
b = torch.Tensor(((8.58, 8.26, 8.48),
(9.35, -4.43, -0.70))).t()
_test_underdetermined(a, b, expectedNorm)
# test reuse
expectedNorm = 0
a = torch.Tensor(((1.44, -9.96, -7.55, 8.34),
(-7.84, -0.28, 3.24, 8.09),
(-4.39, -3.24, 6.27, 5.28),
(4.53, 3.83, -6.64, 2.06))).t()
b = torch.Tensor(((8.58, 8.26, 8.48, -5.28),
(9.35, -4.43, -0.70, -0.26))).t()
ta = torch.Tensor()
tb = torch.Tensor()
torch.gels(b, a, out=(tb, ta))
self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8)
torch.gels(b, a, out=(tb, ta))
self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8)
torch.gels(b, a, out=(tb, ta))
self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8)
@skipIfNoLapack
def test_eig(self):
a = torch.Tensor(((1.96, 0.00, 0.00, 0.00, 0.00),
(-6.49, 3.80, 0.00, 0.00, 0.00),
(-0.47, -6.39, 4.17, 0.00, 0.00),
(-7.20, 1.50, -1.51, 5.70, 0.00),
(-0.65, -6.34, 2.67, 1.80, -7.10))).t().contiguous()
e = torch.eig(a)[0]
ee, vv = torch.eig(a, True)
te = torch.Tensor()
tv = torch.Tensor()
eee, vvv = torch.eig(a, True, out=(te, tv))
self.assertEqual(e, ee, 1e-12)
self.assertEqual(ee, eee, 1e-12)
self.assertEqual(ee, te, 1e-12)
self.assertEqual(vv, vvv, 1e-12)
self.assertEqual(vv, tv, 1e-12)
# test reuse
X = torch.randn(4, 4)
X = torch.mm(X.t(), X)
e, v = torch.zeros(4, 2), torch.zeros(4, 4)
torch.eig(X, True, out=(e, v))
Xhat = torch.mm(torch.mm(v, torch.diag(e.select(1, 0))), v.t())
self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong')
self.assertFalse(v.is_contiguous(), 'V is contiguous')
torch.eig(X, True, out=(e, v))
Xhat = torch.mm(v, torch.mm(e.select(1, 0).diag(), v.t()))
self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong')
self.assertFalse(v.is_contiguous(), 'V is contiguous')
# test non-contiguous
X = torch.randn(4, 4)
X = torch.mm(X.t(), X)
e = torch.zeros(4, 2, 2)[:, 1]
v = torch.zeros(4, 2, 4)[:, 1]
self.assertFalse(v.is_contiguous(), 'V is contiguous')
self.assertFalse(e.is_contiguous(), 'E is contiguous')
torch.eig(X, True, out=(e, v))
Xhat = torch.mm(torch.mm(v, torch.diag(e.select(1, 0))), v.t())
self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong')
@skipIfNoLapack
def test_symeig(self):
xval = torch.rand(100, 3)
cov = torch.mm(xval.t(), xval)
rese = torch.zeros(3)
resv = torch.zeros(3, 3)
# First call to symeig
self.assertTrue(resv.is_contiguous(), 'resv is not contiguous')
torch.symeig(cov.clone(), True, out=(rese, resv))
ahat = torch.mm(torch.mm(resv, torch.diag(rese)), resv.t())
self.assertEqual(cov, ahat, 1e-8, 'VeV\' wrong')
# Second call to symeig
self.assertFalse(resv.is_contiguous(), 'resv is contiguous')
torch.symeig(cov.clone(), True, out=(rese, resv))
ahat = torch.mm(torch.mm(resv, torch.diag(rese)), resv.t())
self.assertEqual(cov, ahat, 1e-8, 'VeV\' wrong')
# test non-contiguous
X = torch.rand(5, 5)
X = X.t() * X
e = torch.zeros(4, 2).select(1, 1)
v = torch.zeros(4, 2, 4)[:, 1]
self.assertFalse(v.is_contiguous(), 'V is contiguous')
self.assertFalse(e.is_contiguous(), 'E is contiguous')
torch.symeig(X, True, out=(e, v))
Xhat = torch.mm(torch.mm(v, torch.diag(e)), v.t())
self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong')
@skipIfNoLapack
def test_svd(self):
a = torch.Tensor(((8.79, 6.11, -9.15, 9.57, -3.49, 9.84),
(9.93, 6.91, -7.93, 1.64, 4.02, 0.15),
(9.83, 5.04, 4.86, 8.83, 9.80, -8.99),
(5.45, -0.27, 4.85, 0.74, 10.00, -6.02),
(3.16, 7.98, 3.01, 5.80, 4.27, -5.31))).t().clone()
u, s, v = torch.svd(a)
uu = torch.Tensor()
ss = torch.Tensor()
vv = torch.Tensor()
uuu, sss, vvv = torch.svd(a, out=(uu, ss, vv))
self.assertEqual(u, uu, 0, 'torch.svd')
self.assertEqual(u, uuu, 0, 'torch.svd')
self.assertEqual(s, ss, 0, 'torch.svd')
self.assertEqual(s, sss, 0, 'torch.svd')
self.assertEqual(v, vv, 0, 'torch.svd')
self.assertEqual(v, vvv, 0, 'torch.svd')
# test reuse
X = torch.randn(4, 4)
U, S, V = torch.svd(X)
Xhat = torch.mm(U, torch.mm(S.diag(), V.t()))
self.assertEqual(X, Xhat, 1e-8, 'USV\' wrong')
self.assertFalse(U.is_contiguous(), 'U is contiguous')
torch.svd(X, out=(U, S, V))
Xhat = torch.mm(U, torch.mm(S.diag(), V.t()))
self.assertEqual(X, Xhat, 1e-8, 'USV\' wrong')
# test non-contiguous
X = torch.randn(5, 5)
U = torch.zeros(5, 2, 5)[:, 1]
S = torch.zeros(5, 2)[:, 1]
V = torch.zeros(5, 2, 5)[:, 1]
self.assertFalse(U.is_contiguous(), 'U is contiguous')
self.assertFalse(S.is_contiguous(), 'S is contiguous')
self.assertFalse(V.is_contiguous(), 'V is contiguous')
torch.svd(X, out=(U, S, V))
Xhat = torch.mm(U, torch.mm(S.diag(), V.t()))
self.assertEqual(X, Xhat, 1e-8, 'USV\' wrong')
@skipIfNoLapack
def test_inverse(self):
M = torch.randn(5, 5)
MI = torch.inverse(M)
E = torch.eye(5)
self.assertFalse(MI.is_contiguous(), 'MI is contiguous')
self.assertEqual(E, torch.mm(M, MI), 1e-8, 'inverse value')
self.assertEqual(E, torch.mm(MI, M), 1e-8, 'inverse value')
MII = torch.Tensor(5, 5)
torch.inverse(M, out=MII)
self.assertFalse(MII.is_contiguous(), 'MII is contiguous')
self.assertEqual(MII, MI, 0, 'inverse value in-place')
# second call, now that MII is transposed
torch.inverse(M, out=MII)
self.assertFalse(MII.is_contiguous(), 'MII is contiguous')
self.assertEqual(MII, MI, 0, 'inverse value in-place')
@staticmethod
def _test_det(self, conv_fn):
def reference_det(M):
# naive row reduction
M = M.clone()
l = M.size(0)
multiplier = 1
for i in range(l):
if M[i, 0] != 0:
if i != 0:
M[0], M[i] = M[i], M[0]
multiplier = -1
break
else:
return 0
for i in range(1, l):
row = M[i]
for j in range(i):
row -= row[j] / M[j, j] * M[j]
M[i] = row
return M.diag().prod() * multiplier
# TODO: remove Variable wrapper once Variable and Tensor are the same
Variable = torch.autograd.Variable
eye_det = Variable(conv_fn(torch.eye(5))).det()
self.assertEqual(eye_det, eye_det.clone().fill_(1), 1e-8, 'determinant of identity')
def test(M):
M = conv_fn(M)
var_M = Variable(M)
M_det = var_M.det().data
self.assertEqual(M_det, M_det.clone().fill_(reference_det(M)), 1e-8, 'determinant')
self.assertEqual(M_det, var_M.inverse().det().data.pow_(-1), 1e-8, 'determinant after transpose')
self.assertEqual(M_det, var_M.transpose(0, 1).det().data, 1e-8, 'determinant after transpose')
for x in [0, 2, 4]:
for scale in [-2, -0.1, 0, 10]:
target = M_det * scale
# dim 0
M_clone = M.clone()
M_clone[:, x] *= scale
det = Variable(M_clone).det().data
self.assertEqual(target, det, 1e-8, 'determinant after scaling a row')
# dim 1
M_clone = M.clone()
M_clone[x, :] *= scale
det = Variable(M_clone).det().data
self.assertEqual(target, det, 1e-8, 'determinant after scaling a column')
for x1, x2 in [(0, 3), (4, 1), (3, 2)]:
assert x1 != x2, 'x1 and x2 needs to be different for this test'
target = M_det.clone().zero_()
# dim 0
M_clone = M.clone()
M_clone[:, x2] = M_clone[:, x1]
det = Variable(M_clone).det().data
self.assertEqual(target, det, 1e-8, 'determinant when two rows are same')
# dim 1
M_clone = M.clone()
M_clone[x2, :] = M_clone[x1, :]
det = Variable(M_clone).det().data
self.assertEqual(target, det, 1e-8, 'determinant when two columns are same')
for scale1, scale2 in [(0.3, -1), (0, 2), (10, 0.1)]:
target = -M_det * scale1 * scale2
# dim 0
M_clone = M.clone()
t = M_clone[:, x1] * scale1
M_clone[:, x1] += M_clone[:, x2] * scale2
M_clone[:, x2] = t
det = Variable(M_clone).det().data
self.assertEqual(target, det, 1e-8, 'determinant after exchanging rows')
# dim 1
M_clone = M.clone()
t = M_clone[x1, :] * scale1
M_clone[x1, :] += M_clone[x2, :] * scale2
M_clone[x2, :] = t
det = Variable(M_clone).det().data
self.assertEqual(target, det, 1e-8, 'determinant after exchanging columns')
test(torch.randn(5, 5))
r = torch.randn(5, 5)
test(r.mm(r.transpose(0, 1))) # symmetric
test(torch.randn(5, 5, 5)[:, 2, :]) # non-contiguous
@skipIfNoLapack
def test_det(self):
self._test_det(self, lambda x: x)
@unittest.skip("Not implemented yet")
def test_conv2(self):
x = torch.rand(math.floor(torch.uniform(50, 100)), math.floor(torch.uniform(50, 100)))
k = torch.rand(math.floor(torch.uniform(10, 20)), math.floor(torch.uniform(10, 20)))
imvc = torch.conv2(x, k)
imvc2 = torch.conv2(x, k, 'V')
imfc = torch.conv2(x, k, 'F')
ki = k.clone()
ks = k.storage()
kis = ki.storage()
for i in range(ks.size() - 1, 0, -1):
kis[ks.size() - i + 1] = ks[i]
# for i=ks.size(), 1, -1 do kis[ks.size()-i+1]=ks[i] end
imvx = torch.xcorr2(x, ki)
imvx2 = torch.xcorr2(x, ki, 'V')
imfx = torch.xcorr2(x, ki, 'F')
self.assertEqual(imvc, imvc2, 0, 'torch.conv2')
self.assertEqual(imvc, imvx, 0, 'torch.conv2')
self.assertEqual(imvc, imvx2, 0, 'torch.conv2')
self.assertEqual(imfc, imfx, 0, 'torch.conv2')
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr2(x, x)[0][0]), 1e-10, 'torch.conv2')
xx = torch.Tensor(2, x.size(1), x.size(2))
xx[1].copy_(x)
xx[2].copy_(x)
kk = torch.Tensor(2, k.size(1), k.size(2))
kk[1].copy_(k)
kk[2].copy_(k)
immvc = torch.conv2(xx, kk)
immvc2 = torch.conv2(xx, kk, 'V')
immfc = torch.conv2(xx, kk, 'F')
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv2')
self.assertEqual(immvc[0], imvc, 0, 'torch.conv2')
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv2')
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv2')
self.assertEqual(immfc[0], imfc, 0, 'torch.conv2')
@unittest.skip("Not implemented yet")
def test_conv3(self):
x = torch.rand(math.floor(torch.uniform(20, 40)),
math.floor(torch.uniform(20, 40)),
math.floor(torch.uniform(20, 40)))
k = torch.rand(math.floor(torch.uniform(5, 10)),
math.floor(torch.uniform(5, 10)),
math.floor(torch.uniform(5, 10)))
imvc = torch.conv3(x, k)
imvc2 = torch.conv3(x, k, 'V')
imfc = torch.conv3(x, k, 'F')
ki = k.clone()
ks = k.storage()
kis = ki.storage()
for i in range(ks.size() - 1, 0, -1):
kis[ks.size() - i + 1] = ks[i]
imvx = torch.xcorr3(x, ki)
imvx2 = torch.xcorr3(x, ki, 'V')
imfx = torch.xcorr3(x, ki, 'F')
self.assertEqual(imvc, imvc2, 0, 'torch.conv3')
self.assertEqual(imvc, imvx, 0, 'torch.conv3')
self.assertEqual(imvc, imvx2, 0, 'torch.conv3')
self.assertEqual(imfc, imfx, 0, 'torch.conv3')
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3')
xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3))
xx[1].copy_(x)
xx[2].copy_(x)
kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3))
kk[1].copy_(k)
kk[2].copy_(k)
immvc = torch.conv3(xx, kk)
immvc2 = torch.conv3(xx, kk, 'V')
immfc = torch.conv3(xx, kk, 'F')
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv3')
self.assertEqual(immvc[0], imvc, 0, 'torch.conv3')
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv3')
