mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
This reverts commit 528dd05108.
Reverted https://github.com/pytorch/pytorch/pull/81805 on behalf of https://github.com/jeanschmidt due to Breaking internal builds - D40534110 - android-java-tests-0
1442 lines
71 KiB
Python
1442 lines
71 KiB
Python
import torch
|
|
import unittest
|
|
from copy import deepcopy
|
|
from enum import Enum
|
|
from functools import wraps, partial
|
|
from itertools import chain, product
|
|
import itertools
|
|
import torch.nn.functional as F
|
|
from torch.testing import make_tensor
|
|
from torch.testing._internal.common_cuda import TEST_CUDNN
|
|
from torch.testing._internal.common_dtype import floating_types, floating_and_complex_types_and
|
|
from torch.testing._internal.common_device_type import (
|
|
_TestParametrizer, _update_param_kwargs, toleranceOverride, tol,
|
|
skipCUDAIfCudnnVersionLessThan, skipCUDAIfRocm, precisionOverride, skipMeta)
|
|
from torch.testing._internal.common_methods_invocations import DecorateInfo
|
|
from torch.testing._internal.common_nn import nllloss_reference, get_reduction
|
|
from torch.testing._internal.common_utils import (
|
|
freeze_rng_state, set_single_threaded_if_parallel_tbb, skipIfMps, GRADCHECK_NONDET_TOL, TEST_WITH_ROCM)
|
|
from types import ModuleType
|
|
from typing import List, Tuple, Type, Set, Dict
|
|
|
|
# List of all namespaces containing modules to test.
|
|
MODULE_NAMESPACES: List[ModuleType] = [
|
|
torch.nn.modules,
|
|
torch.ao.nn.qat.modules,
|
|
torch.nn.quantizable.modules,
|
|
torch.nn.quantized.modules,
|
|
torch.ao.nn.quantized.modules,
|
|
]
|
|
|
|
# Modules that shouldn't be tested for one reason or another.
|
|
MODULES_TO_SKIP: Set[Type] = {
|
|
torch.nn.Module, # abstract base class
|
|
torch.nn.Container, # deprecated
|
|
torch.nn.NLLLoss2d, # deprecated
|
|
torch.nn.quantized.MaxPool2d, # aliases to nn.MaxPool2d
|
|
torch.ao.nn.quantized.MaxPool2d, # aliases to nn.MaxPool2d
|
|
}
|
|
|
|
# List of all module classes to test.
|
|
MODULE_CLASSES: List[Type] = list(chain(*[
|
|
[getattr(namespace, module_name) for module_name in namespace.__all__] # type: ignore[attr-defined]
|
|
for namespace in MODULE_NAMESPACES]))
|
|
MODULE_CLASSES = [cls for cls in MODULE_CLASSES if cls not in MODULES_TO_SKIP]
|
|
|
|
# Dict of module class -> common name. Useful for making test names more intuitive.
|
|
# Example: torch.nn.modules.linear.Linear -> "nn.Linear"
|
|
MODULE_CLASS_NAMES: Dict[Type, str] = {}
|
|
for namespace in MODULE_NAMESPACES:
|
|
for module_name in namespace.__all__: # type: ignore[attr-defined]
|
|
module_cls = getattr(namespace, module_name)
|
|
namespace_name = namespace.__name__.replace('torch.', '').replace('.modules', '')
|
|
MODULE_CLASS_NAMES[module_cls] = f'{namespace_name}.{module_name}'
|
|
|
|
|
|
# Specifies the modes (i.e. train, eval) to test over.
|
|
TrainEvalMode = Enum('TrainEvalMode', ('train_only', 'eval_only', 'train_and_eval'))
|
|
|
|
|
|
class modules(_TestParametrizer):
|
|
""" PROTOTYPE: Decorator for specifying a list of modules over which to run a test. """
|
|
|
|
def __init__(self, module_info_list, allowed_dtypes=None, train_eval_mode=TrainEvalMode.train_and_eval):
|
|
self.module_info_list = module_info_list
|
|
self.allowed_dtypes = set(allowed_dtypes) if allowed_dtypes is not None else None
|
|
self.train_eval_mode = train_eval_mode
|
|
|
|
def _get_training_flags(self, module_info):
|
|
training_flags = []
|
|
if (self.train_eval_mode == TrainEvalMode.train_only or
|
|
self.train_eval_mode == TrainEvalMode.train_and_eval):
|
|
training_flags.append(True)
|
|
|
|
if (self.train_eval_mode == TrainEvalMode.eval_only or
|
|
self.train_eval_mode == TrainEvalMode.train_and_eval):
|
|
training_flags.append(False)
|
|
|
|
# If train and eval modes don't differ for the module, don't bother using more than one.
|
|
if not module_info.train_and_eval_differ:
|
|
training_flags = training_flags[:1]
|
|
|
|
return training_flags
|
|
|
|
def _parametrize_test(self, test, generic_cls, device_cls):
|
|
if device_cls is None:
|
|
raise RuntimeError('The @modules decorator is only intended to be used in a device-specific '
|
|
'context; use it with instantiate_device_type_tests() instead of '
|
|
'instantiate_parametrized_tests()')
|
|
|
|
for module_info in self.module_info_list:
|
|
dtypes = set(module_info.dtypes)
|
|
if self.allowed_dtypes is not None:
|
|
dtypes = dtypes.intersection(self.allowed_dtypes)
|
|
|
|
training_flags = self._get_training_flags(module_info)
|
|
for (training, dtype) in product(training_flags, dtypes):
|
|
# Construct the test name; device / dtype parts are handled outside.
|
|
# See [Note: device and dtype suffix placement]
|
|
test_name = module_info.formatted_name
|
|
if len(training_flags) > 1:
|
|
test_name += f"_{'train_mode' if training else 'eval_mode'}"
|
|
|
|
# Construct parameter kwargs to pass to the test.
|
|
param_kwargs = {'module_info': module_info}
|
|
_update_param_kwargs(param_kwargs, 'dtype', dtype)
|
|
_update_param_kwargs(param_kwargs, 'training', training)
|
|
|
|
try:
|
|
|
|
@wraps(test)
|
|
def test_wrapper(*args, **kwargs):
|
|
return test(*args, **kwargs)
|
|
|
|
for decorator in module_info.get_decorators(generic_cls.__name__, test.__name__,
|
|
device_cls.device_type, dtype):
|
|
test_wrapper = decorator(test_wrapper)
|
|
|
|
yield (test_wrapper, test_name, param_kwargs)
|
|
except Exception as ex:
|
|
# Provides an error message for debugging before rethrowing the exception
|
|
print("Failed to instantiate {0} for module {1}!".format(test_name, module_info.name))
|
|
raise ex
|
|
|
|
|
|
def get_module_fully_qualified_name(module_cls):
|
|
""" Returns the common name of the module class formatted for use in test names. """
|
|
return MODULE_CLASS_NAMES[module_cls]
|
|
|
|
|
|
class FunctionInput(object):
|
|
""" Contains args and kwargs to pass as input to a function. """
|
|
__slots__ = ['args', 'kwargs']
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
self.args = args
|
|
self.kwargs = kwargs
|
|
|
|
|
|
class ModuleInput(object):
|
|
""" Contains args / kwargs for module instantiation + forward pass. """
|
|
__slots__ = ['constructor_input', 'forward_input', 'desc', 'reference_fn']
|
|
|
|
def __init__(self, constructor_input, forward_input=None, desc='', reference_fn=None):
|
|
self.constructor_input = constructor_input # Inputs to pass during construction
|
|
self.forward_input = forward_input # Inputs to pass to forward()
|
|
self.desc = desc # Description for this set of inputs
|
|
self.reference_fn = reference_fn # Reference with signature: reference_fn(module, parameters, *args, **kwargs)
|
|
|
|
if reference_fn is not None:
|
|
|
|
@wraps(reference_fn)
|
|
def copy_reference_fn(m, *args, **kwargs):
