pytorch/test/jit/test_exception.py
Aaron Gokaslan c5fafe9f48 [BE]: TRY002 - Ban raising vanilla exceptions (#124570)
Adds a ruff lint rule to ban raising raw exceptions. Most of these should at the very least be runtime exception, value errors, type errors or some other errors. There are hundreds of instance of these bad exception types already in the codebase, so I have noqa'd most of them. Hopefully this error code will get commiters to rethink what exception type they should raise when they submit a PR.

I also encourage people to gradually go and fix all the existing noqas that have been added so they can be removed overtime and our exception typing can be improved.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124570
Approved by: https://github.com/ezyang
2024-04-21 22:26:40 +00:00

199 lines
5.7 KiB
Python

# Owner(s): ["oncall: jit"]
import torch
from torch import nn
from torch.testing._internal.common_utils import TestCase
r"""
Test TorchScript exception handling.
"""
class TestException(TestCase):
def test_pyop_exception_message(self):
class Foo(torch.jit.ScriptModule):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(1, 10, kernel_size=5)
@torch.jit.script_method
def forward(self, x):
return self.conv(x)
foo = Foo()
# testing that the correct error message propagates
with self.assertRaisesRegex(
RuntimeError, r"Expected 3D \(unbatched\) or 4D \(batched\) input to conv2d"
):
foo(torch.ones([123])) # wrong size
def test_builtin_error_messsage(self):
with self.assertRaisesRegex(RuntimeError, "Arguments for call are not valid"):
@torch.jit.script
def close_match(x):
return x.masked_fill(True)
with self.assertRaisesRegex(
RuntimeError,
"This op may not exist or may not be currently " "supported in TorchScript",
):
@torch.jit.script
def unknown_op(x):
torch.set_anomaly_enabled(True)
return x
def test_exceptions(self):
cu = torch.jit.CompilationUnit(
"""
def foo(cond):
if bool(cond):
raise ValueError(3)
return 1
"""
)
cu.foo(torch.tensor(0))
with self.assertRaisesRegex(torch.jit.Error, "3"):
cu.foo(torch.tensor(1))
def foo(cond):
a = 3
if bool(cond):
raise ArbitraryError(a, "hi") # noqa: F821
if 1 == 2:
raise ArbitraryError # noqa: F821
return a
with self.assertRaisesRegex(RuntimeError, "undefined value ArbitraryError"):
torch.jit.script(foo)
def exception_as_value():
a = Exception()
print(a)
with self.assertRaisesRegex(RuntimeError, "cannot be used as a value"):
torch.jit.script(exception_as_value)
@torch.jit.script
def foo_no_decl_always_throws():
raise RuntimeError("Hi")
# function that has no declared type but always throws set to None
output_type = next(foo_no_decl_always_throws.graph.outputs()).type()
self.assertTrue(str(output_type) == "NoneType")
@torch.jit.script
def foo_decl_always_throws():
# type: () -> Tensor
raise Exception("Hi") # noqa: TRY002
output_type = next(foo_decl_always_throws.graph.outputs()).type()
self.assertTrue(str(output_type) == "Tensor")
def foo():
raise 3 + 4
with self.assertRaisesRegex(RuntimeError, "must derive from BaseException"):
torch.jit.script(foo)
# a escapes scope
@torch.jit.script
def foo():
if 1 == 1:
a = 1
else:
if 1 == 1:
raise Exception("Hi") # noqa: TRY002
else:
raise Exception("Hi") # noqa: TRY002
return a
self.assertEqual(foo(), 1)
@torch.jit.script
def tuple_fn():
raise RuntimeError("hello", "goodbye")
with self.assertRaisesRegex(torch.jit.Error, "hello, goodbye"):
tuple_fn()
@torch.jit.script
def no_message():
raise RuntimeError
with self.assertRaisesRegex(torch.jit.Error, "RuntimeError"):
no_message()
def test_assertions(self):
cu = torch.jit.CompilationUnit(
"""
def foo(cond):
assert bool(cond), "hi"
return 0
"""
)
cu.foo(torch.tensor(1))
with self.assertRaisesRegex(torch.jit.Error, "AssertionError: hi"):
cu.foo(torch.tensor(0))
@torch.jit.script
def foo(cond):
assert bool(cond), "hi"
foo(torch.tensor(1))
# we don't currently validate the name of the exception
with self.assertRaisesRegex(torch.jit.Error, "AssertionError: hi"):
foo(torch.tensor(0))
def test_python_op_exception(self):
@torch.jit.ignore
def python_op(x):
raise Exception("bad!") # noqa: TRY002
@torch.jit.script
def fn(x):
return python_op(x)
with self.assertRaisesRegex(
RuntimeError, "operation failed in the TorchScript interpreter"
):
fn(torch.tensor(4))
def test_dict_expansion_raises_error(self):
def fn(self):
d = {"foo": 1, "bar": 2, "baz": 3}
return {**d}
with self.assertRaisesRegex(
torch.jit.frontend.NotSupportedError, "Dict expansion "
):
torch.jit.script(fn)
def test_custom_python_exception(self):
class MyValueError(ValueError):
pass
@torch.jit.script
def fn():
raise MyValueError("test custom exception")
with self.assertRaisesRegex(
torch.jit.Error, "jit.test_exception.MyValueError: test custom exception"
):
fn()
def test_custom_python_exception_defined_elsewhere(self):
from jit.myexception import MyKeyError
@torch.jit.script
def fn():
raise MyKeyError("This is a user defined key error")
with self.assertRaisesRegex(
torch.jit.Error,
"jit.myexception.MyKeyError: This is a user defined key error",
):
fn()