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv3')
self.assertEqual(immfc[0], imfc, 0, 'torch.conv3')
@unittest.skip("Not implemented yet")
def _test_conv_corr_eq(self, fn, fn_2_to_3):
ix = math.floor(random.randint(20, 40))
iy = math.floor(random.randint(20, 40))
iz = math.floor(random.randint(20, 40))
kx = math.floor(random.randint(5, 10))
ky = math.floor(random.randint(5, 10))
kz = math.floor(random.randint(5, 10))
x = torch.rand(ix, iy, iz)
k = torch.rand(kx, ky, kz)
o3 = fn(x, k)
o32 = torch.zeros(o3.size())
fn_2_to_3(x, k, o3, o32)
self.assertEqual(o3, o32)
@unittest.skip("Not implemented yet")
def test_xcorr3_xcorr2_eq(self):
def reference(x, k, o3, o32):
for i in range(o3.size(1)):
for j in range(k.size(1)):
o32[i].add(torch.xcorr2(x[i + j - 1], k[j]))
self._test_conv_corr_eq(lambda x, k: torch.xcorr3(x, k), reference)
@unittest.skip("Not implemented yet")
def test_xcorr3_xcorr2_eq_full(self):
def reference(x, k, o3, o32):
for i in range(x.size(1)):
for j in range(k.size(1)):
o32[i].add(torch.xcorr2(x[i], k[k.size(1) - j + 1], 'F'))
self._test_conv_corr_eq(lambda x, k: torch.xcorr3(x, k, 'F'), reference)
@unittest.skip("Not implemented yet")
def test_conv3_conv2_eq_valid(self):
def reference(x, k, o3, o32):
for i in range(o3.size(1)):
for j in range(k.size(1)):
o32[i].add(torch.conv2(x[i + j - 1], k[k.size(1) - j + 1]))
self._test_conv_corr_eq(lambda x, k: torch.conv3(x, k), reference)
@unittest.skip("Not implemented yet")
def test_fconv3_fconv2_eq(self):
def reference(x, k, o3, o32):
for i in range(o3.size(1)):
for j in range(k.size(1)):
o32[i + j - 1].add(torch.conv2(x[i], k[j], 'F'))
self._test_conv_corr_eq(lambda x, k: torch.conv3(x, k, 'F'), reference)
def test_logical(self):
x = torch.rand(100, 100) * 2 - 1
xx = x.clone()
xgt = torch.gt(x, 1)
xlt = torch.lt(x, 1)
xeq = torch.eq(x, 1)
xne = torch.ne(x, 1)
neqs = xgt + xlt
all = neqs + xeq
self.assertEqual(neqs.sum(), xne.sum(), 0)
self.assertEqual(x.nelement(), all.sum())
def test_RNGState(self):
state = torch.get_rng_state()
stateCloned = state.clone()
before = torch.rand(1000)
self.assertEqual(state.ne(stateCloned).long().sum(), 0, 0)
torch.set_rng_state(state)
after = torch.rand(1000)
self.assertEqual(before, after, 0)
def test_RNGStateAliasing(self):
# Fork the random number stream at this point
gen = torch.Generator()
gen.set_state(torch.get_rng_state())
self.assertEqual(gen.get_state(), torch.get_rng_state())
target_value = torch.rand(1000)
# Dramatically alter the internal state of the main generator
_ = torch.rand(100000)
forked_value = torch.rand(1000, generator=gen)
self.assertEqual(target_value, forked_value, 0, "RNG has not forked correctly.")
def test_boxMullerState(self):
torch.manual_seed(123)
odd_number = 101
seeded = torch.randn(odd_number)
state = torch.get_rng_state()
midstream = torch.randn(odd_number)
torch.set_rng_state(state)
repeat_midstream = torch.randn(odd_number)
torch.manual_seed(123)
reseeded = torch.randn(odd_number)
self.assertEqual(midstream, repeat_midstream, 0,
'get_rng_state/set_rng_state not generating same sequence of normally distributed numbers')
self.assertEqual(seeded, reseeded, 0,
'repeated calls to manual_seed not generating same sequence of normally distributed numbers')
def test_manual_seed(self):
rng_state = torch.get_rng_state()
torch.manual_seed(2)
x = torch.randn(100)
self.assertEqual(torch.initial_seed(), 2)
torch.manual_seed(2)
y = torch.randn(100)
self.assertEqual(x, y)
torch.set_rng_state(rng_state)
@skipIfNoLapack
def test_cholesky(self):
x = torch.rand(10, 10) + 1e-1
A = torch.mm(x, x.t())
# default Case
C = torch.potrf(A)
B = torch.mm(C.t(), C)
self.assertEqual(A, B, 1e-14)
# test Upper Triangular
U = torch.potrf(A, True)
B = torch.mm(U.t(), U)
self.assertEqual(A, B, 1e-14, 'potrf (upper) did not allow rebuilding the original matrix')
# test Lower Triangular
L = torch.potrf(A, False)
B = torch.mm(L, L.t())
self.assertEqual(A, B, 1e-14, 'potrf (lower) did not allow rebuilding the original matrix')
@skipIfNoLapack
def test_potrs(self):
a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23),
(-6.05, -3.30, 5.36, -4.44, 1.08),
(-0.45, 2.58, -2.70, 0.27, 9.04),
(8.32, 2.71, 4.35, -7.17, 2.14),
(-9.67, -5.14, -7.26, 6.08, -6.87))).t()
b = torch.Tensor(((4.02, 6.19, -8.22, -7.57, -3.03),
(-1.56, 4.00, -8.67, 1.75, 2.86),
(9.81, -4.09, -4.57, -8.61, 8.99))).t()
# make sure 'a' is symmetric PSD
a = torch.mm(a, a.t())
# upper Triangular Test
U = torch.potrf(a)
x = torch.potrs(b, U)
self.assertLessEqual(b.dist(torch.mm(a, x)), 1e-12)
# lower Triangular Test
L = torch.potrf(a, False)
x = torch.potrs(b, L, False)
self.assertLessEqual(b.dist(torch.mm(a, x)), 1e-12)
@skipIfNoLapack
def tset_potri(self):
a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23),
(-6.05, -3.30, 5.36, -4.44, 1.08),
(-0.45, 2.58, -2.70, 0.27, 9.04),
(8.32, 2.71, 4.35, -7.17, 2.14),
(-9.67, -5.14, -7.26, 6.08, -6.87))).t()
# make sure 'a' is symmetric PSD
a = a * a.t()
# compute inverse directly
inv0 = torch.inverse(a)
# default case
chol = torch.potrf(a)
inv1 = torch.potri(chol)
self.assertLessEqual(inv0.dist(inv1), 1e-12)
# upper Triangular Test
chol = torch.potrf(a, 'U')
inv1 = torch.potri(chol, 'U')
self.assertLessEqual(inv0.dist(inv1), 1e-12)
# lower Triangular Test
chol = torch.potrf(a, 'L')
inv1 = torch.potri(chol, 'L')
self.assertLessEqual(inv0.dist(inv1), 1e-12)
@skipIfNoLapack
def test_pstrf(self):
def checkPsdCholesky(a, uplo, inplace):
if inplace:
u = torch.Tensor(a.size())
piv = torch.IntTensor(a.size(0))
kwargs = {'out': (u, piv)}
else:
kwargs = {}
args = [a]
if uplo is not None:
args += [uplo]
u, piv = torch.pstrf(*args, **kwargs)
if uplo is False:
a_reconstructed = torch.mm(u, u.t())
else:
a_reconstructed = torch.mm(u.t(), u)
piv = piv.long()
a_permuted = a.index_select(0, piv).index_select(1, piv)
self.assertEqual(a_permuted, a_reconstructed, 1e-14)
dimensions = ((5, 1), (5, 3), (5, 5), (10, 10))
for dim in dimensions:
m = torch.Tensor(*dim).uniform_()
a = torch.mm(m, m.t())
# add a small number to the diagonal to make the matrix numerically positive semidefinite
for i in range(m.size(0)):
a[i][i] = a[i][i] + 1e-7
for inplace in (True, False):
for uplo in (None, True, False):
checkPsdCholesky(a, uplo, inplace)
def test_numel(self):
b = torch.ByteTensor(3, 100, 100)
self.assertEqual(b.nelement(), 3 * 100 * 100)
self.assertEqual(b.numel(), 3 * 100 * 100)
def _consecutive(self, size, start=1):
sequence = torch.ones(int(torch.Tensor(size).prod(0)[0])).cumsum(0)
sequence.add_(start - 1)
return sequence.resize_(*size)
@staticmethod
def _test_index(self, conv_fn):
def consec(size, start=1):
sequence = torch.ones(int(torch.Tensor(size).prod(0)[0])).cumsum(0)
sequence.add_(start - 1)
return sequence.view(*size)
reference = conv_fn(consec((3, 3, 3)))
# empty tensor indexing
self.assertEqual(reference[conv_fn(torch.LongTensor())], reference.new())
self.assertEqual(reference[0], consec((3, 3)), 0)
self.assertEqual(reference[1], consec((3, 3), 10), 0)
self.assertEqual(reference[2], consec((3, 3), 19), 0)
self.assertEqual(reference[0, 1], consec((3,), 4), 0)
self.assertEqual(reference[0:2], consec((2, 3, 3)), 0)
self.assertEqual(reference[2, 2, 2], 27, 0)
self.assertEqual(reference[:], consec((3, 3, 3)), 0)
# indexing with Ellipsis
self.assertEqual(reference[..., 2], torch.Tensor([[3, 6, 9],
[12, 15, 18],
[21, 24, 27]]), 0)
self.assertEqual(reference[0, ..., 2], torch.Tensor([3, 6, 9]), 0)
self.assertEqual(reference[..., 2], reference[:, :, 2], 0)
self.assertEqual(reference[0, ..., 2], reference[0, :, 2], 0)
self.assertEqual(reference[0, 2, ...], reference[0, 2], 0)
self.assertEqual(reference[..., 2, 2, 2], 27, 0)
self.assertEqual(reference[2, ..., 2, 2], 27, 0)
self.assertEqual(reference[2, 2, ..., 2], 27, 0)
self.assertEqual(reference[2, 2, 2, ...], 27, 0)
self.assertEqual(reference[...], reference, 0)
reference_5d = conv_fn(consec((3, 3, 3, 3, 3)))
self.assertEqual(reference_5d[..., 1, 0], reference_5d[:, :, :, 1, 0], 0)
self.assertEqual(reference_5d[2, ..., 1, 0], reference_5d[2, :, :, 1, 0], 0)
self.assertEqual(reference_5d[2, 1, 0, ..., 1], reference_5d[2, 1, 0, :, 1], 0)
self.assertEqual(reference_5d[...], reference_5d, 0)
# LongTensor indexing
reference = conv_fn(consec((5, 5, 5)))
idx = conv_fn(torch.LongTensor([2, 4]))
self.assertEqual(reference[idx], torch.stack([reference[2], reference[4]]))
# TODO: enable one indexing is implemented like in numpy
# self.assertEqual(reference[2, idx], torch.stack([reference[2, 2], reference[2, 4]]))
# self.assertEqual(reference[3, idx, 1], torch.stack([reference[3, 2], reference[3, 4]])[:, 1])
# None indexing
self.assertEqual(reference[2, None], reference[2].unsqueeze(0))
self.assertEqual(reference[2, None, None], reference[2].unsqueeze(0).unsqueeze(0))
self.assertEqual(reference[2:4, None], reference[2:4].unsqueeze(1))
self.assertEqual(reference[None, 2, None, None], reference.unsqueeze(0)[:, 2].unsqueeze(0).unsqueeze(0))
self.assertEqual(reference[None, 2:5, None, None], reference.unsqueeze(0)[:, 2:5].unsqueeze(2).unsqueeze(2))
# indexing with step
reference = consec((10, 10, 10))
self.assertEqual(reference[1:5:2], torch.stack([reference[1], reference[3]], 0))
self.assertEqual(reference[1:6:2], torch.stack([reference[1], reference[3], reference[5]], 0))
self.assertEqual(reference[1:9:4], torch.stack([reference[1], reference[5]], 0))
self.assertEqual(reference[2:4, 1:5:2], torch.stack([reference[2:4, 1], reference[2:4, 3]], 1))
self.assertEqual(reference[3, 1:6:2], torch.stack([reference[3, 1], reference[3, 3], reference[3, 5]], 0))
self.assertEqual(reference[None, 2, 1:9:4], torch.stack([reference[2, 1], reference[2, 5]], 0).unsqueeze(0))
self.assertEqual(reference[:, 2, 1:6:2],
torch.stack([reference[:, 2, 1], reference[:, 2, 3], reference[:, 2, 5]], 1))
lst = [list(range(i, i + 10)) for i in range(0, 100, 10)]
tensor = conv_fn(torch.DoubleTensor(lst))
for _i in range(100):
idx1_start = random.randrange(10)
idx1_end = idx1_start + random.randrange(1, 10 - idx1_start + 1)
idx1_step = random.randrange(1, 8)
idx1 = slice(idx1_start, idx1_end, idx1_step)
if random.randrange(2) == 0:
idx2_start = random.randrange(10)
idx2_end = idx2_start + random.randrange(1, 10 - idx2_start + 1)
idx2_step = random.randrange(1, 8)
idx2 = slice(idx2_start, idx2_end, idx2_step)
lst_indexed = list(map(lambda l: l[idx2], lst[idx1]))