|
|
# Copy inputs to avoid undesired side effects from calling the reference.
|
|
args, kwargs = deepcopy(args), deepcopy(kwargs)
|
|
|
|
# Note that module parameters are passed in for convenience.
|
|
return reference_fn(m, list(m.parameters()), *args, **kwargs)
|
|
|
|
self.reference_fn = copy_reference_fn
|
|
|
|
|
|
class ModuleInfo(object):
|
|
""" Module information to be used in testing. """
|
|
|
|
def __init__(self,
|
|
module_cls, # Class object for the module under test
|
|
*,
|
|
module_inputs_func, # Function to generate module inputs
|
|
skips=(), # Indicates which tests to skip
|
|
decorators=None, # Additional decorators to apply to generated tests
|
|
dtypes=floating_types(), # dtypes this function is expected to work with
|
|
supports_gradgrad=True, # whether the op supports second order gradients
|
|
gradcheck_nondet_tol=0.0, # tolerance for nondeterminism while performing gradcheck
|
|
module_memformat_affects_out=False, # whether converting module to channels last will generate
|
|
# channels last output
|
|
train_and_eval_differ=False, # whether the module has differing behavior between train and eval
|
|
):
|
|
self.module_cls = module_cls
|
|
self.module_inputs_func = module_inputs_func
|
|
self.decorators = (*(decorators if decorators else []), *(skips if skips else []))
|
|
self.dtypes = dtypes
|
|
self.supports_gradgrad = supports_gradgrad
|
|
self.gradcheck_nondet_tol = gradcheck_nondet_tol
|
|
self.module_memformat_affects_out = module_memformat_affects_out
|
|
self.train_and_eval_differ = train_and_eval_differ
|
|
|
|
def get_decorators(self, test_class, test_name, device, dtype):
|
|
result = [set_single_threaded_if_parallel_tbb]
|
|
for decorator in self.decorators:
|
|
if isinstance(decorator, DecorateInfo):
|
|
if decorator.is_active(test_class, test_name, device, dtype):
|
|
result.extend(decorator.decorators)
|
|
else:
|
|
result.append(decorator)
|
|
return result
|
|
|
|
@property
|
|
def name(self):
|
|
return get_module_fully_qualified_name(self.module_cls)
|
|
|
|
@property
|
|
def formatted_name(self):
|
|
return self.name.replace('.', '_')
|
|
|
|
|
|
def module_inputs_torch_nn_Linear(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
module_inputs = [
|
|
ModuleInput(constructor_input=FunctionInput(10, 8),
|
|
forward_input=FunctionInput(input=make_input((4, 10))),
|
|
reference_fn=lambda m, p, input: torch.mm(input, p[0].t()) + p[1].view(1, -1).expand(4, 8)),
|
|
ModuleInput(constructor_input=FunctionInput(10, 8, bias=False),
|
|
forward_input=FunctionInput(make_input((4, 10))),
|
|
desc='no_bias',
|
|
reference_fn=lambda m, p, i: torch.mm(i, p[0].t())),
|
|
ModuleInput(constructor_input=FunctionInput(3, 5),
|
|
forward_input=FunctionInput(make_input(3)),
|
|
desc='no_batch_dim',
|
|
reference_fn=lambda m, p, i: torch.mm(i.view(1, -1), p[0].t()).view(-1) + p[1])
|
|
]
|
|
|
|
return module_inputs
|
|
|
|
|
|
def module_inputs_torch_nn_Bilinear(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
def bilinear_reference_fn(m, p, x1, x2, bias=True):
|
|
result = torch.einsum('bn,anm,bm->ba', x1, p[0], x2)
|
|
if bias:
|
|
if x1.shape[0] == 1:
|
|
result = result.view(-1) + p[1]
|
|
else:
|
|
result = result + p[1].view(1, -1).expand(x1.shape[0], p[0].shape[0])
|
|
return result
|
|
|
|
module_inputs = [
|
|
ModuleInput(constructor_input=FunctionInput(2, 3, 4),
|
|
forward_input=FunctionInput(make_input((8, 2)), make_input((8, 3))),
|
|
reference_fn=lambda m, p, x1, x2: bilinear_reference_fn(m, p, x1, x2)),
|
|
ModuleInput(constructor_input=FunctionInput(2, 3, 4, bias=False),
|
|
forward_input=FunctionInput(make_input((8, 2)), make_input((8, 3))),
|
|
desc='no_bias',
|
|
reference_fn=lambda m, p, x1, x2: bilinear_reference_fn(m, p, x1, x2, bias=False)),
|
|
ModuleInput(constructor_input=FunctionInput(2, 3, 4),
|
|
forward_input=FunctionInput(make_input((2)), make_input((3))),
|
|
desc='no_batch_dim',
|
|
reference_fn=lambda m, p, x1, x2: bilinear_reference_fn(m, p, x1.view(1, -1), x2.view(1, -1))),
|
|
]
|
|
|
|
return module_inputs
|
|
|
|
|
|
def module_inputs_torch_nn_NLLLoss(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
make_weight = partial(make_tensor, device=device, dtype=dtype, requires_grad=False)
|
|
|
|
cases: List[Tuple[str, dict]] = [
|
|
('', {}),
|
|
('reduction_sum', {'reduction': 'sum'}),
|
|
('reduction_none', {'reduction': 'none'}),
|
|
('ignore_index', {'ignore_index': 2}),
|
|
('weights', {'weight': make_weight(10).abs()}),
|
|
('weights_ignore_index', {'weight': make_weight(10).abs(), 'ignore_index': 2}),
|
|
('weights_ignore_index_neg', {'weight': make_weight(10).abs(), 'ignore_index': -1})
|
|
]
|
|
|
|
# TODO: Uncomment when negative weights is supported.
|
|
# negative_weight = make_weight(10)
|
|
# negative_weight[0] = -1
|
|
# cases.append(('weights_negative', {'weight': negative_weight}))
|
|
module_inputs = []
|
|
for desc, constructor_kwargs in cases:
|
|
|
|
def reference_fn(m, p, i, t, constructor_kwargs=constructor_kwargs):
|
|
return nllloss_reference(i, t, **constructor_kwargs)
|
|
|
|
module_inputs.append(
|
|
ModuleInput(constructor_input=FunctionInput(**constructor_kwargs),
|
|
forward_input=FunctionInput(make_input((15, 10)).log_softmax(dim=1),
|
|
torch.empty(15, device=device).uniform_().mul(10).floor().long()),
|
|
desc=desc,
|
|
reference_fn=reference_fn)
|
|
)
|
|
|
|
return module_inputs
|
|
|
|
|
|
def module_inputs_torch_nn_GaussianNLLLoss(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
make_target = partial(make_tensor, device=device, dtype=dtype, requires_grad=False)
|
|
|
|
cases: List[Tuple[str, dict]] = [
|
|
('', {}),
|
|
('reduction_sum', {'reduction': 'sum'}),
|
|
('reduction_mean', {'reduction': 'mean'}),
|
|
('reduction_none', {'reduction': 'none'}),
|
|
]
|
|
|
|
module_inputs = []
|
|
for desc, constructor_kwargs in cases:
|
|
module_inputs.append(
|
|
ModuleInput(constructor_input=FunctionInput(**constructor_kwargs),
|
|
forward_input=FunctionInput(make_input((3)),
|
|
make_target((3)),
|
|
make_input((1)).abs()),
|
|
desc=desc,
|
|
reference_fn=no_batch_dim_reference_fn)
|
|
)
|
|
|
|
return module_inputs
|
|
|
|
|
|
def no_batch_dim_reference_fn(m, p, *args, **kwargs):
|
|
"""Reference function for modules supporting no batch dimensions.
|
|
|
|
Unbatched inputs are unsqueezed to form a
|
|
single batch input before passing them to the module.
|
|
The output is squeezed to compare with the
|
|
output of unbatched input to the module.
|
|
|
|
Currently it only supports modules which return a single Tensor as output.
|
|
You can bind the following kwargs.
|
|
Kwargs:
|
|
batch_first[bool] : If True, all the Tensors in `args` while be unsqueezed at dim `0` .
|
|
and output will be squeezed at dim `0` else dim `1` for both.
|
|
kwargs_to_batchify[dict] : Dictionary specifying the name of the argument and dimension to unsqueeze.
|
|
Useful if there are few arguments whose batch dimension are different
|
|
from the ones selected by `batch_first`.
|
|
is_criterion[bool] : Specify if the module is a criterion and handle the reduction for output accordingly.
|
|
"""
|
|
def get_and_pop(key, default):
|
|
v = kwargs.get(key, default)
|
|
if key in kwargs:
|
|
kwargs.pop(key)
|
|
return v
|
|
|
|
batch_dim = 0 if get_and_pop('batch_first', True) else 1
|
|
kwargs_to_batchify = get_and_pop('kwargs_to_batchify', None)
|
|
is_criterion = get_and_pop('is_criterion', False)
|
|
|
|
if kwargs_to_batchify is not None:
|
|
assert isinstance(kwargs_to_batchify, dict)
|
|
for k, v in kwargs.items():
|
|
if k in kwargs_to_batchify and v is not None:
|
|
bdim = kwargs_to_batchify[k]
|
|
kwargs[k] = v.unsqueeze(bdim)
|
|
|
|
single_batch_input_args = [input.unsqueeze(batch_dim) for input in args]
|
|
with freeze_rng_state():
|
|
output = m(*single_batch_input_args, **kwargs).squeeze(batch_dim)
|
|
|
|
if is_criterion:
|
|
reduction = get_reduction(m)
|
|
if reduction == 'none':
|
|
return output.squeeze(0)
|
|
return output
|
|
|
|
|
|
def no_batch_dim_reference_mha(m, p, *args, **kwargs):
|
|
"""Reference function for MultiheadAttention supporting no batch dimensions.
|
|
|
|
Unbatched inputs are unsqueezed to form a
|
|
single batch input before passing them to the module.
|
|
The output is squeezed to compare with the
|
|
output of unbatched input to the module.
|
|
"""
|
|
batch_dim = 0 if kwargs.get('batch_first', True) else 1
|
|
if 'batch_first' in kwargs:
|
|
kwargs.pop('batch_first')
|
|
if 'key_padding_mask' in kwargs and kwargs['key_padding_mask'] is not None:
|
|
kwargs['key_padding_mask'] = kwargs['key_padding_mask'].unsqueeze(0)
|
|
single_batch_input_args = [input.unsqueeze(batch_dim) for input in args]
|
|
with freeze_rng_state():
|
|
output = m(*single_batch_input_args, **kwargs)
|
|
return (output[0].squeeze(batch_dim), output[1].squeeze(0))
|
|
|
|
|
|
def no_batch_dim_reference_rnn_gru(m, p, *args, **kwargs):
|
|
"""Reference function for RNN and GRU supporting no batch dimensions.
|
|
|
|
Unbatched inputs are unsqueezed to form a
|
|
single batch input before passing them to the module.
|
|
The output is squeezed to compare with the
|
|
output of unbatched input to the module.
|
|
"""
|
|
if len(args) == 1:
|
|
inp, = args
|
|
h = None
|
|
elif len(args) == 2:
|
|
inp, h = args
|
|
h = h.unsqueeze(1)
|
|
|
|
batch_dim = 0 if kwargs['batch_first'] else 1
|
|
kwargs.pop('batch_first')
|
|
inp = inp.unsqueeze(batch_dim)
|
|
single_batch_input_args = (inp, h)
|
|
with freeze_rng_state():
|
|
output = m(*single_batch_input_args, **kwargs)
|
|
return (output[0].squeeze(batch_dim), output[1].squeeze(1))
|
|
|
|
|
|
def no_batch_dim_reference_lstm(m, p, *args, **kwargs):
|
|
"""Reference function for LSTM supporting no batch dimensions.
|
|
|
|
Unbatched inputs are unsqueezed to form a
|
|
single batch input before passing them to the module.
|
|
The output is squeezed to compare with the
|
|
output of unbatched input to the module.
|
|
"""
|
|
if len(args) == 1:
|
|
inp, = args
|
|
h = None
|
|
elif len(args) == 2:
|
|
inp, h = args
|
|
h = (h[0].unsqueeze(1), h[1].unsqueeze(1))
|
|
|
|
batch_dim = 0 if kwargs['batch_first'] else 1
|
|
kwargs.pop('batch_first')
|
|
inp = inp.unsqueeze(batch_dim)
|
|
single_batch_input_args = (inp, h)
|
|
with freeze_rng_state():
|
|
output = m(*single_batch_input_args, **kwargs)
|
|
return (output[0].squeeze(batch_dim), (output[1][0].squeeze(1), output[1][1].squeeze(1)))
|
|
|
|
|
|
def no_batch_dim_reference_lstmcell(m, p, *args, **kwargs):
|
|
"""Reference function for LSTMCell supporting no batch dimensions.
|
|
|
|
The module is passed the input and target in batched form with a single item.
|
|
The output is squeezed to compare with the no-batch input.
|
|
"""
|
|
inp, (h, c) = args
|
|
single_batch_input_args = (inp.unsqueeze(0), (h.unsqueeze(0), c.unsqueeze(0)))
|
|
with freeze_rng_state():
|
|
output = m(*single_batch_input_args, **kwargs)
|
|
return (output[0].squeeze(0), output[1].squeeze(0))
|
|
|
|
|
|
def generate_regression_criterion_inputs(make_input):
|
|
return [
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(reduction=reduction),
|
|
forward_input=FunctionInput(make_input((4, )), make_input(4,)),
|
|
reference_fn=partial(no_batch_dim_reference_fn, is_criterion=True),
|
|
desc='no_batch_dim_{}'.format(reduction)
|
|
) for reduction in ['none', 'mean', 'sum']]
|
|
|
|
|
|
def module_inputs_torch_nn_AvgPool1d(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
ModuleInput(constructor_input=FunctionInput(kernel_size=2),
|
|
forward_input=FunctionInput(make_input((3, 6))),
|
|
desc='no_batch_dim',
|
|
reference_fn=no_batch_dim_reference_fn)]
|
|
|
|
|
|
def module_inputs_torch_nn_AdaptiveAvgPool2d(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
ModuleInput(constructor_input=FunctionInput(3,),
|
|
forward_input=FunctionInput(make_input((1, 3, 5, 6))),
|
|
desc='single')]
|
|
|
|
|
|
def module_inputs_torch_nn_BatchNorm2d(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
ModuleInput(constructor_input=FunctionInput(3,),
|
|
forward_input=FunctionInput(make_input((2, 3, 6, 6))))]
|
|
|
|
|
|
def module_inputs_torch_nn_BatchNorm3d(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
ModuleInput(constructor_input=FunctionInput(3,),
|
|
forward_input=FunctionInput(make_input((2, 3, 4, 4, 4))))]
|
|
|
|
|
|
def module_inputs_torch_nn_ConvNd(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
N = kwargs['N']
|
|
lazy = kwargs.get('lazy', False)
|
|
transposed = kwargs.get('transposed', False)
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
conv_kwargs_list = [{}] if transposed else [{}, {'padding': 'same'}]
|
|
kernel_size, C_in, C_out = 3, 4, 5
|
|
input_no_batch_shape = (C_in,) + tuple((i + 3 for i in range(N)))
|
|