tensor_indexed = tensor[idx1, idx2]
else:
lst_indexed = lst[idx1]
tensor_indexed = tensor[idx1]
self.assertEqual(torch.DoubleTensor(lst_indexed), tensor_indexed)
self.assertRaises(ValueError, lambda: reference[1:9:0])
self.assertRaises(ValueError, lambda: reference[1:9:-1])
self.assertRaises(IndexError, lambda: reference[1, 1, 1, 1])
self.assertRaises(IndexError, lambda: reference[1, 1, 1, 1:1])
self.assertRaises(IndexError, lambda: reference[3, 3, 3, 3, 3, 3, 3, 3])
self.assertRaises(TypeError, lambda: reference[0.0])
self.assertRaises(TypeError, lambda: reference[0.0:2.0])
self.assertRaises(TypeError, lambda: reference[0.0, 0.0:2.0])
self.assertRaises(TypeError, lambda: reference[0.0, :, 0.0:2.0])
self.assertRaises(TypeError, lambda: reference[0.0, ..., 0.0:2.0])
self.assertRaises(TypeError, lambda: reference[0.0, :, 0.0])
def test_index(self):
self._test_index(self, lambda x: x)
@staticmethod
def _test_advancedindex(self, conv_fn):
# Tests for Integer Array Indexing, Part I - Purely integer array
# indexing
def consec(size, start=1):
sequence = torch.ones(int(torch.Tensor(size).prod(0)[0])).cumsum(0)
sequence.add_(start - 1)
return sequence.view(*size)
# pick a random valid indexer type
def ri(indices):
choice = random.randint(0, 2)
if choice == 0:
return conv_fn(torch.LongTensor(indices))
elif choice == 1:
return list(indices)
else:
return tuple(indices)
# First, we will test indexing to generate return values
# Case 1: Purely Integer Array Indexing
reference = conv_fn(consec((10,)))
self.assertEqual(reference[[0]], consec((1,)))
self.assertEqual(reference[ri([0]), ], consec((1,)))
self.assertEqual(reference[ri([3]), ], consec((1,), 4))
self.assertEqual(reference[[2, 3, 4]], consec((3,), 3))
self.assertEqual(reference[ri([2, 3, 4]), ], consec((3,), 3))
self.assertEqual(reference[ri([0, 2, 4]), ], torch.Tensor([1, 3, 5]))
# setting values
reference[[0]] = -2
self.assertEqual(reference[[0]], torch.Tensor([-2]))
reference[[0]] = -1
self.assertEqual(reference[ri([0]), ], torch.Tensor([-1]))
reference[[2, 3, 4]] = 4
self.assertEqual(reference[[2, 3, 4]], torch.Tensor([4, 4, 4]))
reference[ri([2, 3, 4]), ] = 3
self.assertEqual(reference[ri([2, 3, 4]), ], torch.Tensor([3, 3, 3]))
reference[ri([0, 2, 4]), ] = conv_fn(torch.Tensor([5, 4, 3]))
self.assertEqual(reference[ri([0, 2, 4]), ], torch.Tensor([5, 4, 3]))
# Tensor with stride != 1
# strided is [1, 3, 5, 7]
reference = conv_fn(consec((10,)))
strided = conv_fn(torch.Tensor())
strided.set_(reference.storage(), storage_offset=0,
size=torch.Size([4]), stride=[2])
self.assertEqual(strided[[0]], torch.Tensor([1]))
self.assertEqual(strided[ri([0]), ], torch.Tensor([1]))
self.assertEqual(strided[ri([3]), ], torch.Tensor([7]))
self.assertEqual(strided[[1, 2]], torch.Tensor([3, 5]))
self.assertEqual(strided[ri([1, 2]), ], torch.Tensor([3, 5]))
self.assertEqual(strided[ri([[2, 1], [0, 3]]), ],
torch.Tensor([[5, 3], [1, 7]]))
# stride is [4, 8]
strided = conv_fn(torch.Tensor())
strided.set_(reference.storage(), storage_offset=4,
size=torch.Size([2]), stride=[4])
self.assertEqual(strided[[0]], torch.Tensor([5]))
self.assertEqual(strided[ri([0]), ], torch.Tensor([5]))
self.assertEqual(strided[ri([1]), ], torch.Tensor([9]))
self.assertEqual(strided[[0, 1]], torch.Tensor([5, 9]))
self.assertEqual(strided[ri([0, 1]), ], torch.Tensor([5, 9]))
self.assertEqual(strided[ri([[0, 1], [1, 0]]), ],
torch.Tensor([[5, 9], [9, 5]]))
# reference is 1 2
# 3 4
# 5 6
reference = conv_fn(consec((3, 2)))
self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([1, 3, 5]))
self.assertEqual(reference[ri([0, 1, 2]), ri([1])], torch.Tensor([2, 4, 6]))
self.assertEqual(reference[ri([0]), ri([0])], consec((1,)))
self.assertEqual(reference[ri([2]), ri([1])], consec((1,), 6))
self.assertEqual(reference[[ri([0, 0]), ri([0, 1])]], torch.Tensor([1, 2]))
self.assertEqual(reference[[ri([0, 1, 1, 0, 2]), ri([1])]],
torch.Tensor([2, 4, 4, 2, 6]))
self.assertEqual(reference[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]],
torch.Tensor([1, 2, 3, 3]))
rows = ri([[0, 0],
[1, 2]])
columns = [0],
self.assertEqual(reference[rows, columns], torch.Tensor([[1, 1],
[3, 5]]))
rows = ri([[0, 0],
[1, 2]])
columns = ri([1, 0])
self.assertEqual(reference[rows, columns], torch.Tensor([[2, 1],
[4, 5]]))
rows = ri([[0, 0],
[1, 2]])
columns = ri([[0, 1],
[1, 0]])
self.assertEqual(reference[rows, columns], torch.Tensor([[1, 2],
[4, 5]]))
# setting values
reference[ri([0]), ri([1])] = -1
self.assertEqual(reference[ri([0]), ri([1])], torch.Tensor([-1]))
reference[ri([0, 1, 2]), ri([0])] = conv_fn(torch.Tensor([-1, 2, -4]))
self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([-1,
2, -4]))
reference[rows, columns] = conv_fn(torch.Tensor([[4, 6], [2, 3]]))
self.assertEqual(reference[rows, columns],
torch.Tensor([[4, 6], [2, 3]]))
# Verify still works with Transposed (i.e. non-contiguous) Tensors
reference = conv_fn(torch.Tensor([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]])).t_()
# Transposed: [[0, 4, 8],
# [1, 5, 9],
# [2, 6, 10],
# [3, 7, 11]]
self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([0, 1,
2]))
self.assertEqual(reference[ri([0, 1, 2]), ri([1])], torch.Tensor([4, 5,
6]))
self.assertEqual(reference[ri([0]), ri([0])], torch.Tensor([0]))
self.assertEqual(reference[ri([2]), ri([1])], torch.Tensor([6]))
self.assertEqual(reference[[ri([0, 0]), ri([0, 1])]], torch.Tensor([0, 4]))
self.assertEqual(reference[[ri([0, 1, 1, 0, 3]), ri([1])]],
torch.Tensor([4, 5, 5, 4, 7]))
self.assertEqual(reference[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]],
torch.Tensor([0, 4, 1, 1]))
rows = ri([[0, 0],
[1, 2]])
columns = [0],
self.assertEqual(reference[rows, columns], torch.Tensor([[0, 0],
[1, 2]]))
rows = ri([[0, 0],
[1, 2]])
columns = ri([1, 0])
self.assertEqual(reference[rows, columns], torch.Tensor([[4, 0],
[5, 2]]))
rows = ri([[0, 0],
[1, 3]])
columns = ri([[0, 1],
[1, 2]])
self.assertEqual(reference[rows, columns], torch.Tensor([[0, 4],
[5, 11]]))
# setting values
reference[ri([0]), ri([1])] = -1
self.assertEqual(reference[ri([0]), ri([1])], torch.Tensor([-1]))
reference[ri([0, 1, 2]), ri([0])] = conv_fn(torch.Tensor([-1, 2, -4]))
self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([-1,
2, -4]))
reference[rows, columns] = conv_fn(torch.Tensor([[4, 6], [2, 3]]))
self.assertEqual(reference[rows, columns],
torch.Tensor([[4, 6], [2, 3]]))
# stride != 1
# strided is [[1 3 5 7],
# [9 11 13 15]]
reference = conv_fn(torch.arange(0, 24).view(3, 8))
strided = conv_fn(torch.Tensor())
strided.set_(reference.storage(), 1, size=torch.Size([2, 4]),
stride=[8, 2])
self.assertEqual(strided[ri([0, 1]), ri([0])], torch.Tensor([1, 9]))
self.assertEqual(strided[ri([0, 1]), ri([1])], torch.Tensor([3, 11]))
self.assertEqual(strided[ri([0]), ri([0])], torch.Tensor([1]))
self.assertEqual(strided[ri([1]), ri([3])], torch.Tensor([15]))
self.assertEqual(strided[[ri([0, 0]), ri([0, 3])]], torch.Tensor([1, 7]))
self.assertEqual(strided[[ri([1]), ri([0, 1, 1, 0, 3])]],
torch.Tensor([9, 11, 11, 9, 15]))
self.assertEqual(strided[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]],
torch.Tensor([1, 3, 9, 9]))
rows = ri([[0, 0],
[1, 1]])
columns = [0],
self.assertEqual(strided[rows, columns], torch.Tensor([[1, 1],
[9, 9]]))
rows = ri([[0, 1],
[1, 0]])
columns = ri([1, 2])
self.assertEqual(strided[rows, columns], torch.Tensor([[3, 13],
[11, 5]]))
rows = ri([[0, 0],
[1, 1]])
columns = ri([[0, 1],
[1, 2]])
self.assertEqual(strided[rows, columns], torch.Tensor([[1, 3],
[11, 13]]))
# setting values
# strided is [[10, 11],
# [17, 18]]
reference = conv_fn(torch.arange(0, 24).view(3, 8))
strided = conv_fn(torch.Tensor())
strided.set_(reference.storage(), 10, size=torch.Size([2, 2]),
stride=[7, 1])
self.assertEqual(strided[ri([0]), ri([1])], torch.Tensor([11]))
strided[ri([0]), ri([1])] = -1
self.assertEqual(strided[ri([0]), ri([1])], torch.Tensor([-1]))
reference = conv_fn(torch.arange(0, 24).view(3, 8))
strided = conv_fn(torch.Tensor())
strided.set_(reference.storage(), 10, size=torch.Size([2, 2]),
stride=[7, 1])
self.assertEqual(strided[ri([0, 1]), ri([1, 0])], torch.Tensor([11,
17]))
strided[ri([0, 1]), ri([1, 0])] = conv_fn(torch.Tensor([-1, 2]))
self.assertEqual(strided[ri([0, 1]), ri([1, 0])], torch.Tensor([-1,
2]))
reference = conv_fn(torch.arange(0, 24).view(3, 8))
strided = conv_fn(torch.Tensor())
strided.set_(reference.storage(), 10, size=torch.Size([2, 2]),
stride=[7, 1])
rows = ri([[0],
[1]])
columns = ri([[0, 1],
[0, 1]])
self.assertEqual(strided[rows, columns],
torch.Tensor([[10, 11], [17, 18]]))
strided[rows, columns] = conv_fn(torch.Tensor([[4, 6], [2, 3]]))
self.assertEqual(strided[rows, columns],
torch.Tensor([[4, 6], [2, 3]]))
# Tests using less than the number of dims, and ellipsis
# reference is 1 2
# 3 4
# 5 6
reference = conv_fn(consec((3, 2)))
self.assertEqual(reference[ri([0, 2]), ], torch.Tensor([[1, 2], [5, 6]]))
self.assertEqual(reference[ri([1]), ...], torch.Tensor([[3, 4]]))
self.assertEqual(reference[..., ri([1])], torch.Tensor([[2], [4], [6]]))
# verify too many indices fails
with self.assertRaises(IndexError):
reference[ri([1]), ri([0, 2]), ri([3])]
if TEST_NUMPY:
# we use numpy to compare against, to verify that our advanced
# indexing semantics are the same, and also for ease of test
# writing
def tensor_indices_to_np(tensor, indices):
# convert the Torch Tensor to a numpy array
if (tensor.is_cuda):
tensor = tensor.cpu()
npt = tensor.numpy()
# convert indices
idxs = tuple(i.tolist() if isinstance(i, torch.LongTensor) else
i for i in indices)
return npt, idxs
def get_numpy(tensor, indices):
npt, idxs = tensor_indices_to_np(tensor, indices)
# index and return as a Torch Tensor
return torch.Tensor(npt[idxs])
def set_numpy(tensor, indices, value):
if not isinstance(value, int):
if value.is_cuda:
value = value.cpu()
value = value.numpy()
npt, idxs = tensor_indices_to_np(tensor, indices)
npt[idxs] = value
return npt
def assert_get_eq(tensor, indexer):
self.assertEqual(reference[indexer],
conv_fn(get_numpy(reference, indexer)))
def assert_set_eq(tensor, indexer, val):
pyt = tensor.clone()
numt = tensor.clone()
pyt[indexer] = val
numt = conv_fn(torch.Tensor(set_numpy(numt, indexer, val)))
self.assertEqual(pyt, numt)
def get_set_tensor(indexed, indexer):
set_size = indexed[indexer].size()
set_count = indexed[indexer].numel()