input_batch_shape = (2,) + input_no_batch_shape
|
|
return [
|
|
ModuleInput(constructor_input=(FunctionInput(C_out, kernel_size, **conv_kwargs) if lazy else
|
|
FunctionInput(C_in, C_out, kernel_size, **conv_kwargs)),
|
|
forward_input=FunctionInput(make_input(
|
|
input_batch_shape if with_batch else input_no_batch_shape)),
|
|
desc=('' if with_batch else 'no_batch_dim'),
|
|
reference_fn=(None if with_batch else no_batch_dim_reference_fn))
|
|
for with_batch, conv_kwargs in itertools.product([True, False], conv_kwargs_list)
|
|
]
|
|
|
|
|
|
def module_inputs_torch_nn_ELU(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
ModuleInput(constructor_input=FunctionInput(alpha=2.),
|
|
forward_input=FunctionInput(make_input((3, 2, 5))),
|
|
reference_fn=lambda m, p, i: torch.where(i >= 0, i, 2 * (i.exp() - 1))),
|
|
ModuleInput(constructor_input=FunctionInput(alpha=2.),
|
|
forward_input=FunctionInput(make_input(())),
|
|
desc='scalar'),
|
|
ModuleInput(constructor_input=FunctionInput(),
|
|
forward_input=FunctionInput(make_input((3,))),
|
|
desc='no_batch_dim',
|
|
reference_fn=no_batch_dim_reference_fn),
|
|
ModuleInput(constructor_input=FunctionInput(alpha=2.),
|
|
forward_input=FunctionInput(make_input((2, 3, 2, 5))),
|
|
desc='4d_input')]
|
|
|
|
|
|
def module_inputs_torch_nn_CELU(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
ModuleInput(constructor_input=FunctionInput(alpha=2.),
|
|
forward_input=FunctionInput(make_input((3, 2, 5))),
|
|
reference_fn=lambda m, p, i: torch.where(i >= 0, i, 2. * ((.5 * i).exp() - 1))),
|
|
ModuleInput(constructor_input=FunctionInput(alpha=2.),
|
|
forward_input=FunctionInput(make_input(())),
|
|
reference_fn=lambda m, p, i: torch.where(i >= 0, i, 2 * (i.exp() - 1)),
|
|
desc='scalar'),
|
|
ModuleInput(constructor_input=FunctionInput(alpha=2.),
|
|
forward_input=FunctionInput(make_input((3,))),
|
|
desc='no_batch_dim',
|
|
reference_fn=no_batch_dim_reference_fn)]
|
|
|
|
|
|
def module_inputs_torch_nn_ReLU(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
ModuleInput(constructor_input=FunctionInput(),
|
|
forward_input=FunctionInput(make_input(4)),
|
|
desc='no_batch_dim'),
|
|
ModuleInput(constructor_input=FunctionInput(),
|
|
forward_input=FunctionInput(make_input((2, 3, 4, 5))),
|
|
desc='channels_last_mem_format'),
|
|
ModuleInput(constructor_input=FunctionInput(),
|
|
forward_input=FunctionInput(make_input((2, 3, 3, 4, 5))),
|
|
desc='channels_last_3d_mem_format')]
|
|
|
|
|
|
def module_inputs_torch_nn_L1Loss(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
ModuleInput(constructor_input=FunctionInput(),
|
|
forward_input=FunctionInput(make_input((2, 3, 4)),
|
|
make_input((2, 3, 4))),
|
|
reference_fn=lambda m, p, i, t: 1. / i.numel() * sum((a - b).abs().sum()
|
|
for a, b in zip(i, t))),
|
|
ModuleInput(constructor_input=FunctionInput(),
|
|
forward_input=FunctionInput(make_input(()), make_input(())),
|
|
reference_fn=lambda m, p, i, t: 1. / i.numel() * (i - t).abs().sum(),
|
|
desc='scalar')] + generate_regression_criterion_inputs(make_input)
|
|
|
|
|
|
def module_inputs_torch_nn_CrossEntropyLoss(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
make_target = partial(make_tensor, device=device, dtype=torch.long, requires_grad=False)
|
|
make_weight = partial(make_tensor, device=device, dtype=dtype, requires_grad=False)
|
|
|
|
reductions = ['sum', 'mean', 'none']
|
|
samples = []
|
|
# Samples below are for validating the no-batch-dim support.
|
|
for reduction in reductions:
|
|
samples.append(
|
|
ModuleInput(constructor_input=FunctionInput(reduction=reduction),
|
|
forward_input=FunctionInput(make_input((9,)), make_target((), low=0, high=9)),
|
|
reference_fn=partial(no_batch_dim_reference_fn, is_criterion=True))
|
|
)
|
|
samples.append(
|
|
ModuleInput(constructor_input=FunctionInput(reduction=reduction, weight=make_weight((9,))),
|
|
forward_input=FunctionInput(make_input((9,)), make_target((), low=0, high=9)),
|
|
reference_fn=partial(no_batch_dim_reference_fn, is_criterion=True))
|
|
)
|
|
samples.append(
|
|
ModuleInput(constructor_input=FunctionInput(reduction=reduction, label_smoothing=0.5),
|
|
forward_input=FunctionInput(make_input((9,)), make_target((), low=0, high=9)),
|
|
reference_fn=partial(no_batch_dim_reference_fn, is_criterion=True))
|
|
)
|
|
samples.append(
|
|
ModuleInput(constructor_input=FunctionInput(reduction=reduction, label_smoothing=0.5,
|
|
weight=make_weight((9,))),
|
|
forward_input=FunctionInput(make_input((9,)), make_target((), low=0, high=9)),
|
|
reference_fn=partial(no_batch_dim_reference_fn, is_criterion=True))
|
|
)
|
|
|
|
return samples
|
|
|
|
|
|
def module_inputs_torch_nn_Hardswish(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(),
|
|
forward_input=FunctionInput(make_input(4)),
|
|
reference_fn=no_batch_dim_reference_fn,
|
|
desc='no_batch_dim',
|
|
),
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(),
|
|
forward_input=FunctionInput(make_input((2, 3, 2, 5))),
|
|
desc='4d_input')
|
|
]
|
|
|
|
|
|
def module_inputs_torch_nn_MaxPool2d(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
ModuleInput(
|
|
constructor_input=FunctionInput((3, 3), (2, 2), (1, 1)),
|
|
forward_input=FunctionInput(make_input(((3, 7, 7)))),
|
|
desc='3d_input'),
|
|
ModuleInput(
|
|
constructor_input=FunctionInput((3, 3), (2, 2), (1, 1)),
|
|
forward_input=FunctionInput(make_input((1, 3, 7, 7))),
|
|
desc='4d_input'),
|
|
ModuleInput(
|
|
constructor_input=FunctionInput((3, 3), (2, 2), (1, 1), return_indices=True),
|
|
forward_input=FunctionInput(make_input((1, 3, 7, 7))),
|
|
desc='return_indices'),
|
|
]
|
|
|
|
|
|
def module_inputs_torch_nn_Sigmoid(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(),
|
|
forward_input=FunctionInput(make_input((2, 3, 4, 5))),
|
|
desc='channels_last_mem_format'
|
|
),
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(),
|
|
forward_input=FunctionInput(make_input((2, 3, 3, 4, 5))),
|
|
desc='channels_last_3d_mem_format'
|
|
)
|
|
]
|
|
|
|
|
|
def module_inputs_torch_nn_TransformerEncoderLayer(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
samples = [
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(4, 2, 16, 0.0),
|
|
forward_input=FunctionInput(
|
|
make_input((2, 3, 4))
|
|
),
|
|
desc='relu_activation'
|
|
),
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(4, 2, 8, 0.0, F.gelu),
|
|
forward_input=FunctionInput(
|
|
make_input((2, 3, 4))
|
|
),
|
|
desc='gelu_activation'
|
|
), ]