set_tensor = conv_fn(torch.randperm(set_count).view(set_size).double())
return set_tensor
# Tensor is 0 1 2 3 4
# 5 6 7 8 9
# 10 11 12 13 14
# 15 16 17 18 19
reference = conv_fn(torch.arange(0, 20).view(4, 5))
indices_to_test = [
# grab the second, fourth columns
[slice(None), [1, 3]],
# first, third rows,
[[0, 2], slice(None)],
# weird shape
[slice(None), [[0, 1],
[2, 3]]]
]
# only test dupes on gets
get_indices_to_test = indices_to_test + [[slice(None), [0, 1, 1, 2, 2]]]
for indexer in get_indices_to_test:
assert_get_eq(reference, indexer)
for indexer in indices_to_test:
assert_set_eq(reference, indexer, 44)
assert_set_eq(reference,
indexer,
get_set_tensor(reference, indexer))
reference = conv_fn(torch.arange(0, 160).view(4, 8, 5))
indices_to_test = [
[slice(None), slice(None), [0, 3, 4]],
[slice(None), [2, 4, 5, 7], slice(None)],
[[2, 3], slice(None), slice(None)],
[slice(None), [0, 2, 3], [1, 3, 4]],
[slice(None), [0], [1, 2, 4]],
[slice(None), [0, 1, 3], [4]],
[slice(None), [[0, 1], [1, 0]], [[2, 3], [3, 0]]],
[slice(None), [[0, 1], [1, 0]], [[2, 3]]],
[slice(None), [[0, 1], [2, 3]], [[0]]],
[slice(None), [[5, 6]], [[0, 3], [4, 4]]],
[slice(None), [[2]], [[0, 3], [4, 4]]],
[[0, 2, 3], [1, 3, 4], slice(None)],
[[0], [1, 2, 4], slice(None)],
[[0, 1, 3], [4], slice(None)],
[[[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None)],
[[[0, 1], [1, 0]], [[2, 3]], slice(None)],
[[[0, 1], [2, 3]], [[0]], slice(None)],
[[[2, 1]], [[0, 3], [4, 4]], slice(None)],
[[[2]], [[0, 3], [4, 1]], slice(None)],
# less dim, ellipsis
[[0, 2], ],
[[0, 2], slice(None)],
[[0, 2], Ellipsis],
[[0, 2], slice(None), Ellipsis],
[[0, 2], Ellipsis, slice(None)],
[[0, 2], [1, 3]],
[[0, 2], [1, 3], Ellipsis],
[Ellipsis, [1, 3], [2, 3]],
[Ellipsis, [2, 3, 4]],
[Ellipsis, slice(None), [2, 3, 4]],
[slice(None), Ellipsis, [2, 3, 4]],
# ellipsis counts for nothing
[Ellipsis, slice(None), slice(None), [0, 3, 4]],
[slice(None), Ellipsis, slice(None), [0, 3, 4]],
[slice(None), slice(None), Ellipsis, [0, 3, 4]],
[slice(None), slice(None), [0, 3, 4], Ellipsis],
[Ellipsis, [[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None)],
[[[0, 1], [1, 0]], [[2, 1], [3, 5]], Ellipsis, slice(None)],
[[[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None), Ellipsis],
]
for indexer in indices_to_test:
assert_get_eq(reference, indexer)
assert_set_eq(reference, indexer, 212)
assert_set_eq(reference,
indexer,
get_set_tensor(reference, indexer))
reference = conv_fn(torch.arange(0, 1296).view(3, 9, 8, 6))
indices_to_test = [
[slice(None), slice(None), slice(None), [0, 3, 4]],
[slice(None), slice(None), [2, 4, 5, 7], slice(None)],
[slice(None), [2, 3], slice(None), slice(None)],
[[1, 2], slice(None), slice(None), slice(None)],
[slice(None), slice(None), [0, 2, 3], [1, 3, 4]],
[slice(None), slice(None), [0], [1, 2, 4]],
[slice(None), slice(None), [0, 1, 3], [4]],
[slice(None), slice(None), [[0, 1], [1, 0]], [[2, 3]]],
[slice(None), slice(None), [[0, 1], [2, 3]], [[0]]],
[slice(None), slice(None), [[5, 6]], [[0, 3], [4, 4]]],
[slice(None), [0, 2, 3], [1, 3, 4], slice(None)],
[slice(None), [0], [1, 2, 4], slice(None)],
[slice(None), [0, 1, 3], [4], slice(None)],
[slice(None), [[0, 1], [3, 4]], [[2, 3], [0, 1]], slice(None)],
[slice(None), [[0, 1], [3, 4]], [[2, 3]], slice(None)],
[slice(None), [[0, 1], [3, 2]], [[0]], slice(None)],
[slice(None), [[2, 1]], [[0, 3], [6, 4]], slice(None)],
[slice(None), [[2]], [[0, 3], [4, 2]], slice(None)],
[[0, 1, 2], [1, 3, 4], slice(None), slice(None)],
[[0], [1, 2, 4], slice(None), slice(None)],
[[0, 1, 2], [4], slice(None), slice(None)],
[[[0, 1], [0, 2]], [[2, 4], [1, 5]], slice(None), slice(None)],
[[[0, 1], [1, 2]], [[2, 0]], slice(None), slice(None)],
[[[2, 2]], [[0, 3], [4, 5]], slice(None), slice(None)],
[[[2]], [[0, 3], [4, 5]], slice(None), slice(None)],
[slice(None), [3, 4, 6], [0, 2, 3], [1, 3, 4]],
[slice(None), [2, 3, 4], [1, 3, 4], [4]],
[slice(None), [0, 1, 3], [4], [1, 3, 4]],
[slice(None), [6], [0, 2, 3], [1, 3, 4]],
[slice(None), [2, 3, 5], [3], [4]],
[slice(None), [0], [4], [1, 3, 4]],
[slice(None), [6], [0, 2, 3], [1]],
[slice(None), [[0, 3], [3, 6]], [[0, 1], [1, 3]], [[5, 3], [1, 2]]],
[[2, 2, 1], [0, 2, 3], [1, 3, 4], slice(None)],
[[2, 0, 1], [1, 2, 3], [4], slice(None)],
[[0, 1, 2], [4], [1, 3, 4], slice(None)],
[[0], [0, 2, 3], [1, 3, 4], slice(None)],
[[0, 2, 1], [3], [4], slice(None)],
[[0], [4], [1, 3, 4], slice(None)],
[[1], [0, 2, 3], [1], slice(None)],
[[[1, 2], [1, 2]], [[0, 1], [2, 3]], [[2, 3], [3, 5]], slice(None)],
# less dim, ellipsis
[Ellipsis, [0, 3, 4]],
[Ellipsis, slice(None), [0, 3, 4]],
[Ellipsis, slice(None), slice(None), [0, 3, 4]],
[slice(None), Ellipsis, [0, 3, 4]],
[slice(None), slice(None), Ellipsis, [0, 3, 4]],
[slice(None), [0, 2, 3], [1, 3, 4]],
[slice(None), [0, 2, 3], [1, 3, 4], Ellipsis],
[Ellipsis, [0, 2, 3], [1, 3, 4], slice(None)],
[[0], [1, 2, 4]],
[[0], [1, 2, 4], slice(None)],
[[0], [1, 2, 4], Ellipsis],
[[0], [1, 2, 4], Ellipsis, slice(None)],
[[1], ],
[[0, 2, 1], [3], [4]],
[[0, 2, 1], [3], [4], slice(None)],
[[0, 2, 1], [3], [4], Ellipsis],
[Ellipsis, [0, 2, 1], [3], [4]],
]
for indexer in indices_to_test:
assert_get_eq(reference, indexer)
assert_set_eq(reference, indexer, 1333)
assert_set_eq(reference,
indexer,
get_set_tensor(reference, indexer))
indices_to_test += [
[slice(None), slice(None), [[0, 1], [1, 0]], [[2, 3], [3, 0]]],
[slice(None), slice(None), [[2]], [[0, 3], [4, 4]]],
]
for indexer in indices_to_test:
assert_get_eq(reference, indexer)
assert_set_eq(reference, indexer, 1333)
def test_advancedindex(self):
self._test_advancedindex(self, lambda x: x)
@staticmethod
def _test_advancedindex_big(self, conv_fn):
reference = conv_fn(torch.arange(0, 123344).int())
self.assertEqual(reference[[0, 123, 44488, 68807, 123343], ],
torch.LongTensor([0, 123, 44488, 68807, 123343]))
def test_advancedindex_big(self):
self._test_advancedindex_big(self, lambda x: x)
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_newaxis_numpy_comparison(self):
def run_test(tensor, *idx):
npt = tensor.numpy()
self.assertEqual(tensor[idx], npt[idx])
# 1D Tensor Tests
x = torch.arange(0, 10)
cases = [
[None],
[None, None],
[Ellipsis, None],
[None, Ellipsis],
[2, None],
[None, 2],
[Ellipsis, None, 2],
[Ellipsis, 2, None],
[2, Ellipsis, None],
[2, None, Ellipsis],
[None, 2, Ellipsis],
[None, Ellipsis, 2],
]
for case in cases:
run_test(x, *case)
# 2D Tensor Tests
x = torch.arange(0, 12).view(3, 4)
cases = [
[None],
[None, None],
[None, None, None],
[Ellipsis, None],
[Ellipsis, None, None],
[None, Ellipsis],
[None, Ellipsis, None],
[None, None, Ellipsis],
[2, None],
[2, None, Ellipsis],
[2, Ellipsis, None],
[None, 2, Ellipsis],
[Ellipsis, 2, None],
[Ellipsis, None, 2],
[None, Ellipsis, 2],
[1, 2, None],
[1, 2, Ellipsis, None],
[1, Ellipsis, 2, None],
[Ellipsis, 1, None, 2],
[Ellipsis, 1, 2, None],
[1, None, 2, Ellipsis],
[None, 1, Ellipsis, 2],
[None, 1, 2, Ellipsis],
]
for case in cases:
run_test(x, *case)
def test_newindex(self):
reference = self._consecutive((3, 3, 3))
# This relies on __index__() being correct - but we have separate tests for that
def checkPartialAssign(index):
reference = torch.zeros(3, 3, 3)
reference[index] = self._consecutive((3, 3, 3))[index]
self.assertEqual(reference[index], self._consecutive((3, 3, 3))[index], 0)
reference[index] = 0
self.assertEqual(reference, torch.zeros(3, 3, 3), 0)
checkPartialAssign(0)
checkPartialAssign(1)
checkPartialAssign(2)
checkPartialAssign((0, 1))
checkPartialAssign((1, 2))
checkPartialAssign((0, 2))
checkPartialAssign(torch.LongTensor((0, 2)))
with self.assertRaises(IndexError):
reference[1, 1, 1, 1] = 1
with self.assertRaises(IndexError):
reference[1, 1, 1, (1, 1)] = 1
with self.assertRaises(IndexError):
reference[3, 3, 3, 3, 3, 3, 3, 3] = 1
with self.assertRaises(TypeError):
reference[0.0] = 1
with self.assertRaises(TypeError):
reference[0.0:2.0] = 1
with self.assertRaises(TypeError):
reference[0.0, 0.0:2.0] = 1
with self.assertRaises(TypeError):
reference[0.0, :, 0.0:2.0] = 1
with self.assertRaises(TypeError):
reference[0.0, ..., 0.0:2.0] = 1
with self.assertRaises(TypeError):
reference[0.0, :, 0.0] = 1
# LongTensor assignments are not fully supported yet
with self.assertRaises(TypeError):
reference[0, torch.LongTensor([2, 4])] = 1
def test_index_copy(self):
num_copy, num_dest = 3, 20
dest = torch.randn(num_dest, 4, 5)
src = torch.randn(num_copy, 4, 5)
idx = torch.randperm(num_dest).narrow(0, 0, num_copy)
dest2 = dest.clone()
dest.index_copy_(0, idx, src)
for i in range(idx.size(0)):
dest2[idx[i]].copy_(src[i])
self.assertEqual(dest, dest2, 0)
dest = torch.randn(num_dest)
src = torch.randn(num_copy)
idx = torch.randperm(num_dest).narrow(0, 0, num_copy)
dest2 = dest.clone()
dest.index_copy_(0, idx, src)
for i in range(idx.size(0)):
dest2[idx[i]] = src[i]
self.assertEqual(dest, dest2, 0)
def test_index_add(self):
num_copy, num_dest = 3, 3
dest = torch.randn(num_dest, 4, 5)
src = torch.randn(num_copy, 4, 5)
idx = torch.randperm(num_dest).narrow(0, 0, num_copy)
dest2 = dest.clone()
dest.index_add_(0, idx, src)
for i in range(idx.size(0)):
dest2[idx[i]].add_(src[i])
self.assertEqual(dest, dest2)
dest = torch.randn(num_dest)
src = torch.randn(num_copy)
idx = torch.randperm(num_dest).narrow(0, 0, num_copy)
dest2 = dest.clone()
dest.index_add_(0, idx, src)
for i in range(idx.size(0)):
dest2[idx[i]] = dest2[idx[i]] + src[i]
self.assertEqual(dest, dest2)
def test_take(self):
def check(src, idx):
expected = src.contiguous().view(-1).index_select(
0, idx.contiguous().view(-1)).view_as(idx)
actual = src.take(idx)
self.assertEqual(actual.size(), idx.size())
self.assertEqual(expected, actual)
src = torch.randn(2, 3, 5)
idx = torch.LongTensor([[0, 2], [3, 4]])
check(src, idx)
check(src.transpose(1, 2), idx)
def test_put_(self):
def check(dst, idx, value):
expected = dst.clone().view(-1).index_copy_(
0, idx.contiguous().view(-1), value.contiguous().view(-1))
expected = expected.view_as(dst)
dst.put_(idx, value)
self.assertEqual(expected, dst)
dst = torch.randn(2, 3, 5)
idx = torch.LongTensor([[0, 2], [3, 4]])
values = torch.randn(2, 2)
check(dst, idx, values)
check(dst.transpose(1, 2), idx, values)
def test_put_accumulate(self):
dst = torch.ones(2, 2)
idx = torch.LongTensor([[0, 1], [0, 1]])
src = torch.Tensor([1, 2, 3, 4])
dst.put_(idx, src, accumulate=True)
self.assertEqual(dst.tolist(), [[5, 7], [1, 1]])
# Fill idx with valid indices.
@staticmethod
def _fill_indices(self, idx, dim, dim_size, elems_per_row, m, n, o):
for i in range(1 if dim == 0 else m):
for j in range(1 if dim == 1 else n):
for k in range(1 if dim == 2 else o):
ii = [i, j, k]
ii[dim] = slice(0, idx.size(dim) + 1)
idx[tuple(ii)] = torch.randperm(dim_size)[0:elems_per_row]
@staticmethod
def _test_gather(self, cast, test_bounds=True):
m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
elems_per_row = random.randint(1, 10)
dim = random.randrange(3)
src = torch.randn(m, n, o)
idx_size = [m, n, o]
idx_size[dim] = elems_per_row
idx = torch.LongTensor().resize_(*idx_size)
TestTorch._fill_indices(self, idx, dim, src.size(dim), elems_per_row, m, n, o)
src = cast(src)
idx = cast(idx)
actual = torch.gather(src, dim, idx)
expected = cast(torch.Tensor().resize_(*idx_size))
for i in range(idx_size[0]):
for j in range(idx_size[1]):
for k in range(idx_size[2]):
ii = [i, j, k]
ii[dim] = idx[i, j, k]
expected[i, j, k] = src[tuple(ii)]
self.assertEqual(actual, expected, 0)
if test_bounds:
idx[0][0][0] = 23
self.assertRaises(RuntimeError, lambda: torch.gather(src, dim, idx))
src = cast(torch.randn(3, 4, 5))
expected, idx = src.max(2, True)
expected = cast(expected)
idx = cast(idx)
actual = torch.gather(src, 2, idx)
self.assertEqual(actual, expected, 0)
def test_gather(self):
self._test_gather(self, lambda t: t)
@staticmethod
def _test_scatter_base(self, cast, method, is_scalar=False, test_bounds=True):
m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
elems_per_row = random.randint(1, 10)
dim = random.randrange(3)
idx_size = [m, n, o]
idx_size[dim] = elems_per_row
idx = cast(torch.LongTensor().resize_(*idx_size))
TestTorch._fill_indices(self, idx, dim, ([m, n, o])[dim], elems_per_row, m, n, o)
if is_scalar:
src = random.random()
else:
src = cast(torch.Tensor(*idx_size).normal_())
base = cast(torch.randn(m, n, o))
actual = getattr(base.clone(), method)(dim, idx, src)
expected = base.clone()
for i in range(idx_size[0]):
for j in range(idx_size[1]):
for k in range(idx_size[2]):
ii = [i, j, k]
ii[dim] = idx[i, j, k]
if method == 'scatter_' and not is_scalar:
expected[tuple(ii)] = src[i, j, k]
elif method == 'scatter_add_':
expected[tuple(ii)] += src[i, j, k]
else:
expected[tuple(ii)] = src
self.assertEqual(actual, expected, 0)
if test_bounds:
idx[0][0][0] = 34
with self.assertRaises(RuntimeError):
getattr(base.clone(), method)(dim, idx, src)
def test_scatter(self):
self._test_scatter_base(self, lambda t: t, 'scatter_')
def test_scatterAdd(self):
self._test_scatter_base(self, lambda t: t, 'scatter_add_')
def test_scatterFill(self):
self._test_scatter_base(self, lambda t: t, 'scatter_', True)
def test_masked_scatter(self):
num_copy, num_dest = 3, 10
dest = torch.randn(num_dest)
src = torch.randn(num_copy)
mask = torch.ByteTensor((0, 0, 0, 0, 1, 0, 1, 0, 1, 0))
dest2 = dest.clone()
dest.masked_scatter_(mask, src)
j = 0
for i in range(num_dest):
if mask[i]:
dest2[i] = src[j]
j += 1
self.assertEqual(dest, dest2, 0)
# make source bigger than number of 1s in mask
src = torch.randn(num_dest)
dest.masked_scatter_(mask, src)
# make src smaller. this should fail
src = torch.randn(num_copy - 1)
with self.assertRaises(RuntimeError):
dest.masked_scatter_(mask, src)
def test_masked_select(self):
num_src = 10
src = torch.randn(num_src)
mask = torch.rand(num_src).clamp(0, 1).mul(2).floor().byte()
dst = src.masked_select(mask)
dst2 = []
for i in range(num_src):
if mask[i]:
dst2 += [src[i]]
self.assertEqual(dst, torch.Tensor(dst2), 0)
def test_masked_fill(self):
num_dest = 10
dst = torch.randn(num_dest)
mask = torch.rand(num_dest).mul(2).floor().byte()
val = random.random()
dst2 = dst.clone()
dst.masked_fill_(mask, val)
for i in range(num_dest):
if mask[i]:
dst2[i] = val
self.assertEqual(dst, dst2, 0)
def test_abs(self):
size = 1000
max_val = 1000
original = torch.rand(size).mul(max_val)
# Tensor filled with values from {-1, 1}
switch = torch.rand(size).mul(2).floor().mul(2).add(-1)
types = ['torch.DoubleTensor', 'torch.FloatTensor', 'torch.LongTensor', 'torch.IntTensor']
for t in types:
data = original.type(t)
switch = switch.type(t)
res = torch.mul(data, switch)
# abs is used in assertEqual so we use the slow version instead
self.assertTensorsSlowEqual(res.abs(), data, 1e-16)
# Checking that the right abs function is called for LongTensor
bignumber = 2 ^ 31 + 1
res = torch.LongTensor((-bignumber,))
self.assertGreater(res.abs()[0], 0)
def test_unbiased(self):
tensor = torch.randn(100)
self.assertEqual(tensor.var(0), tensor.var(0, unbiased=True))
self.assertEqual(tensor.var(), tensor.var(unbiased=True))
self.assertEqual(tensor.var(unbiased=False), tensor.var(0, unbiased=False)[0])
tensor = torch.FloatTensor([1.0, 2.0])
self.assertEqual(tensor.var(unbiased=True), 0.5)
self.assertEqual(tensor.var(unbiased=False), 0.25)
tensor = torch.FloatTensor([1.0, 2.0, 3.0])
self.assertEqual(tensor.var(unbiased=True), 1.0)
self.assertEqual(tensor.var(unbiased=False), 2.0 / 3.0)
tensor = torch.randn(100)
self.assertEqual(tensor.std(0), tensor.std(0, unbiased=True))
self.assertEqual(tensor.std(), tensor.std(unbiased=True))
self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False)[0])
def test_var_stability(self):
tensor = torch.FloatTensor([2281.5, 2281.25])
self.assertEqual(tensor.var(0)[0], 0.03125)
self.assertEqual(tensor.var(), 0.03125)
def test_view(self):
tensor = torch.rand(15)
template = torch.rand(3, 5)
empty = torch.Tensor()
target = template.size()
self.assertEqual(tensor.view_as(template).size(), target)
self.assertEqual(tensor.view(3, 5).size(), target)
self.assertEqual(tensor.view(torch.Size([3, 5])).size(), target)
self.assertEqual(tensor.view(-1, 5).size(), target)
self.assertEqual(tensor.view(3, -1).size(), target)
tensor_view = tensor.view(5, 3)
tensor_view.fill_(random.uniform(0, 1))
# suppress broadcastable warning
with warnings.catch_warnings(record=True):
self.assertEqual((tensor_view - tensor).abs().max(), 0)
self.assertEqual(empty.view_as(empty), empty)
self.assertEqual(empty.view(0), empty)
self.assertRaises(RuntimeError, lambda: tensor.view(15, 0))
self.assertRaises(RuntimeError, lambda: tensor.view(7, -1))
self.assertRaises(RuntimeError, lambda: tensor.view(15, -1, -1))
def test_expand(self):
tensor = torch.rand(1, 8, 1)
tensor2 = torch.rand(5)
template = torch.rand(4, 8, 5)
target = template.size()
self.assertEqual(tensor.expand_as(template).size(), target)
self.assertEqual(tensor.expand(4, 8, 5).size(), target)
self.assertEqual(tensor.expand(target).size(), target)
self.assertEqual(tensor2.expand_as(template).size(), target)
self.assertEqual(tensor2.expand(4, 8, 5).size(), target)
self.assertEqual(tensor2.expand(target).size(), target)
# test double expand
self.assertEqual(tensor2.expand(1, 5).expand(2, 2, 5), tensor2.repeat(2, 2, 1))
# test non-contiguous
noncontig = torch.randn(5, 2, 1, 3)[:, 0]
assert not noncontig.is_contiguous()
self.assertEqual(noncontig.expand(2, 5, 4, 3), noncontig.contiguous().repeat(2, 1, 4, 1))
# make sure it's compatible with unsqueeze
expanded = tensor2.expand(1, 1, 5)
unsqueezed = tensor2.unsqueeze(0).unsqueeze(1)
self.assertEqual(expanded, unsqueezed)
self.assertEqual(expanded.stride(), unsqueezed.stride())
# test -1 as target size
self.assertEqual(tensor.expand(4, -1, 5), tensor.expand(4, 8, 5))
self.assertRaises(RuntimeError, lambda: tensor2.expand(-1, -1))
# test expanding empty to empty
self.assertEqual(torch.randn(()).expand(()), torch.randn(()))
def test_repeat(self):
result = torch.Tensor()
tensor = torch.rand(8, 4)
size = (3, 1, 1)
torchSize = torch.Size(size)
target = [3, 8, 4]
self.assertEqual(tensor.repeat(*size).size(), target, 'Error in repeat')
self.assertEqual(tensor.repeat(torchSize).size(), target, 'Error in repeat using LongStorage')
result = tensor.repeat(*size)
self.assertEqual(result.size(), target, 'Error in repeat using result')
result = tensor.repeat(torchSize)
self.assertEqual(result.size(), target, 'Error in repeat using result and LongStorage')
self.assertEqual(result.mean(0).view(8, 4), tensor, 'Error in repeat (not equal)')
def test_is_same_size(self):
t1 = torch.Tensor(3, 4, 9, 10)
t2 = torch.Tensor(3, 4)
t3 = torch.Tensor(1, 9, 3, 3)
t4 = torch.Tensor(3, 4, 9, 10)
self.assertFalse(t1.is_same_size(t2))
self.assertFalse(t1.is_same_size(t3))
self.assertTrue(t1.is_same_size(t4))
def test_is_set_to(self):
t1 = torch.Tensor(3, 4, 9, 10)
t2 = torch.Tensor(3, 4, 9, 10)
t3 = torch.Tensor().set_(t1)
t4 = t3.clone().resize_(12, 90)
self.assertFalse(t1.is_set_to(t2))
self.assertTrue(t1.is_set_to(t3))
self.assertTrue(t3.is_set_to(t1), "is_set_to should be symmetric")
self.assertFalse(t1.is_set_to(t4))
self.assertFalse(torch.Tensor().is_set_to(torch.Tensor()),
"Tensors with no storages should not appear to be set "
"to each other")
def test_tensor_set(self):
t1 = torch.Tensor()
t2 = torch.Tensor(3, 4, 9, 10).uniform_()
t1.set_(t2)
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
size = torch.Size([9, 3, 4, 10])
t1.set_(t2.storage(), 0, size)
self.assertEqual(t1.size(), size)
t1.set_(t2.storage(), 0, tuple(size))
self.assertEqual(t1.size(), size)
self.assertEqual(t1.stride(), (120, 40, 10, 1))
stride = (10, 360, 90, 1)
t1.set_(t2.storage(), 0, size, stride)
self.assertEqual(t1.stride(), stride)
t1.set_(t2.storage(), 0, size=size, stride=stride)
self.assertEqual(t1.size(), size)
self.assertEqual(t1.stride(), stride)
def test_equal(self):
# Contiguous, 1D
t1 = torch.Tensor((3, 4, 9, 10))
t2 = t1.contiguous()
t3 = torch.Tensor((1, 9, 3, 10))
t4 = torch.Tensor((3, 4, 9))
t5 = torch.Tensor()
self.assertTrue(t1.equal(t2))
self.assertFalse(t1.equal(t3))
self.assertFalse(t1.equal(t4))
self.assertFalse(t1.equal(t5))
self.assertTrue(torch.equal(t1, t2))
self.assertFalse(torch.equal(t1, t3))
self.assertFalse(torch.equal(t1, t4))
self.assertFalse(torch.equal(t1, t5))
# Non contiguous, 2D
s = torch.Tensor(((1, 2, 3, 4), (5, 6, 7, 8)))
s1 = s[:, 1:3]
s2 = s1.clone()
s3 = torch.Tensor(((2, 3), (6, 7)))
s4 = torch.Tensor(((0, 0), (0, 0)))
self.assertFalse(s1.is_contiguous())
self.assertTrue(s1.equal(s2))
self.assertTrue(s1.equal(s3))
self.assertFalse(s1.equal(s4))
self.assertTrue(torch.equal(s1, s2))
self.assertTrue(torch.equal(s1, s3))
self.assertFalse(torch.equal(s1, s4))
def test_element_size(self):
byte = torch.ByteStorage().element_size()
char = torch.CharStorage().element_size()
short = torch.ShortStorage().element_size()
int = torch.IntStorage().element_size()
long = torch.LongStorage().element_size()
float = torch.FloatStorage().element_size()
double = torch.DoubleStorage().element_size()
self.assertEqual(byte, torch.ByteTensor().element_size())
self.assertEqual(char, torch.CharTensor().element_size())
self.assertEqual(short, torch.ShortTensor().element_size())
self.assertEqual(int, torch.IntTensor().element_size())
self.assertEqual(long, torch.LongTensor().element_size())
self.assertEqual(float, torch.FloatTensor().element_size())
self.assertEqual(double, torch.DoubleTensor().element_size())
self.assertGreater(byte, 0)
self.assertGreater(char, 0)
self.assertGreater(short, 0)
self.assertGreater(int, 0)
self.assertGreater(long, 0)
self.assertGreater(float, 0)
self.assertGreater(double, 0)