|
|
|
|
# Samples below are for validating the no-batch-dim support.
|
|
key_padding_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool))
|
|
attn_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool).expand((3, 3)))
|
|
for src_mask, src_key_padding_mask, norm_first in itertools.product(attn_masks, key_padding_masks, (True, False)):
|
|
samples.append(
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(d_model=4, nhead=2, dim_feedforward=8,
|
|
dropout=0.0, batch_first=True, norm_first=norm_first),
|
|
forward_input=FunctionInput(
|
|
make_input((3, 4)), src_mask=src_mask, src_key_padding_mask=src_key_padding_mask
|
|
),
|
|
reference_fn=partial(no_batch_dim_reference_fn,
|
|
batch_first=True, kwargs_to_batchify={'src_key_padding_mask': 0}),
|
|
desc='no_batch_dim_batch_first'
|
|
))
|
|
|
|
samples.append(
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(4, 2, 8, dropout=0.0, batch_first=False, norm_first=norm_first),
|
|
forward_input=FunctionInput(
|
|
make_input((3, 4)), src_mask=src_mask, src_key_padding_mask=src_key_padding_mask
|
|
),
|
|
reference_fn=partial(no_batch_dim_reference_fn,
|
|
batch_first=False, kwargs_to_batchify={'src_key_padding_mask': 0}),
|
|
desc='no_batch_dim'
|
|
))
|
|
|
|
def fast_path_reference_fn(module, parameters, *args, **kwargs):
|
|
assert not module.training
|
|
module = module.train(True)
|
|
output = module(*args, **kwargs)
|
|
module = module.train(False)
|
|
return output
|
|
|
|
if not training:
|
|
for norm_first in (True, False):
|
|
samples.append(
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(4, 2, 8, dropout=0.0, batch_first=True, norm_first=norm_first),
|
|
forward_input=FunctionInput(
|
|
make_input((2, 3, 4)),
|
|
),
|
|
reference_fn=fast_path_reference_fn,
|
|
desc="fast_path_norm_first" if norm_first else "fast_path"
|
|
)
|
|
)
|
|
|
|
return samples
|
|
|
|
|
|
def module_inputs_torch_nn_TransformerDecoderLayer(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
samples = [
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(4, 2, 16, 0.0),
|
|
forward_input=FunctionInput(
|
|
make_input((2, 3, 4)), make_input((2, 3, 4))
|
|
),
|
|
desc='relu_activation'
|
|
),
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(4, 2, 8, 0.0, F.gelu),
|
|
forward_input=FunctionInput(
|
|
make_input((2, 3, 4)), make_input((2, 3, 4))
|
|
),
|
|
desc='gelu_activation'
|
|
), ]
|
|
|
|
# Samples below are for validating the no-batch-dim support.
|
|
key_padding_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool))
|
|
attn_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool).expand((3, 3)))
|
|
for tgt_mask, tgt_key_padding_mask, norm_first in itertools.product(attn_masks, key_padding_masks, (True, False)):
|
|
# Using same mask for tgt and memory
|
|
memory_mask = tgt_mask
|
|
memory_key_padding_mask = tgt_key_padding_mask
|
|
samples.append(
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(d_model=4, nhead=2, dim_feedforward=8,
|
|
dropout=0.0, batch_first=True, norm_first=norm_first),
|
|
forward_input=FunctionInput(
|
|
make_input((3, 4)), make_input((3, 4)), tgt_mask=tgt_mask, memory_mask=memory_mask,
|
|
tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask
|
|
),
|
|
reference_fn=partial(no_batch_dim_reference_fn,
|
|
batch_first=True,
|
|
kwargs_to_batchify={'tgt_key_padding_mask': 0, 'memory_key_padding_mask': 0}),
|
|
desc='no_batch_dim_batch_first'
|
|
))
|
|
|
|
samples.append(
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(4, 2, 8, dropout=0.0, batch_first=False, norm_first=norm_first),
|
|
forward_input=FunctionInput(
|
|
make_input((3, 4)), make_input((3, 4)), tgt_mask=tgt_mask, memory_mask=memory_mask,
|
|
tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask
|
|
),
|
|
reference_fn=partial(no_batch_dim_reference_fn,
|
|
batch_first=False,
|
|
kwargs_to_batchify={'tgt_key_padding_mask': 0, 'memory_key_padding_mask': 0}),
|
|
desc='no_batch_dim'
|
|
))
|
|
|
|
return samples
|
|
|
|
|
|
def module_inputs_torch_nn_Transformer(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
samples = []
|
|
# Samples below are for validating the no-batch-dim support.
|
|
key_padding_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool))
|
|
attn_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool).expand((3, 3)))
|
|
for mask, key_padding_mask, norm_first in itertools.product(attn_masks, key_padding_masks, (True, False)):
|
|
# Using same mask for tgt and memory
|
|
src_mask , tgt_mask = (mask,) * 2
|
|
src_key_padding_mask, tgt_key_padding_mask = (key_padding_mask,) * 2
|
|
samples.append(
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(d_model=4, nhead=2, dim_feedforward=8,
|
|
num_encoder_layers=1, num_decoder_layers=1,
|
|
dropout=0.0, batch_first=True, norm_first=norm_first),
|
|
forward_input=FunctionInput(
|
|
make_input((3, 4)), make_input((3, 4)), tgt_mask=tgt_mask, src_mask=src_mask,
|
|
tgt_key_padding_mask=tgt_key_padding_mask, src_key_padding_mask=src_key_padding_mask
|
|
),
|
|
reference_fn=partial(no_batch_dim_reference_fn,
|
|
batch_first=True,
|
|
kwargs_to_batchify={'tgt_key_padding_mask': 0, 'src_key_padding_mask': 0}),
|
|
desc='no_batch_dim_batch_first'
|
|
))
|
|
|
|
samples.append(
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(d_model=4, nhead=2, dim_feedforward=8,
|
|
num_encoder_layers=1, num_decoder_layers=1,
|
|
dropout=0.0, batch_first=False, norm_first=norm_first),
|
|
forward_input=FunctionInput(
|
|
make_input((3, 4)), make_input((3, 4)), tgt_mask=tgt_mask, src_mask=src_mask,
|
|
tgt_key_padding_mask=tgt_key_padding_mask, src_key_padding_mask=src_key_padding_mask
|
|
),
|
|
reference_fn=partial(no_batch_dim_reference_fn,
|
|
batch_first=False,
|
|
kwargs_to_batchify={'tgt_key_padding_mask': 0, 'src_key_padding_mask': 0}),
|
|
desc='no_batch_dim'
|
|
))
|
|
|
|
return samples
|
|
|
|
|
|
def module_inputs_torch_nn_Embedding(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
make_empty = partial(torch.empty, device=device, dtype=torch.long, requires_grad=False)
|
|
return [
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(num_embeddings=4, embedding_dim=3),
|
|
forward_input=FunctionInput(make_empty(2, 3).random_(4))
|
|
),
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(num_embeddings=4, embedding_dim=3),
|
|
forward_input=FunctionInput(make_empty(1, 512).random_(4).expand(7, 512)),
|
|
desc='discontiguous'
|
|
),
|
|
]
|
|
|
|
|
|
def module_inputs_torch_nn_MultiheadAttention(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