# These tests are portable, not necessarily strict for your system.
self.assertEqual(byte, 1)
self.assertEqual(char, 1)
self.assertGreaterEqual(short, 2)
self.assertGreaterEqual(int, 2)
self.assertGreaterEqual(int, short)
self.assertGreaterEqual(long, 4)
self.assertGreaterEqual(long, int)
self.assertGreaterEqual(double, float)
def test_split(self):
tensor = torch.rand(7, 4)
split_size = 3
dim = 0
target_sizes = ([3, 4], [3, 4], [1, 4])
splits = tensor.split(split_size, dim)
start = 0
for target_size, split in zip(target_sizes, splits):
self.assertEqual(split.size(), target_size)
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0)
start = start + target_size[dim]
def test_chunk(self):
tensor = torch.rand(4, 7)
num_chunks = 3
dim = 1
target_sizes = ([4, 3], [4, 3], [4, 1])
splits = tensor.chunk(num_chunks, dim)
start = 0
for target_size, split in zip(target_sizes, splits):
self.assertEqual(split.size(), target_size)
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0)
start = start + target_size[dim]
def test_tolist(self):
list0D = []
tensor0D = torch.Tensor(list0D)
self.assertEqual(tensor0D.tolist(), list0D)
table1D = [1, 2, 3]
tensor1D = torch.Tensor(table1D)
storage = torch.Storage(table1D)
self.assertEqual(tensor1D.tolist(), table1D)
self.assertEqual(storage.tolist(), table1D)
self.assertEqual(tensor1D.tolist(), table1D)
self.assertEqual(storage.tolist(), table1D)
table2D = [[1, 2], [3, 4]]
tensor2D = torch.Tensor(table2D)
self.assertEqual(tensor2D.tolist(), table2D)
tensor3D = torch.Tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
tensorNonContig = tensor3D.select(1, 1)
self.assertFalse(tensorNonContig.is_contiguous())
self.assertEqual(tensorNonContig.tolist(), [[3, 4], [7, 8]])
def test_permute(self):
orig = [1, 2, 3, 4, 5, 6, 7]
perm = list(torch.randperm(7))
x = torch.Tensor(*orig).fill_(0)
new = list(map(lambda x: x - 1, x.permute(*perm).size()))
self.assertEqual(perm, new)
self.assertEqual(x.size(), orig)
def test_storage(self):
from torch.autograd import Variable
v = Variable(torch.randn(3, 5))
self.assertEqual(v.storage()[0], v.data[0][0])
self.assertEqual(v.storage()[14], v.data[2][4])
def test_storageview(self):
s1 = torch.LongStorage((3, 4, 5))
s2 = torch.LongStorage(s1, 1)
self.assertEqual(s2.size(), 2)
self.assertEqual(s2[0], s1[1])
self.assertEqual(s2[1], s1[2])
s2[1] = 13
self.assertEqual(13, s1[2])
def test_nonzero(self):
num_src = 12
types = [
'torch.ByteTensor',
'torch.CharTensor',
'torch.ShortTensor',
'torch.IntTensor',
'torch.FloatTensor',
'torch.DoubleTensor',
'torch.LongTensor',
]
shapes = [
torch.Size((12,)),
torch.Size((12, 1)),
torch.Size((1, 12)),
torch.Size((6, 2)),
torch.Size((3, 2, 2)),
]
for t in types:
while True:
tensor = torch.rand(num_src).mul(2).floor().type(t)
if tensor.sum() > 0:
break
for shape in shapes:
tensor = tensor.clone().resize_(shape)
dst1 = torch.nonzero(tensor)
dst2 = tensor.nonzero()
dst3 = torch.LongTensor()
torch.nonzero(tensor, out=dst3)
if len(shape) == 1:
dst = []
for i in range(num_src):
if tensor[i] != 0:
dst += [i]
self.assertEqual(dst1.select(1, 0), torch.LongTensor(dst), 0)
self.assertEqual(dst2.select(1, 0), torch.LongTensor(dst), 0)
self.assertEqual(dst3.select(1, 0), torch.LongTensor(dst), 0)
elif len(shape) == 2:
# This test will allow through some False positives. It only checks
# that the elements flagged positive are indeed non-zero.
for i in range(dst1.size(0)):
self.assertNotEqual(tensor[dst1[i, 0], dst1[i, 1]], 0)
elif len(shape) == 3:
# This test will allow through some False positives. It only checks
# that the elements flagged positive are indeed non-zero.
for i in range(dst1.size(0)):
self.assertNotEqual(tensor[dst1[i, 0], dst1[i, 1], dst1[i, 2]], 0)
def test_deepcopy(self):
from copy import deepcopy
a = torch.randn(5, 5)
b = torch.randn(5, 5)
c = a.view(25)
q = [a, [a.storage(), b.storage()], b, c]
w = deepcopy(q)
self.assertEqual(w[0], q[0], 0)
self.assertEqual(w[1][0], q[1][0], 0)
self.assertEqual(w[1][1], q[1][1], 0)
self.assertEqual(w[1], q[1], 0)
self.assertEqual(w[2], q[2], 0)
# Check that deepcopy preserves sharing
w[0].add_(1)
for i in range(a.numel()):
self.assertEqual(w[1][0][i], q[1][0][i] + 1)
self.assertEqual(w[3], c + 1)
w[2].sub_(1)
for i in range(a.numel()):
self.assertEqual(w[1][1][i], q[1][1][i] - 1)
def test_copy(self):
from copy import copy
a = torch.randn(5, 5)
a_clone = a.clone()
b = copy(a)
b.fill_(1)
# copy is a shallow copy, only copies the tensor view,
# not the data
self.assertEqual(a, b)
def test_pickle(self):
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
a = torch.randn(5, 5)
serialized = pickle.dumps(a)
b = pickle.loads(serialized)
self.assertEqual(a, b)
def test_bernoulli(self):
t = torch.ByteTensor(10, 10)
def isBinary(t):
return torch.ne(t, 0).mul_(torch.ne(t, 1)).sum() == 0
p = 0.5
t.bernoulli_(p)
self.assertTrue(isBinary(t))
p = torch.rand(SIZE)
t.bernoulli_(p)
self.assertTrue(isBinary(t))
q = torch.rand(5, 5)
self.assertTrue(isBinary(q.bernoulli()))
def test_normal(self):
q = torch.Tensor(100, 100)
q.normal_()
self.assertEqual(q.mean(), 0, 0.2)
self.assertEqual(q.std(), 1, 0.2)
q.normal_(2, 3)
self.assertEqual(q.mean(), 2, 0.3)
self.assertEqual(q.std(), 3, 0.3)
mean = torch.Tensor(100, 100)
std = torch.Tensor(100, 100)
mean[:50] = 0
mean[50:] = 1
std[:, :50] = 4
std[:, 50:] = 1
r = torch.normal(mean)
self.assertEqual(r[:50].mean(), 0, 0.2)
self.assertEqual(r[50:].mean(), 1, 0.2)
self.assertEqual(r.std(), 1, 0.2)
r = torch.normal(mean, 3)
self.assertEqual(r[:50].mean(), 0, 0.2)
self.assertEqual(r[50:].mean(), 1, 0.2)
self.assertEqual(r.std(), 3, 0.2)
r = torch.normal(2, std)
self.assertEqual(r.mean(), 2, 0.2)
self.assertEqual(r[:, :50].std(), 4, 0.3)
self.assertEqual(r[:, 50:].std(), 1, 0.2)
r = torch.normal(mean, std)
self.assertEqual(r[:50].mean(), 0, 0.2)
self.assertEqual(r[50:].mean(), 1, 0.2)
self.assertEqual(r[:, :50].std(), 4, 0.3)
self.assertEqual(r[:, 50:].std(), 1, 0.2)
def test_serialization(self):
a = [torch.randn(5, 5).float() for i in range(2)]
b = [a[i % 2] for i in range(4)]
b += [a[0].storage()]
b += [a[0].storage()[1:4]]
b += [torch.arange(1, 11).int()]
t1 = torch.FloatTensor().set_(a[0].storage()[1:4], 0, (3,), (1,))
t2 = torch.FloatTensor().set_(a[0].storage()[1:4], 0, (3,), (1,))
b += [(t1.storage(), t1.storage(), t2.storage())]
b += [a[0].storage()[0:2]]
for use_name in (False, True):
with tempfile.NamedTemporaryFile() as f:
handle = f if not use_name else f.name
torch.save(b, handle)
f.seek(0)
c = torch.load(handle)
self.assertEqual(b, c, 0)
self.assertTrue(isinstance(c[0], torch.FloatTensor))
self.assertTrue(isinstance(c[1], torch.FloatTensor))
self.assertTrue(isinstance(c[2], torch.FloatTensor))
self.assertTrue(isinstance(c[3], torch.FloatTensor))
self.assertTrue(isinstance(c[4], torch.FloatStorage))
c[0].fill_(10)
self.assertEqual(c[0], c[2], 0)
self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), 0)
c[1].fill_(20)
self.assertEqual(c[1], c[3], 0)
self.assertEqual(c[4][1:4], c[5], 0)
# check that serializing the same storage view object unpickles
# it as one object not two (and vice versa)
views = c[7]
self.assertEqual(views[0]._cdata, views[1]._cdata)
self.assertEqual(views[0], views[2])
self.assertNotEqual(views[0]._cdata, views[2]._cdata)
rootview = c[8]
self.assertEqual(rootview.data_ptr(), c[0].data_ptr())
def test_serialization_offset(self):
a = torch.randn(5, 5)
i = 41
with tempfile.TemporaryFile() as f:
pickle.dump(i, f)
torch.save(a, f)
f.seek(0)
j = pickle.load(f)
b = torch.load(f)
self.assertTrue(torch.equal(a, b))
self.assertEqual(i, j)
def test_half_tensor(self):
x = torch.randn(5, 5).float()
y = torch.randn(5, 5).float()
xh, yh = x.half(), y.half()
self.assertEqual(x.half().float(), x, 1e-3)
z = torch.Tensor(5, 5)
self.assertEqual(z.copy_(xh), x, 1e-3)
with tempfile.NamedTemporaryFile() as f:
torch.save(xh, f)
f.seek(0)
xh2 = torch.load(f)
self.assertEqual(xh.float(), xh2.float())
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
def test_half_tensor_cuda(self):
x = torch.randn(5, 5).half()
self.assertEqual(x.cuda(), x)
xc = x.cuda()
with tempfile.NamedTemporaryFile() as f:
torch.save(xc, f)
f.seek(0)
xc2 = torch.load(f)
self.assertIsInstance(xc2, type(xc))
self.assertEqual(xc.float(), xc2.float())
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
def test_serialization_cuda(self):
device_count = torch.cuda.device_count()
t0 = torch.cuda.FloatTensor(5).fill_(1)
torch.cuda.set_device(device_count - 1)
tn = torch.cuda.FloatTensor(3).fill_(2)
torch.cuda.set_device(0)
b = (t0, tn)
with tempfile.NamedTemporaryFile() as f:
torch.save(b, f)
f.seek(0)
c = torch.load(f)
self.assertEqual(b, c, 0)
u0, un = c
self.assertEqual(u0.get_device(), 0)
self.assertEqual(un.get_device(), device_count - 1)
def test_serialization_backwards_compat(self):
a = [torch.arange(1 + i, 26 + i).view(5, 5).float() for i in range(2)]
b = [a[i % 2] for i in range(4)]
b += [a[0].storage()]
b += [a[0].storage()[1:4]]
path = download_file('https://download.pytorch.org/test_data/legacy_serialized.pt')
c = torch.load(path)
self.assertEqual(b, c, 0)
self.assertTrue(isinstance(c[0], torch.FloatTensor))
self.assertTrue(isinstance(c[1], torch.FloatTensor))
self.assertTrue(isinstance(c[2], torch.FloatTensor))
self.assertTrue(isinstance(c[3], torch.FloatTensor))
self.assertTrue(isinstance(c[4], torch.FloatStorage))
c[0].fill_(10)
self.assertEqual(c[0], c[2], 0)
self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), 0)
c[1].fill_(20)
self.assertEqual(c[1], c[3], 0)
self.assertEqual(c[4][1:4], c[5], 0)
def test_serialization_container(self):
def import_module(name, filename):
if sys.version_info >= (3, 5):
import importlib.util
spec = importlib.util.spec_from_file_location(name, filename)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
else:
import imp
module = imp.load_source(name, filename)
sys.modules[module.__name__] = module
return module
with tempfile.NamedTemporaryFile() as checkpoint:
fname = os.path.join(os.path.dirname(__file__), 'data/network1.py')
module = import_module('tmpmodule', fname)
torch.save(module.Net(), checkpoint)
# First check that the checkpoint can be loaded without warnings
checkpoint.seek(0)
with warnings.catch_warnings(record=True) as w:
loaded = torch.load(checkpoint)
self.assertTrue(isinstance(loaded, module.Net))
self.assertEquals(len(w), 0)
# Replace the module with different source
fname = os.path.join(os.path.dirname(__file__), 'data/network2.py')
module = import_module('tmpmodule', fname)
checkpoint.seek(0)
with warnings.catch_warnings(record=True) as w:
loaded = torch.load(checkpoint)
self.assertTrue(isinstance(loaded, module.Net))
self.assertEquals(len(w), 1)
self.assertTrue(w[0].category, 'SourceChangeWarning')
def test_serialization_map_location(self):
test_file_path = download_file('https://download.pytorch.org/test_data/gpu_tensors.pt')
def map_location(storage, loc):
return storage
tensor = torch.load(test_file_path, map_location=map_location)
self.assertEqual(type(tensor), torch.FloatTensor)
self.assertEqual(tensor, torch.FloatTensor([[1.0, 2.0], [3.0, 4.0]]))
tensor = torch.load(test_file_path, map_location={'cuda:0': 'cpu'})
self.assertEqual(type(tensor), torch.FloatTensor)
self.assertEqual(tensor, torch.FloatTensor([[1.0, 2.0], [3.0, 4.0]]))
def test_from_buffer(self):
a = bytearray([1, 2, 3, 4])
self.assertEqual(torch.ByteStorage.from_buffer(a).tolist(), [1, 2, 3, 4])
shorts = torch.ShortStorage.from_buffer(a, 'big')
self.assertEqual(shorts.size(), 2)
self.assertEqual(shorts.tolist(), [258, 772])
ints = torch.IntStorage.from_buffer(a, 'little')
self.assertEqual(ints.size(), 1)
self.assertEqual(ints[0], 67305985)
f = bytearray([0x40, 0x10, 0x00, 0x00])
floats = torch.FloatStorage.from_buffer(f, 'big')
self.assertEqual(floats.size(), 1)
self.assertEqual(floats[0], 2.25)
def test_from_file(self):
size = 10000
with tempfile.NamedTemporaryFile() as f:
s1 = torch.FloatStorage.from_file(f.name, True, size)
t1 = torch.FloatTensor(s1).copy_(torch.randn(size))
# check mapping
s2 = torch.FloatStorage.from_file(f.name, True, size)
t2 = torch.FloatTensor(s2)
self.assertEqual(t1, t2, 0)
# check changes to t1 from t2
rnum = random.uniform(-1, 1)
t1.fill_(rnum)
self.assertEqual(t1, t2, 0)
# check changes to t2 from t1
rnum = random.uniform(-1, 1)
t2.fill_(rnum)
self.assertEqual(t1, t2, 0)
def test_print(self):
for t in torch._tensor_classes:
if t == torch.HalfTensor:
continue # HalfTensor does not support fill
if t in torch.sparse._sparse_tensor_classes:
continue
if t.is_cuda and not torch.cuda.is_available():
continue
obj = t(100, 100).fill_(1)
obj.__repr__()
str(obj)
for t in torch._storage_classes:
if t.is_cuda and not torch.cuda.is_available():
continue
obj = t(100).fill_(1)
obj.__repr__()
str(obj)
x = torch.Tensor([4, float('inf'), 1.5, float('-inf'), 0, float('nan'), 1])
x.__repr__()
str(x)
x = torch.DoubleTensor([1e-324, 1e-323, 1e-322, 1e307, 1e308, 1e309])
x.__repr__()
str(x),
def test_sizeof(self):
sizeof_empty = torch.randn(0).storage().__sizeof__()
sizeof_10 = torch.randn(10).storage().__sizeof__()
sizeof_100 = torch.randn(100).storage().__sizeof__()
self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10)
self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0)
sizeof_empty = torch.randn(0).type(torch.ByteTensor).storage().__sizeof__()
sizeof_10 = torch.randn(10).type(torch.ByteTensor).storage().__sizeof__()
sizeof_100 = torch.randn(100).type(torch.ByteTensor).storage().__sizeof__()
self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10)
self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0)
def test_unsqueeze(self):
x = torch.randn(2, 3, 4)
y = x.unsqueeze(1)
self.assertEqual(y, x.view(2, 1, 3, 4))
y = x.clone().unsqueeze_(2)
self.assertEqual(y, x.view(2, 3, 1, 4))
x = x[:, 1]
self.assertFalse(x.is_contiguous())
y = x.unsqueeze(1)
self.assertEqual(y, x.contiguous().view(2, 1, 4))
y = x.clone().unsqueeze_(2)
self.assertEqual(y, x.contiguous().view(2, 4, 1))
self.assertRaises(RuntimeError, lambda: torch.Tensor().unsqueeze(0))
def test_iter(self):
x = torch.randn(5, 5)
for i, sub in enumerate(x):
self.assertEqual(sub, x[i])
x = torch.Tensor()
self.assertEqual(list(x), [])
def test_accreal_type(self):
x = torch.randn(2, 3, 4) * 10
self.assertIsInstance(x.double().sum(), float)
self.assertIsInstance(x.float().sum(), float)
self.assertIsInstance(x.long().sum(), int)
self.assertIsInstance(x.int().sum(), int)
self.assertIsInstance(x.short().sum(), int)
self.assertIsInstance(x.char().sum(), int)
self.assertIsInstance(x.byte().sum(), int)
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
def test_pin_memory(self):
x = torch.randn(3, 5)
self.assertFalse(x.is_pinned())
pinned = x.pin_memory()
self.assertTrue(pinned.is_pinned())
self.assertEqual(pinned, x)
self.assertNotEqual(pinned.data_ptr(), x.data_ptr())
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_numpy_unresizable(self):
x = np.zeros((2, 2))
y = torch.from_numpy(x)
with self.assertRaises(ValueError):
x.resize((5, 5))
z = torch.randn(5, 5)
w = z.numpy()
with self.assertRaises(RuntimeError):
z.resize_(10, 10)
with self.assertRaises(ValueError):
w.resize((10, 10))
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_toNumpy(self):
types = [
'torch.ByteTensor',
'torch.IntTensor',
'torch.HalfTensor',
'torch.FloatTensor',
'torch.DoubleTensor',
'torch.LongTensor',
]
for tp in types:
# 1D
sz = 10
x = torch.randn(sz).mul(255).type(tp)
y = x.numpy()
for i in range(sz):
self.assertEqual(x[i], y[i])
# 1D > 0 storage offset
xm = torch.randn(sz * 2).mul(255).type(tp)
x = xm.narrow(0, sz - 1, sz)
self.assertTrue(x.storage_offset() > 0)
y = x.numpy()
for i in range(sz):
self.assertEqual(x[i], y[i])
def check2d(x, y):
for i in range(sz1):
for j in range(sz2):
self.assertEqual(x[i][j], y[i][j])
# empty
x = torch.Tensor().type(tp)
y = x.numpy()
self.assertEqual(y.size, 0)
# contiguous 2D
sz1 = 3
sz2 = 5
x = torch.randn(sz1, sz2).mul(255).type(tp)
y = x.numpy()
check2d(x, y)
# with storage offset
xm = torch.randn(sz1 * 2, sz2).mul(255).type(tp)
x = xm.narrow(0, sz1 - 1, sz1)
y = x.numpy()
self.assertTrue(x.storage_offset() > 0)
check2d(x, y)
# non-contiguous 2D
x = torch.randn(sz2, sz1).t().mul(255).type(tp)
y = x.numpy()
check2d(x, y)
# with storage offset
xm = torch.randn(sz2 * 2, sz1).mul(255).type(tp)
if tp == 'torch.HalfTensor':