# Currently all samples below are for validating the no-batch-dim support.
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
samples = []
|
|
bool_vals = (True, False)
|
|
key_padding_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool))
|
|
attn_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool).expand((3, 3, 3)))
|
|
products = itertools.product(bool_vals, bool_vals, bool_vals, key_padding_masks, attn_masks)
|
|
for bias, add_bias_kv, add_zero_attn, key_padding_mask, attn_mask in products:
|
|
samples.append(
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(embed_dim=3, num_heads=3, batch_first=True,
|
|
bias=bias, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn),
|
|
forward_input=FunctionInput(make_input((3, 3)), make_input((3, 3)), make_input((3, 3)),
|
|
key_padding_mask=key_padding_mask, attn_mask=attn_mask),
|
|
reference_fn=no_batch_dim_reference_mha,
|
|
)
|
|
)
|
|
samples.append(
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(embed_dim=3, num_heads=3, batch_first=False,
|
|
bias=bias, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn),
|
|
forward_input=FunctionInput(make_input((3, 3)), make_input((3, 3)), make_input((3, 3)),
|
|
key_padding_mask=key_padding_mask, attn_mask=attn_mask),
|
|
reference_fn=partial(no_batch_dim_reference_mha, batch_first=False),
|
|
)
|
|
)
|
|
|
|
return samples
|
|
|
|
|
|
def module_inputs_torch_nn_RNN_GRU_Cell(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
# Currently all samples below are for validating the no-batch-dim support.
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
samples = [
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(5, 10),
|
|
forward_input=FunctionInput(make_input(5), make_input(10)),
|
|
reference_fn=no_batch_dim_reference_fn,
|
|
),
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(5, 10, bias=True),
|
|
forward_input=FunctionInput(make_input(5), make_input(10)),
|
|
reference_fn=no_batch_dim_reference_fn,
|
|
)
|
|
]
|
|
|
|
is_rnn = kwargs.get('is_rnn', False)
|
|
if is_rnn:
|
|
# RNN also supports `nonlinearity` argument.
|
|
# `tanh` is the default, so we check with `relu`
|
|
samples.append(
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(5, 10, bias=True, nonlinearity='relu'),
|
|
forward_input=FunctionInput(make_input(5), make_input(10)),
|
|
reference_fn=no_batch_dim_reference_fn,
|
|
)
|
|
)
|
|
|
|
return samples
|
|
|
|
|
|
def module_inputs_torch_nn_LSTMCell(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
# Currently all samples below are for validating the no-batch-dim support.
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
samples = (
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(5, 10),
|
|
forward_input=FunctionInput(make_input(5), (make_input(10), make_input(10))),
|
|
reference_fn=no_batch_dim_reference_lstmcell,
|
|
),
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(5, 10, bias=True),
|
|
forward_input=FunctionInput(make_input(5), (make_input(10), make_input(10))),
|
|
reference_fn=no_batch_dim_reference_lstmcell,
|
|
),
|
|
)
|
|
|
|
return samples
|
|
|
|
|
|
def module_inputs_torch_nn_RNN_GRU(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
# Currently all samples below are for validating the no-batch-dim support.
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
is_rnn = kwargs['is_rnn']
|
|
nonlinearity = ('relu', 'tanh')
|
|
bias = (False, True)
|
|
batch_first = (False, True)
|
|
bidirectional = (False, True)
|
|
|
|
samples = []
|
|
if is_rnn:
|
|
prod_gen = product(nonlinearity, bias, batch_first, bidirectional)
|
|
else:
|
|
prod_gen = product(bias, batch_first, bidirectional)
|
|
|
|
for args in prod_gen:
|
|
if is_rnn:
|
|
nl, b, b_f, bidir = args
|
|
else:
|
|
b, b_f, bidir = args
|
|
|
|
cons_args = {'input_size': 2, 'hidden_size': 2, 'num_layers': 2,
|
|
'batch_first': b_f, 'bias': b, 'bidirectional': bidir}
|
|
cons_args_hidden = {'input_size': 2, 'hidden_size': 3, 'num_layers': 2,
|
|
'batch_first': b_f, 'bias': b, 'bidirectional': bidir}
|
|
|
|
if is_rnn:
|
|
cons_args['nonlinearity'] = nl
|
|
cons_args_hidden['nonlinearity'] = nl
|
|
samples.append(
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(**cons_args),
|
|
forward_input=FunctionInput(make_input((2, 2))),
|
|
reference_fn=partial(no_batch_dim_reference_rnn_gru, batch_first=b_f),
|
|
)
|
|
)
|
|
samples.append(
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(**cons_args_hidden),
|
|
forward_input=FunctionInput(make_input((3, 2)), make_input((4 if bidir else 2, 3))),
|
|
reference_fn=partial(no_batch_dim_reference_rnn_gru, batch_first=b_f),
|
|
)
|
|
)
|
|
|
|
return samples
|
|
|
|
|
|
def module_inputs_torch_nn_LSTM(module_info, device, dtype, requires_grad, training, **kwargs):
|
|
# Currently all samples below are for validating the no-batch-dim support.
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
bias = (False, True)
|
|
batch_first = (False, True)
|
|
bidirectional = (False, True)
|
|
proj_sizes = (0, 2)
|
|
|
|
samples = []
|
|
prod_gen = product(bias, batch_first, bidirectional, proj_sizes)
|
|
|
|
for args in prod_gen:
|
|
b, b_f, bidir, proj_size = args
|
|
hidden_size = 3
|
|
cons_args = {'input_size': 2, 'hidden_size': hidden_size, 'num_layers': 2, 'proj_size': proj_size,
|
|
'batch_first': b_f, 'bias': b, 'bidirectional': bidir}
|
|
cons_args_hidden = {'input_size': 2, 'hidden_size': hidden_size, 'num_layers': 2, 'proj_size': proj_size,
|
|
'batch_first': b_f, 'bias': b, 'bidirectional': bidir}
|
|
|
|
samples.append(
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(**cons_args),
|
|
forward_input=FunctionInput(make_input((2, 2))),
|
|
reference_fn=partial(no_batch_dim_reference_lstm, batch_first=b_f),
|
|
)
|
|
)
|
|
|
|
h_out = proj_size if proj_size > 0 else hidden_size
|
|
hx = (make_input((4 if bidir else 2, h_out)), make_input((4 if bidir else 2, hidden_size)))
|
|
samples.append(
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(**cons_args_hidden),
|
|
forward_input=FunctionInput(make_input((3, 2)), hx),
|
|
reference_fn=partial(no_batch_dim_reference_lstm, batch_first=b_f),
|
|
)
|
|
)
|
|
|
|
return samples
|
|
|
|
|
|
# All these operators share similar issues on cuDNN and MIOpen
|
|
rnn_gru_lstm_module_info_decorators = (
|
|
# RuntimeError: Batching rule not implemented for aten::_cudnn_rnn_backward.
|
|
# We could not generate a fallback
|
|
DecorateInfo(
|
|
unittest.expectedFailure, "TestModule", "test_grad",
|
|
active_if=(TEST_CUDNN and not TEST_WITH_ROCM), device_type='cuda'
|
|
),
|
|
# NotImplementedError: the derivative for '_cudnn_rnn_backward' is not implemented.
|
|
# Double backwards is not supported for CuDNN RNNs due to limitations in the CuDNN API
|
|
DecorateInfo(
|
|
unittest.expectedFailure, "TestModule", "test_gradgrad",
|
|
active_if=(TEST_CUDNN and not TEST_WITH_ROCM), device_type='cuda'
|
|
),
|
|
# CUDNN GRU doesn't accept non-contiguous hx
|
|
DecorateInfo(
|
|
unittest.expectedFailure, "TestModule", "test_non_contiguous_tensors",
|
|
active_if=(TEST_CUDNN and not TEST_WITH_ROCM), device_type='cuda'
|
|
),
|
|
# MIOPEN GRU doesn't accept non-contiguous hx (this is dispatched to miopen only for float).
|
|
DecorateInfo(
|
|
unittest.expectedFailure, "TestModule", "test_non_contiguous_tensors",
|
|
active_if=(TEST_CUDNN and TEST_WITH_ROCM), dtypes=(torch.float,), device_type='cuda'
|
|
),
|
|
)