# TODO: remove when `t()` is implemented. This assertion is
# intended to mark this as to be changed when the feature
# becomes available. Later tests are just skipped for half
# floats.
with self.assertRaises(AttributeError):
x = xm.narrow(0, sz2 - 1, sz2).t()
else:
x = xm.narrow(0, sz2 - 1, sz2).t()
y = x.numpy()
self.assertTrue(x.storage_offset() > 0)
check2d(x, y)
if tp != 'torch.HalfTensor':
# non-contiguous 2D with holes
xm = torch.randn(sz2 * 2, sz1 * 2).mul(255).type(tp)
x = xm.narrow(0, sz2 - 1, sz2).narrow(1, sz1 - 1, sz1).t()
y = x.numpy()
self.assertTrue(x.storage_offset() > 0)
check2d(x, y)
# check writeable
x = torch.randn(3, 4).mul(255).type(tp)
y = x.numpy()
self.assertTrue(y.flags.writeable)
y[0][1] = 3
self.assertTrue(x[0][1] == 3)
y = x.t().numpy()
self.assertTrue(y.flags.writeable)
y[0][1] = 3
self.assertTrue(x[0][1] == 3)
def test_dlpack_conversion(self):
x = torch.randn(1, 2, 3, 4).type('torch.FloatTensor')
z = from_dlpack(to_dlpack(x))
self.assertEqual(z, x)
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_from_numpy(self):
dtypes = [
np.double,
np.float,
np.float16,
np.int64,
np.int32,
np.int16,
np.uint8
]
for dtype in dtypes:
array = np.array([1, 2, 3, 4], dtype=dtype)
tensor_from_array = torch.from_numpy(array)
# TODO: change to tensor equality check once HalfTensor
# implements `==`
for i in range(len(array)):
self.assertEqual(tensor_from_array[i], array[i])
# check storage offset
x = np.linspace(1, 125, 125)
x.shape = (5, 5, 5)
x = x[1]
expected = torch.arange(1, 126).view(5, 5, 5)[1]
self.assertEqual(torch.from_numpy(x), expected)
# check noncontiguous
x = np.linspace(1, 25, 25)
x.shape = (5, 5)
expected = torch.arange(1, 26).view(5, 5).t()
self.assertEqual(torch.from_numpy(x.T), expected)
# check noncontiguous with holes
x = np.linspace(1, 125, 125)
x.shape = (5, 5, 5)
x = x[:, 1]
expected = torch.arange(1, 126).view(5, 5, 5)[:, 1]
self.assertEqual(torch.from_numpy(x), expected)
# check zero dimensional
x = np.zeros((0, 2))
self.assertRaises(RuntimeError, lambda: torch.from_numpy(x))
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_ctor_with_numpy_array(self):
dtypes = [
np.double,
np.float,
np.float16,
np.int64,
np.int32,
np.int16,
np.uint8
]
for dtype in dtypes:
array = np.array([1, 2, 3, 4], dtype=dtype)
# Upcast
tensor = torch.DoubleTensor(array)
for i in range(len(array)):
self.assertEqual(tensor[i], array[i])
if torch.cuda.is_available():
tensor = torch.cuda.DoubleTensor(array)
for i in range(len(array)):
self.assertEqual(tensor[i], array[i])
# Downcast (sometimes)
tensor = torch.FloatTensor(array)
for i in range(len(array)):
self.assertEqual(tensor[i], array[i])
tensor = torch.HalfTensor(array)
for i in range(len(array)):
self.assertEqual(tensor[i], array[i])
if torch.cuda.is_available():
tensor = torch.cuda.FloatTensor(array)
for i in range(len(array)):
self.assertEqual(tensor[i], array[i])
tensor = torch.cuda.HalfTensor(array)
for i in range(len(array)):
self.assertEqual(tensor[i], array[i])
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_numpy_index(self):
i = np.int32([0, 1, 2])
x = torch.randn(5, 5)
for idx in i:
self.assertFalse(isinstance(idx, int))
self.assertEqual(x[idx], x[int(idx)])
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_numpy_array_interface(self):
types = [
torch.DoubleTensor,
torch.FloatTensor,
torch.HalfTensor,
torch.LongTensor,
torch.IntTensor,
torch.ShortTensor,
torch.ByteTensor,
]
dtypes = [
np.float64,
np.float32,
np.float16,
np.int64,
np.int32,
np.int16,
np.uint8,
]
for tp, dtype in zip(types, dtypes):
if np.dtype(dtype).kind == 'u':
x = torch.Tensor([1, 2, 3, 4]).type(tp)
array = np.array([1, 2, 3, 4], dtype=dtype)
else:
x = torch.Tensor([1, -2, 3, -4]).type(tp)
array = np.array([1, -2, 3, -4], dtype=dtype)
# Test __array__ w/o dtype argument
asarray = np.asarray(x)
self.assertIsInstance(asarray, np.ndarray)
self.assertEqual(asarray.dtype, dtype)
for i in range(len(x)):
self.assertEqual(asarray[i], x[i])
# Test __array_wrap__, same dtype
abs_x = np.abs(x)
abs_array = np.abs(array)
self.assertIsInstance(abs_x, tp)
for i in range(len(x)):
self.assertEqual(abs_x[i], abs_array[i])
# Test __array__ with dtype argument
for dtype in dtypes:
x = torch.IntTensor([1, -2, 3, -4])
asarray = np.asarray(x, dtype=dtype)
self.assertEqual(asarray.dtype, dtype)
if np.dtype(dtype).kind == 'u':
wrapped_x = np.array([1, -2, 3, -4], dtype=dtype)
for i in range(len(x)):
self.assertEqual(asarray[i], wrapped_x[i])
else:
for i in range(len(x)):
self.assertEqual(asarray[i], x[i])
# Test some math functions with float types
float_types = [torch.DoubleTensor, torch.FloatTensor]
float_dtypes = [np.float64, np.float32]
for tp, dtype in zip(float_types, float_dtypes):
x = torch.Tensor([1, 2, 3, 4]).type(tp)
array = np.array([1, 2, 3, 4], dtype=dtype)
for func in ['sin', 'sqrt', 'ceil']:
ufunc = getattr(np, func)
res_x = ufunc(x)
res_array = ufunc(array)
self.assertIsInstance(res_x, tp)
for i in range(len(x)):
self.assertEqual(res_x[i], res_array[i])
# Test functions with boolean return value
for tp, dtype in zip(types, dtypes):
x = torch.Tensor([1, 2, 3, 4]).type(tp)
array = np.array([1, 2, 3, 4], dtype=dtype)
geq2_x = np.greater_equal(x, 2)
geq2_array = np.greater_equal(array, 2).astype('uint8')
self.assertIsInstance(geq2_x, torch.ByteTensor)
for i in range(len(x)):
self.assertEqual(geq2_x[i], geq2_array[i])
def test_error_msg_type_translation(self):
with self.assertRaisesRegex(
RuntimeError,
# message includes both torch.DoubleTensor and torch.LongTensor
'(?=.*torch\.DoubleTensor)(?=.*torch\.LongTensor)'):
# Calls model with a DoubleTensor input but LongTensor weights
input = torch.autograd.Variable(torch.randn(1, 1, 1, 6).double())
weight = torch.zeros(1, 1, 1, 3).long()
model = torch.nn.Conv2d(1, 1, (1, 3), stride=1, padding=0, bias=False)
model.weight.data = weight
out = model(input)
def test_comparison_ops(self):
x = torch.randn(5, 5)
y = torch.randn(5, 5)
eq = x == y
for idx in iter_indices(x):
self.assertIs(x[idx] == y[idx], eq[idx] == 1)
ne = x != y
for idx in iter_indices(x):
self.assertIs(x[idx] != y[idx], ne[idx] == 1)
lt = x < y
for idx in iter_indices(x):
self.assertIs(x[idx] < y[idx], lt[idx] == 1)
le = x <= y
for idx in iter_indices(x):
self.assertIs(x[idx] <= y[idx], le[idx] == 1)
gt = x > y
for idx in iter_indices(x):
self.assertIs(x[idx] > y[idx], gt[idx] == 1)
ge = x >= y
for idx in iter_indices(x):
self.assertIs(x[idx] >= y[idx], ge[idx] == 1)
def test_logical_ops(self):
x = torch.randn(5, 5).gt(0)
y = torch.randn(5, 5).gt(0)
and_result = x & y
for idx in iter_indices(x):
if and_result[idx]:
self.assertTrue(x[idx] and y[idx])
else:
self.assertFalse(x[idx] and y[idx])
or_result = x | y
for idx in iter_indices(x):
if or_result[idx]:
self.assertTrue(x[idx] or y[idx])
else:
self.assertFalse(x[idx] or y[idx])
xor_result = x ^ y
for idx in iter_indices(x):
if xor_result[idx]:
self.assertTrue(x[idx] ^ y[idx])
else:
self.assertFalse(x[idx] ^ y[idx])
invert_result = ~x
for idx in iter_indices(x):
self.assertEqual(1 - x[idx], invert_result[idx])
x_clone = x.clone()
x_clone &= y
self.assertEqual(x_clone, and_result)
x_clone = x.clone()
x_clone |= y
self.assertEqual(x_clone, or_result)
x_clone = x.clone()
x_clone ^= y
self.assertEqual(x_clone, xor_result)
def test_apply(self):
x = torch.arange(1, 6)
res = x.clone().apply_(lambda k: k + k)
self.assertEqual(res, x * 2)
self.assertRaises(RuntimeError, lambda: x.apply_(lambda k: "str"))
def test_Size(self):
x = torch.Size([1, 2, 3])
self.assertIsInstance(x, tuple)
self.assertEqual(x[0], 1)
self.assertEqual(x[1], 2)
self.assertEqual(x[2], 3)
self.assertEqual(len(x), 3)
self.assertRaises(TypeError, lambda: torch.Size(torch.ones(3)))
self.assertIsInstance(x * 2, torch.Size)
self.assertIsInstance(x[:-1], torch.Size)
self.assertIsInstance(x + x, torch.Size)
# unit test for THTensor_(copyTranspose)
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_big_transpose(self):
t = torch.rand(456, 789)
t1 = t.t().contiguous()
t2 = torch.from_numpy(t.numpy().transpose())
self.assertEqual(t1, t2)
def test_inplace_division(self):
t = torch.rand(5, 5)
id_before = id(t)
t /= 2
id_after = id(t)
self.assertEqual(id_before, id_after)
def test_simple_scalar_cast(self):
ok = [torch.Tensor([1.5]), torch.zeros(1, 1, 1, 1)]
ok_values = [1.5, 0]
not_ok = map(torch.Tensor, [[], [1, 2], [[1, 2], [3, 4]]])
for tensor, value in zip(ok, ok_values):
self.assertEqual(int(tensor), int(value))
self.assertEqual(float(tensor), float(value))
if sys.version_info[0] < 3:
self.assertEqual(long(tensor), long(value))
for tensor in not_ok:
self.assertRaises(TypeError, lambda: int(tensor))
self.assertRaises(TypeError, lambda: float(tensor))
if sys.version_info[0] < 3:
self.assertRaises(TypeError, lambda: long(tensor))
def test_offset_scalar_cast(self):
x = torch.Tensor([1, 2, 3])
y = x[2:]
self.assertEqual(int(y), 3)
# Functions to test negative dimension wrapping
METHOD = 1
INPLACE_METHOD = 2
FUNCTIONAL = 4
DIM_ARG = None
def make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim=0):
def neg_dim_test(self):
if isinstance(tensor_arg, list):
assert METHOD not in types and INPLACE_METHOD not in types
x = [torch.randn(arg) for arg in tensor_arg]
ndim = len(tensor_arg[-1])
else:
x = torch.randn(*tensor_arg)
ndim = len(tensor_arg)
ndim += extra_dim
n_dim_to_test = sum(map(lambda e: e is DIM_ARG, arg_constr()))
for dims_val in combinations(range(ndim), n_dim_to_test):
arg = arg_constr()
arg_neg = copy.deepcopy(arg)
idx = 0
for i, v in enumerate(arg):
if v is DIM_ARG:
arg[i] = dims_val[idx]
arg_neg[i] = dims_val[idx] - ndim
idx += 1
if METHOD in types:
a = getattr(x, name)(*arg)
b = getattr(x, name)(*arg_neg)
self.assertEqual(a, b)
if INPLACE_METHOD in types:
a = x.clone()
getattr(a, name + '_')(*arg)
b = x.clone()
getattr(b, name + '_')(*arg_neg)
self.assertEqual(a, b)
if FUNCTIONAL in types:
a = getattr(torch, name)(x, *arg)
b = getattr(torch, name)(x, *arg_neg)
self.assertEqual(a, b)
return neg_dim_test
def idx_tensor(size, max_val):
return torch.LongTensor(*size).random_(0, max_val - 1)
neg_dim_tests = [
('narrow', (10, 20, 30), lambda: [DIM_ARG, 0, 5], [METHOD]),
('transpose', (10, 20, 30), lambda: [DIM_ARG, DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
('size', (10, 20, 30), lambda: [DIM_ARG], [METHOD]),
('cat', [(2, 3, 4), (2, 3, 4)], lambda: [DIM_ARG], [FUNCTIONAL]),
('chunk', (10, 20, 30), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
('gather', (10, 20), lambda: [DIM_ARG, idx_tensor((10, 20), 10)], [METHOD, FUNCTIONAL]),
('index_select', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10)], [METHOD, FUNCTIONAL]),
('split', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
('squeeze', (10, 1, 20, 1), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
('unbind', (2, 3, 4), lambda: [DIM_ARG], [FUNCTIONAL]),
('unsqueeze', (10, 20), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL], 1),
('cumprod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('cumsum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('mean', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('median', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('mode', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('norm', (10, 20), lambda: [2, DIM_ARG], [METHOD, FUNCTIONAL]),
('prod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('std', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('sum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('var', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('kthvalue', (10, 20), lambda: [3, DIM_ARG], [METHOD, FUNCTIONAL]),
('max', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('min', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('sort', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('topk', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
('renorm', (10, 20), lambda: [2, DIM_ARG, 1], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
('index_add', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
('index_copy', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
('index_fill', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), 12], [INPLACE_METHOD]),
('scatter', (10, 10), lambda: [DIM_ARG, idx_tensor((10, 10), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
('select', (10, 20), lambda: [DIM_ARG, 3], [METHOD]),
('unfold', (10, 20), lambda: [DIM_ARG, 5, 2], [METHOD]),
]
for decl in neg_dim_tests:
if len(decl) == 4:
name, tensor_arg, arg_constr, types = decl
extra_dim = 0
elif len(decl) == 5:
name, tensor_arg, arg_constr, types, extra_dim = decl
test_name = 'test_' + name + '_neg_dim'
assert not hasattr(TestTorch, test_name), "Duplicated test name: " + test_name
setattr(TestTorch, test_name, make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim))
if __name__ == '__main__':
run_tests()