|
|
|
|
# Database of ModuleInfo entries in alphabetical order.
|
|
module_db: List[ModuleInfo] = [
|
|
ModuleInfo(torch.nn.AdaptiveAvgPool2d,
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
module_inputs_func=module_inputs_torch_nn_AdaptiveAvgPool2d,
|
|
skips=(
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
|
|
),
|
|
ModuleInfo(torch.nn.AvgPool1d,
|
|
module_inputs_func=module_inputs_torch_nn_AvgPool1d,
|
|
skips=(
|
|
# No channels_last support for AvgPool1d as it does not take 4D inputs
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
|
|
),
|
|
ModuleInfo(torch.nn.BatchNorm2d,
|
|
train_and_eval_differ=True,
|
|
module_inputs_func=module_inputs_torch_nn_BatchNorm2d,
|
|
skips=(
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
|
|
),
|
|
ModuleInfo(torch.nn.BatchNorm3d,
|
|
train_and_eval_differ=True,
|
|
module_inputs_func=module_inputs_torch_nn_BatchNorm3d,
|
|
skips=(
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
|
|
),
|
|
ModuleInfo(torch.nn.Conv1d,
|
|
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=1, lazy=False),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
module_memformat_affects_out=True,
|
|
skips=(
|
|
# channels_last support on cuda requires cudnn >= 7603
|
|
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'),
|
|
# Failure on ROCM for float32 issue #70125
|
|
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64])
|
|
),
|
|
decorators=(
|
|
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
|
|
)),
|
|
ModuleInfo(torch.nn.Conv2d,
|
|
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=2, lazy=False),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
module_memformat_affects_out=True,
|
|
skips=(
|
|
# channels_last support on cuda requires cudnn >= 7603
|
|
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'),
|
|
# Failure on ROCM for float32 issue #70125
|
|
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
|
|
# This was wrongly being skipped before and needs investigation.
|
|
# See https://github.com/pytorch/pytorch/issues/80247
|
|
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format",
|
|
device_type='cuda', dtypes=[torch.float64]),
|
|
),
|
|
decorators=(
|
|
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
|
|
)),
|
|
ModuleInfo(torch.nn.Conv3d,
|
|
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=3, lazy=False),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
module_memformat_affects_out=True,
|
|
skips=(
|
|
# channels_last support on cuda requires cudnn >= 8005
|
|
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=8005), 'TestModule', 'test_memory_format'),
|
|
# Failure on ROCM for float32 issue #70125
|
|
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
|
|
# This was wrongly being skipped before and needs investigation.
|
|
# See https://github.com/pytorch/pytorch/issues/80247
|
|
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format"),
|
|
),
|
|
decorators=(
|
|
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
|
|
)),
|
|
ModuleInfo(torch.nn.ConvTranspose1d,
|
|
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=1, lazy=False, transposed=True),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
module_memformat_affects_out=True,
|
|
dtypes=floating_and_complex_types_and(torch.chalf),
|
|
skips=(
|
|
# channels_last support on cuda requires cudnn >= 7603
|
|
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'),
|
|
# Failure on ROCM for float32 issue #70125
|
|
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
|
|
# Not implmented for chalf on CPU
|
|
DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_forward',
|
|
dtypes=(torch.chalf,), device_type='cpu'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_memory_format',
|
|
dtypes=(torch.chalf,), device_type='cpu'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestModule',
|
|
'test_if_train_and_eval_modes_differ', dtypes=(torch.chalf,), device_type='cpu'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_non_contiguous_tensors',
|
|
dtypes=(torch.chalf,), device_type='cpu'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_cpu_gpu_parity',
|
|
dtypes=(torch.chalf,), device_type='cuda'),
|
|
DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_multiple_device_transfer',
|
|
dtypes=(torch.chalf,), device_type='cuda'),
|
|
# Ref: https://github.com/pytorch/pytorch/issues/73502
|
|
DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_pickle', dtypes=(torch.chalf,)),
|
|
),
|
|
decorators=(
|
|
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
|
|
)),
|
|
ModuleInfo(torch.nn.ConvTranspose2d,
|
|
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=2, lazy=False, transposed=True),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
module_memformat_affects_out=True,
|
|
skips=(
|
|
# channels_last support on cuda requires cudnn >= 7603
|
|
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'),
|
|
# Failure on ROCM for float32 issue #70125
|
|
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
|
|
# This was wrongly being skipped before and needs investigation.
|
|
# See https://github.com/pytorch/pytorch/issues/80247
|
|
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", device_type='cpu'),
|
|
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", device_type='cuda',
|
|
dtypes=[torch.float64]),
|
|
),
|
|
decorators=(
|
|
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
|
|
)),
|
|
ModuleInfo(torch.nn.ConvTranspose3d,
|
|
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=3, lazy=False, transposed=True),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
module_memformat_affects_out=True,
|
|
skips=(
|
|
# channels_last support on cuda requires cudnn >= 8005
|
|
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=8005), 'TestModule', 'test_memory_format'),
|
|
# Failure on ROCM for float32 issue #70125
|
|
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
|
|
# This was wrongly being skipped before and needs investigation.
|
|
# See https://github.com/pytorch/pytorch/issues/80247
|
|
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format"),
|
|
),
|
|
decorators=(
|
|
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
|
|
)),
|
|
ModuleInfo(torch.nn.ELU,
|
|
module_inputs_func=module_inputs_torch_nn_ELU,
|
|
skips=(
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
|
|
),
|
|
ModuleInfo(torch.nn.L1Loss,
|
|
module_inputs_func=module_inputs_torch_nn_L1Loss,
|
|
skips=(
|
|
# No channels_last support for loss functions.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
|
|
),
|
|
ModuleInfo(torch.nn.LazyConv1d,
|
|
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=1, lazy=True),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
module_memformat_affects_out=True,
|
|
skips=(
|
|
# channels_last support on cuda requires cudnn >= 7603
|
|
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'),
|
|
# Failure on ROCM for float32 issue #70125
|
|
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
|
|
# Lazy modules don't currently play well with ModuleInfo tests on the meta device.
|
|
# See https://github.com/pytorch/pytorch/issues/70505 for more info.
|
|
DecorateInfo(skipMeta),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
|
|
),
|
|
decorators=(
|
|
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
|
|
)),
|
|
ModuleInfo(torch.nn.LazyConv2d,
|
|
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=2, lazy=True),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
module_memformat_affects_out=True,
|
|
skips=(
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
|
|
# channels_last support on cuda requires cudnn >= 7603
|
|
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'),
|
|
# Failure on ROCM for float32 issue #70125
|
|
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
|
|
# Lazy modules don't currently play well with ModuleInfo tests on the meta device.
|
|
# See https://github.com/pytorch/pytorch/issues/70505 for more info.
|
|
DecorateInfo(skipMeta),
|
|
# This was wrongly being skipped before and needs investigation.
|
|
# See https://github.com/pytorch/pytorch/issues/80247
|
|
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format",
|
|
device_type='cuda', dtypes=[torch.float64]),
|
|
),
|
|
decorators=(
|
|
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
|
|
)),
|
|
ModuleInfo(torch.nn.LazyConv3d,
|
|
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=3, lazy=True),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
module_memformat_affects_out=True,
|
|
skips=(
|
|
# channels_last support on cuda requires cudnn >= 8005
|
|
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=8005), 'TestModule', 'test_memory_format'),
|
|
# Failure on ROCM for float32 issue #70125
|
|
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
|
|
# Lazy modules don't currently play well with ModuleInfo tests on the meta device.
|
|
# See https://github.com/pytorch/pytorch/issues/70505 for more info.
|
|
DecorateInfo(skipMeta),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
|
|
# This was wrongly being skipped before and needs investigation.
|
|
# See https://github.com/pytorch/pytorch/issues/80247
|
|
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format"),
|
|
),
|
|
decorators=(
|
|
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
|
|
)),
|
|
ModuleInfo(torch.nn.LazyConvTranspose1d,
|
|
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=1, lazy=True, transposed=True),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
module_memformat_affects_out=True,
|
|
skips=(
|
|
# channels_last support on cuda requires cudnn >= 7603
|
|
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'),
|
|
# Failure on ROCM for float32 issue #70125
|
|
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
|
|
# Lazy modules don't currently play well with ModuleInfo tests on the meta device.
|
|
# See https://github.com/pytorch/pytorch/issues/70505 for more info.
|
|
DecorateInfo(skipMeta),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
|
|
),
|
|
decorators=(
|
|
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
|
|
)),
|
|
ModuleInfo(torch.nn.LazyConvTranspose2d,
|
|
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=2, lazy=True, transposed=True),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
module_memformat_affects_out=True,
|
|
skips=(
|
|
# channels_last support on cuda requires cudnn >= 7603
|
|
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'),
|
|
# Failure on ROCM for float32 issue #70125
|
|
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
|
|
# Lazy modules don't currently play well with ModuleInfo tests on the meta device.
|
|
# See https://github.com/pytorch/pytorch/issues/70505 for more info.
|
|
DecorateInfo(skipMeta),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
|
|
# This was wrongly being skipped before and needs investigation.
|
|
# See https://github.com/pytorch/pytorch/issues/80247
|
|
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", device_type='cpu'),
|
|
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", device_type='cuda',
|
|
dtypes=[torch.float64]),
|
|
),
|
|
decorators=(
|
|
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
|
|
)),
|
|
ModuleInfo(torch.nn.LazyConvTranspose3d,
|
|
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=3, lazy=True, transposed=True),
|
|
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
|
|
module_memformat_affects_out=True,
|
|
skips=(
|
|
# channels_last support on cuda requires cudnn >= 8005
|
|
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=8005), 'TestModule', 'test_memory_format'),
|
|
# Failure on ROCM for float32 issue #70125
|
|
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
|
|
# Lazy modules don't currently play well with ModuleInfo tests on the meta device.
|
|
# See https://github.com/pytorch/pytorch/issues/70505 for more info.
|
|
DecorateInfo(skipMeta),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
|
|
# This was wrongly being skipped before and needs investigation.
|
|
# See https://github.com/pytorch/pytorch/issues/80247
|
|
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format"),
|
|
),
|
|
decorators=(
|
|
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
|
|
)),
|
|
ModuleInfo(torch.nn.Linear,
|
|
module_inputs_func=module_inputs_torch_nn_Linear,
|
|
skips=(
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
|
|
# No channels_last support for Linear currently.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),)
|
|
),
|
|
ModuleInfo(torch.nn.Bilinear,
|
|
module_inputs_func=module_inputs_torch_nn_Bilinear,
|
|
decorators=[
|
|
DecorateInfo(
|
|
toleranceOverride({
|
|
torch.float32: tol(atol=1e-4, rtol=1e-4),
|
|
torch.float64: tol(atol=1e-4, rtol=1e-4)}),
|
|
'TestModule', 'test_forward', device_type='cpu')
|
|
],
|
|
skips=(
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
|
|
# No channels_last support for Bilinear currently.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),)
|
|
),
|
|
ModuleInfo(torch.nn.MaxPool2d,
|
|
module_inputs_func=module_inputs_torch_nn_MaxPool2d,
|
|
skips=(
|
|
# TODO: test_non_contiguous_tensors doesn't handle case where output is not a singleton (such as
|
|
# return_indices=True for MaxPool2D), submit fix
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_non_contiguous_tensors'),
|
|
# TODO: test_cpu_gpu_parity doesn't handle case where output is not a singleton, submit fix
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_cpu_gpu_parity'),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
|
|
),
|
|
ModuleInfo(torch.nn.NLLLoss,
|
|
module_inputs_func=module_inputs_torch_nn_NLLLoss,
|
|
skips=(
|
|
# No channels_last support for loss functions.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
|
|
),
|
|
ModuleInfo(torch.nn.GaussianNLLLoss,
|
|
module_inputs_func=module_inputs_torch_nn_GaussianNLLLoss,
|
|
skips=(
|
|
# No channels_last support for loss functions.
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),)),
|
|
ModuleInfo(torch.nn.CrossEntropyLoss,
|
|
module_inputs_func=module_inputs_torch_nn_CrossEntropyLoss,
|
|
skips=(
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
|
|
),
|
|
ModuleInfo(torch.nn.Hardswish,
|
|
module_inputs_func=module_inputs_torch_nn_Hardswish,
|
|
skips=(
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),),
|
|
supports_gradgrad=False),
|
|
ModuleInfo(torch.nn.TransformerEncoderLayer,
|
|
train_and_eval_differ=True,
|
|
module_inputs_func=module_inputs_torch_nn_TransformerEncoderLayer,
|
|
skips=(
|
|
# No channels_last support for TransformerEncoderLayer currently.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
|
|
),
|
|
ModuleInfo(torch.nn.TransformerDecoderLayer,
|
|
module_inputs_func=module_inputs_torch_nn_TransformerDecoderLayer,
|
|
skips=(
|
|
# No channels_last support for TransformerDecoderLayer currently.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
|
|
),
|
|
ModuleInfo(torch.nn.Transformer,
|
|
module_inputs_func=module_inputs_torch_nn_Transformer,
|
|
skips=(
|
|
# No channels_last support for Transformer currently.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
|
|
),
|
|
ModuleInfo(torch.nn.MultiheadAttention,
|
|
train_and_eval_differ=True,
|
|
module_inputs_func=module_inputs_torch_nn_MultiheadAttention,
|
|
skips=(
|
|
# No channels_last support for MultiheadAttention currently.
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
|
|
),
|
|
ModuleInfo(torch.nn.Embedding,
|
|
module_inputs_func=module_inputs_torch_nn_Embedding,
|
|
skips=(
|
|
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
|
|
),
|
|
ModuleInfo(torch.nn.ReLU,
|
|
module_inputs_func=module_inputs_torch_nn_ReLU,
|
|
skips=(
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
|
|
),
|
|
ModuleInfo(torch.nn.RNNCell,
|
|
module_inputs_func=partial(module_inputs_torch_nn_RNN_GRU_Cell, is_rnn=True),
|
|
skips=(
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
|
|
),
|
|
ModuleInfo(torch.nn.GRUCell,
|
|
module_inputs_func=module_inputs_torch_nn_RNN_GRU_Cell,
|
|
skips=(
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
|
|
),
|
|
ModuleInfo(torch.nn.LSTMCell,
|
|
module_inputs_func=module_inputs_torch_nn_LSTMCell,
|
|
skips=(
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
|
|
),
|
|
ModuleInfo(torch.nn.Sigmoid,
|
|
module_inputs_func=module_inputs_torch_nn_Sigmoid,
|
|
skips=(
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
|
|
),
|
|
ModuleInfo(torch.nn.RNN,
|
|
train_and_eval_differ=True,
|
|
module_inputs_func=partial(module_inputs_torch_nn_RNN_GRU, is_rnn=True),
|
|
skips=(
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),),
|
|
decorators=rnn_gru_lstm_module_info_decorators
|
|
),
|
|
ModuleInfo(torch.nn.GRU,
|
|
train_and_eval_differ=True,
|
|
module_inputs_func=partial(module_inputs_torch_nn_RNN_GRU, is_rnn=False),
|
|
skips=(
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),),
|
|
decorators=rnn_gru_lstm_module_info_decorators),
|
|
ModuleInfo(torch.nn.LSTM,
|
|
train_and_eval_differ=True,
|
|
module_inputs_func=module_inputs_torch_nn_LSTM,
|
|
skips=(
|
|
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),),
|
|
decorators=rnn_gru_lstm_module_info_decorators)
|
|
]
|